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Annotation

Superconductor–ferromagnet heterostructures hosting vortices and skyrmions are
a new area of an interplay between superconductivity and magnetism. We study
the interaction of a Néel–type skyrmion and a Pearl vortex in thin heterostruc-
tures due to stray fields. Surprisingly, we find that it can be energetically favorable
for the Pearl vortex to be situated at some nonzero distance from the center of the
Néel–type skyrmion. The presence of a vortex–antivortex pair is found to result
in an increase of the skyrmion radius. Our theory predicts that a spontaneous
generation of a vortex–antivortex pair is possible under some conditions in the
presence of a Néel–type skyrmion.
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Introduction

Topological objects have been remaining at the focus of theoretical and experimental research
for more than half a century. The existence of topologically stable configurations in ferromagnets
with Dzyaloshinskii–Moriya interaction (DMI) has been predicted by Bogdanov and Yablonskii
in 1989 [1].

Heisenberg spins (Si settled at site i) in the presence of a DMI, magnetic anisotropy and an
external magnetic field are described by the model lattice Hamiltonian

H = −
∑
〈ij〉

JSiSj + Dij · (Si × Sj)−
∑
i

KM2
i,z −

∑
i

BMi (0.1)

where the first and the second terms represent the Heisenberg exchange and the Dzyaloshinskii-
Moriya interactions respectively. Last two terms stand for magnetic anisotropy (typically mag-
netocrystalline anisotropy) and Zeeman interaction energies respectively. Here the exact form
of the Dzyaloshinskii–Moriya vector Dij is determined by the type of relativistic spin-orbit
coupling present in the system [2].

In the continuous limit and in the absence of the external fieldB the expression (0.1) becomes
[3]

ESk = M2
s

∫
d2r

{
A(∇m)2 +K(1−m2

z) +Dm · (∇×m)

}
, (0.2)

where m(r) denotes the unit vector of magnetization direction. It is convenient to use the
so-called skyrmion-angle parameterization for the unit vector m (see for example [4]). Let us
introduce the function θ(r), such that in cylindrical coordinates

m = (cosϕ sin θ(r), sinϕ sin θ(r), cos θ(r)) (0.3)

with the boundary conditions θ(0) = π, θ(∞) = 0. Here ϕ is the skyrmion’s helicity. Depending
on a type of DMI in the ferromagnetic film helicity can take different values. For example, cases
ϕ = 0, π correspond to Néel-type skyrmions, while ϕ = π/2 describes the Bloch-type one. In
the first two cases we introduce η ≡ cosϕ ≡ sign(D) = ±1, which is referred to as «chirality»
of the ferromagnetic film.

Two-dimensional particle-like textures (skyrmions) are characterized by a topological wind-
ing number [3] (see Fig. 1)

n =

∫
d2r

4π
m ·

(
∂m

∂x
× ∂m

∂y

)
= ±1,±2, . . . (0.4)

Now these topological excitations are intensively explored in an emergent field of skyrmion-
ics [6].

Research on an interplay between magnetism and superconductivity in heterostructures has
long history [7, 8, 9, 10, 11]. Recently superconductor–ferromagnet bilayers hosting skyrmions
have attracted great theoretical interest. It was understood that skyrmions in proximity with a
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Figure 1: Adopted from work [5]. Zoo of (topological) spin textures with different winding
numbers. (a) Hedgehog, (b) Néel-type skyrmion, (c) Bloch-type skyrmion, (d) antiskyrmion,
(e) skyrmionium, (f ) biskyrmion, (g) example of an in-plane skyrmion, (h) skyrmion in helical
background, (i) chiral bobber, ( j) combed anti-hedgehog formed around the Bloch point in
panel (i). The winding number for (b)–(d), (g), and (h) is |n| = 1 and for (f) it is |n| = 2 and
(e) is topologically trivial.

superconductor can not only induce Yu-Shiba-Rusinov-type bound states [12, 13] but can also
host Majorana modes [14, 15, 16, 17, 18, 19, 20]. It was found [21] that the presence of skyrmions
affects strongly Josephson current via superconductor–ferromagnet–superconductor junction. It
has been also shown [22] that skyrmion configurations can be stabilized by a superconducting
dot or antidot situated at the top of a ferromagnetic film. In ferromagnet–superconductor
heterostructures superconducting vortices and skyrmions can form bound pairs either due to
interplay of proximity effect and spin-orbit coupling [4, 23] or due to their interaction via stray
fields [24, 25, 26, 27].

Figure 2: Sketch of a ferromagnet (green) – superconductor (blue) heterostructure. There is also
a thin insulating layer (black) which suppresses the proximity effect. The ferromagnetic layer
hosts a Néel–type skyrmion. The magnetic profile of the skyrmion with the positive chirality
is schematically shown. The superconducting layer hosts a vortex at some distance from the
skyrmion’s center. The vortex is shown schematically by blue lines, the yellow arrow points
towards the direction of its magnetic flux. dF and dS denote the width of the ferromagnet and
superconductor film, respectively (see text).
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In this project we study the interaction between a Néel–type skyrmion and a superconducting
vortex in a chiral ferromagnet–superconductor heterostructure, see Fig. 2. We assume that the
proximity effect is suppressed by the presence of a thin insulating layer between ferromagnet
and superconductor such that the interaction between a skyrmion and a vortex is due to stray
fields only. At first, by solving Maxwell–London equation we determine the Meissner current
induced by a Néel–type skyrmion in the superconductor. Contrary to the previous work [26],
we consider the case of ferromagnet and superconducting films of arbitrary widths. Analysis
of the general expression, cf. Eq. (1.6), in the case of thin ferromagnetic and superconducting
films yields that the supercurrent has a maximum at distance of the order of the skyrmion size
from the center of the skyrmion. Secondly, for thin ferromagnetic and superconducting films
we compute the interaction energy between a Néel–type skyrmion and a Pearl vortex due to
stray fields. Contrary to previous results, see Refs. [24, 25, 26], we find that in the case of a
Néel–type skyrmion with the positive and negative chiralities it can be energetically favorable
for a vortex to settle at some distance from the skyrmion’s center. At third, we study the
effect of the presence of superconducting vortex–anti-vortex pair on the skyrmion size in thin
heterostructures. We find that a Pearl vortex leads to increase of a skyrmion radius. Under
some conditions, the spontaneous generation of a vortex–anti-vortex pair in a superconducting
film is possible in the presence of a skyrmion.

It is worth noting the recent experimental paper [27], in which the possibility of sponta-
neous production of a vortex-antivortex pair in a thin superconducting film in the presence of
a skyrmion was first proved. Authors prepared FIS (chiral magnet-insulator-superconductor)
heterostructure, composed of Nb layer and [Ir1Fe0.5Co0.5Pt1]10 multi-layers, separated by 5 nm
insulating MgO (see Fig. 3).

Figure 3: Adopted from work [27]. (a) Schematic of a Néel skyrmion creating an antivortex
with flux −φ0 = −h/2e antiparallel to the external magnetic field H. Antivortex currents js
flow at radii up to λ. The superconducting order parameter |Ψ| is suppressed over a length ξ
in the vortex core. (b) Sample compositions: numbers (e.g., Ir1, Pt2) indicate layer thicknesses
in nm and there are 10 stacked repeats of the [Ir1Fe0.5Co0.5Pt1] unit.

In this work authors trace the dependence of the total superconductor’s magnetic moment
Msuper(H) on the magnetic field. Below some critical field Hnuc the magnetic skyrmions are
nucleated inside the F-film. This process also leads to sharp change inMsuper(H) to the negative
values. Comparing the behavior of magnetization Msuper(H) in an isolated S-sample and in a
FIS heterostructure, the authors come to the conclusion that a vortex-antivortex pair is created.
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1 Supercurrent generated by a Néel–type skyrmion

We start from calculation of the supercurrent in the chiral ferromagnet–supercondutor het-
erostructure which is generated by a Néel–type skyrmion (see Fig. 2). The width of the chiral
ferromagnet (superconductor) film is dF (dS). We assume the presence of a thin insulating layer
between the chiral ferromagnet and the superconductor that allows us to neglect the proximity
effect. The magnetization profile of a Néel–type skyrmion in the chiral ferromagnet film in the
cylindrical coordinate system with the origin at the center of the skyrmion is given as follows
[28]

MSk = Ms

[
erη sin θ(r) + ez cos θ(r)

]
. (1.1)

Here η = ±1 denotes the chirality of the skyrmion, θ(r) stands for the skyrmion angle, Ms

is the saturation magnetization of the chiral ferromagnet film, and er and ez are unit vectors
along the radial direction and the z-axis (perpendicular to the interface), respectively.

The spatial distribution of the vector potential ASk is governed by the Maxwell–London
equation:

∇× (∇×ASk) + λ−2L Θ(−z)Θ(z + dS)ASk = 4πΘ(z)Θ(dF − z)∇×MSk, (1.2)

where Θ(x) denotes the Heaviside step function (with Θ(0) = 1) andλL stands for the London
penetration depth. The Maxwell–London equation should be supplemented by the boundary
conditions of continuity of the normal component of BSk = ∇×ASk and tangential component
of BSk − 4πMSkΘ(z)Θ(dF − z) [29].

Since the right hand side of Eq. (1.2) is proportional to the unit vector eϕ, the vector potential
ASk has only the azimuthal component ASk,ϕ that depends on r and z. The component ASk,ϕ

is continuous at z = −dS, 0, dF ; its derivative ∂ASk,ϕ/∂z is continuous at z = −dS and has the
jumps at z = 0 and z = dF : ∂ASk,ϕ/∂z|z=+0

z=−0 = −4πMSk,r and ∂ASk,ϕ/∂z|z=dF+0
z=dF−0 = 4πMSk,r.

The solution for ASk,ϕ(r, z) can be cast as the sum of two terms, ASk,ϕ(r, z) = A
(+)
Sk,ϕ(r, z) +

ηA
(−)
Sk,ϕ(r, z), where

A
(σ)
Sk,ϕ(r, z) = −

∞∫
0

dq J1(qr)
G(σ)(q)

q
×



κV,(σ)
2 e−qz, z > dF ,

1+σ
2

+ κF,(σ)
1 eqz + κF,(σ)

2 e−qz, dF > z > 0,

κS,(σ)
1 eQz + κS,(σ)

2 e−Qz, 0 > z > −dS,

κV,(σ)
1 eqz, −dS > z.

(1.3)

Here Jn(z) stands for the Bessel function of the first kind. Also we introducedQ =
√
q2 + 1/λ2L

and the functions
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G(+)(q) = −4πMs

∞∫
0

dr rJ1(qr)θ
′(r) sin θ(r),

G(−)(q) = −4πMs

∞∫
0

dr rqJ1(qr) sin θ(r).

(1.4)

Here and afterwards, we use the following notation θ′(r) ≡ dθ/dr. Using the continuity of
the azimuthal component of the vector potential, ASk,ϕ, and the boundary conditions for its
derivative, ∂ASk,ϕ/∂z, at z = −dS, 0, dF , we obtain (σ = ±),

κV,(σ)
2 =

σ

2
(eqdF − 1)− sinh(QdS)X

qλ2L
, κV,(σ)

1 = 2QeqdsX ,

κF,(σ)
1 = −1

2
e−qdF , κF,(σ)

2 = −σ
2
− sinh(QdS)X

qλ2L
,

κS,(σ)
1 = (Q+ q)eQdsX , κS,(σ)

2 = (Q− q)e−QdsX ,

X =
q(1− e−qdF )

(Q+ q)2eQdS − (Q− q)2e−QdS
. (1.5)

The current density in the superconducting film, i.e. at −dS 6 z 6 0, can be calculated
by means of the London equation, j = −ASk/(4πλ

2
L). It is more convenient to trace the total

supercurrent flowing in the superconducting film, Jϕ(r) =
∫ 0

−dS
dzjϕ(r, z). Then, we retrieve

Jϕ = J
(+)
ϕ + ηJ

(−)
ϕ , where

J (±)
ϕ =

∞∫
0

dq
J1(qr)

4πλ2L

G(±)(q)(1− e−qdF )(1− e−QdS)

Q[q +Q− (Q− q)e−QdS ]
, (1.6)

We mention that this expression is similar to the expression for the current induced by a domain
wall [30]. In the limit of a thick superconductor, dS � λL, R, Eq. (1.6) transforms into the result
of Ref. [26]. Here R stands for the characteristic spatial scale (radius) of a skyrmion.

Below we shall focus on the case of a thin chiral ferromagnet, dF � R, and a thin supercon-
ducting film, dS � λL, R. As we shall demonstrate in the next section, the asymptotic behavior
of the supercurrent can be found for an arbitrary smooth skyrmion profile with θ(0) = π

and θ(r → ∞) → 0. Commonly used variational examples with such kind behavior are the
exponential ansatz θ(r) = θ̄(r/R) where θ̄(x) = π exp(−x) and the 360-degree domain wall
ansatz θ̄(x) = 2 arctan(sinh(R/δ)/ sinh(Rx/δ)). Also we shall consider the linear ansatz with
θ(r) = π(1− r/R) for r < R and zero overwise.
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Figure 4: The dependence of J (±)
ϕ and the total supercurrent Jϕ on the distance from the

skyrmion center for the cases of positive (upper row) and negative (lower raw) chiralities. The
parameters are dS/λL = 0.01, dF/λL = 0.005, and R/λL = 3. The supercurrent is calculated
for the exponential, domain wall (DW) and linear ansatz.

1.1 The case of a smooth skyrmion profile

The behavior of the supercurrent with the distance from the center of the skyrmion is
controlled by the functions G(±)(q), see Eq. (1.4). It is convenient to introduce the dimensionless
functions g(±), such that G(±)(q) = 4πMsR g(±)(qR), where

g(+)(y) = −
∞∫
0

dx xJ1(yx)θ̄′(x) sin θ̄(x),

g(−)(y) = −y
∞∫
0

dx xJ1(yx) sin θ̄(x).

(1.7)

Then in the case of a thin superconducting film, dS � λL, R, and a thin chiral ferromagnet,
dF � R, Eq. (1.6) can be drastically simplified,

J (±)
ϕ (r) = Ms

dF
R

∞∫
0

dy
yg(±)(y)J1(yr/R)

1 + 2yλ/R
. (1.8)

Here λ = λ2L/dS denotes the Pearl penetration length [31]. The asymptotic behavior of the
function g(+)(y) is given as (see Appendix A),

g(+)(y) =

2c2y, y � 1,

−9θ̄′(0)θ̄′′(0)/(2y4), y � 1,
(1.9)

where we introduced the numerical constants

ck = −1

4

∞∫
0

dx xkθ̄′(x) sin θ̄(x), k = −1, 0, 1, . . . (1.10)
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For example, in the case of the exponential ansatz one finds c2 ≈ 0.51. The asymptotics of the
function g(−)(y) can be written as (see Appendix A),

g(−)(y) =

−b2y2/2, y � 1,

−3θ̄′′(0)/(2y3), y � 1.
(1.11)

Here we introduced the numerical constants,

bk =

∞∫
0

dx xk sin θ̄(x), k = −1, 0, 1, . . . (1.12)

We note that b2 ≈ 5.94 in the case of the exponential ansatz.
Let us first consider the case of the skyrmion size much smaller than the size of the vortex,

R � λ. Evaluating the integral over q in Eq. (1.8), we obtain asymptotic behavior of the two
components of the supercurrent (see Appendix A),

J (+)
ϕ =

MsdF
λ


c−1r/R, r � R,

c2R
2/(2r2), R� r � λ,

12c2λ
2R2/r4, λ� r,

(1.13)

and

J (−)
ϕ =

MsdF
λ


θ̄′(0)r/(2R), r � R,

b2R
3/(8λr2), R� r � λ,

3b2λR
3/(2r4), λ� r.

(1.14)

We note that for θ̄(x) = π exp(−x) one finds c−1 ≈ 1.17. The asymptotic expressions (1.13)
and (1.14) suggest nonmonotonous spatial dependence of the both contributions J (±)

ϕ to the
supercurrent with the extremum at the distance of order of the skyrmion radius R. As it is
shown in Fig. 4, the value of J (+)

ϕ (J (−)
ϕ ) at the extremum is positive (negative) in the case of

exponential and domain wall ansatz. Thus the total supercurrent seems to be sensitive to the
skyrmion chirality. In the case of the exponential ansatz the sign of the extremal value of the
supercurrent is opposite to the chirality. In the case of the domain wall ansatz the sign of the
supercurrent at the extremum depends also on the ratio R/δ.

In the case of large skyrmion and small Pearl length, R � λ, the part of the supercurrent,
J
(+)
ϕ , which is related with the z-component of the skyrmion magnetization, can be found to

the lowest order in λ/R as (see Appendix A),

J (+)
ϕ = −Ms

dF
R
θ̄′(r/R) sin θ̄(r/R). (1.15)

We note that J (+)
ϕ coincides with the current (∇×MSk)ϕ integrated over the width of the chiral

11



ferromagnet.
If the function θ̄(x) decays at x→∞ faster than 1/x3, the expression (1.15) determines J (+)

ϕ

at r � rλ only. Then at distances r � rλ � R the asymptotic behavior of the supercurrent is
given as (cf. Eq. (1.13)),

J (+)
ϕ = 12c2Ms

dFλR
2

r4
, rλ � r. (1.16)

The length scale rλ can be estimated from the condition |θ̄(rλ/R)|2 ∼ λR3/r4λ. In the case of
the exponential ansatz one finds rλ ∼ R ln(R/λ)� R.

The asymptotic expressions for component J (−)
ϕ of the supercurrent read (see Appendix A),

J (−)
ϕ =

3MsdF r

4R2

θ̄′′(0) ln(r/R), r � R,

2b2R
5/r5, r � R.

(1.17)

We mention that in the case of R � λ the dependence of the supercurrent on the distance is
qualitatively similar to the case of a skyrmion of a small radius R� λ. We emphasize that there
is a change of the sign of the supercurrent at some distance from the center of the Néel–type
skyrmion in some cases, see Fig. 4. Such change of sign can also occurs in the case of a thick
superconductor–ferromagnet–superconductor structure [26].

1.2 The case of the linear ansatz

In the case of the linear ansatz the expression (1.7) for the function g(+)(y) should be modified
in order to have continuous solution for Aϕ at r = R,

g(+)(y)→ g
(+)
L (y) = y

1∫
0

dxxJ0(yx)

[
cos (πx) +

4

π2

]
≡ g(+) + δg(+). (1.18)

Here the function g(+)(y) is given by Eq. (1.7) and δg(+)(y) = −4c2J1(y), where in the case of
the linear ansatz, c2 = 1/4−1/π2. Therefore, the function g(+)

L (y) has the following asymptotic
behavior,

g
(+)
L (y) =


π2 − 6

2π4
y3, y � 1,

π2 − 4

π2

√
2 cos(y + π/4)
√
πy

, y � 1.
(1.19)

We observe that the abrupt change of θ(r) at r = R results in oscillating behavior of g(+)(y) at
y � 1.

With the help of Eqs. (1.8) and (1.19), we obtain the following results for the asymptotic
behavior of the supercurrent in the case of R� λ (see Appendix A),

J (+)
ϕ =

MsdF
4λ


(π Si(π)− 1 + 4/π2)r/R, r � R,

3(6− π2)R4/(π4r4), R� r � λ,

180(6− π2)R4λ2/(π4r6), λ� r.

(1.20)
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Here Si(z) stands for the sine integral. We note that in the case of the linear ansatz the J (+)
ϕ

component of the supercurrent decays faster at r � R than in the case of smooth skyrmion
profile. This occurs due to the fact that the contribution to the current from δg(+)(y) cancels
the leading contributions from g(+)(y).

As in the case of a smooth skyrmion profile, Eq. (1.20) suggests nonmonotonous behavior
of J (+)

ϕ with r. There should be the maximum and the minimum in the supercurrent at the
distances of the order of the skyrmion size R. Contrary to the case of a smooth skyrmion
profile, Eq. (1.20) describes asymptotic behavior of the smooth part of J (+)

ϕ only. On the top
of the monotononic dependence there is also weak oscillating contribution to J

(+)
ϕ with the

typical length scale of the order of R as shown in Fig. 4. This oscillating contribution is the
consequence of the abrupt boundary of the skyrmion configuration.

The asymptotic behavior of J (−)
ϕ can be read from Eq. (1.14). It suggests the existence of the

minimum and the maximum at the distance of the order of R. Similarly to J (+)
ϕ , the contribution

J
(−)
ϕ has additional oscillations with the distance.
The dependence J (+)

ϕ (r) in the case of large skyrmion size, R � λ, is more intricate. This
component of the supercurrent is given as the sum of the contribution discussed above for the
case of the smooth skyrmion profile, cf. Eqs. (1.15) and (1.16), and the contribution due to
δg(+)(y). At short distance, r � R, we find (see Appendix A),

J (+)
ϕ =

π2MsdF r

R2

(
1− 3

π2 − 4

π4

λ

R

)
. (1.21)

In the case of the long distance, r � R the contribution to the supercurrent is given as

J (+)
ϕ = −45

π2 − 6

π4

MsdFλR
4

r6
. (1.22)

We note that in the case of the linear ansatz J (+)
ϕ is stronger suppressed at r � R than in

the case of a smooth skyrmion profile. The asymptotic behavior of J (−)
ϕ is given by the general

expression (1.17).
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2 Interaction energy between skyrmion and Pearl vortex

As above we focus on the case of a thin (dS � λL) superconducting film with a supercon-
ducting vortex situated at the distance a from the center of the Néel–type skyrmion (see Fig.
2). In order to compensate the magnetic flux carried by the vortex we assume that there exists
anti-vortex located far away from the skyrmion–vortex pair. The free energy of this system,
including the magnetic energy of the skyrmion can be written as

F = FSk + FV + FV + FSk−V + FSk−V + FV−V. (2.1)

Here FSk denotes the magnetic free energy of the isolated chiral ferromagnet that leads to the
appearance of the Néel–type skyrmion (see its explicit form in the next section). FV and FV

are the free energies of the isolated superconducting vortex and anti-vortex, respectively. The
electromagnetic interaction between the skyrmion and the vortex is described by the following
free energy,

FSk−V =

∫
dzd2r

4π

[
BSkBV + λ2L(∇×BSk)(∇×BV)Θ(−z)Θ(z + dS)

−4πMSkBVΘ(z)Θ(dF − z)
]
, (2.2)

where BV = ∇ × AV and BSk = ∇ × ASk are the magnetic fields generated by the vortex
and the skyrmion, respectively. We note that the first two terms in the right hand side of the
expression for FSk−V compensate each other in virtue of Eq. (1.2). Therefore, one can have an
impression that the distribution of the supercurrent does not influence the interaction energy
between the skyrmion and the vortex. In fact, FSk−V is intimately related with the supercurrent,
see below. In what follows, we shall neglect the free energies of the interaction of the anti-vortex
with the skyrmion, FSk−V, and with the vortex, FV−V.

The magnetic field of a Pearl vortex in a thin film, dS � λL, can be written in a standard
form [32],

BV = φ0 sgn(z)∇
∫

d2q

(2π)2
e−q|z|+iq(r−a)

q(1 + 2qλ)
. (2.3)

Here φ0 = hc/2e is the flux quantum, a is the coordinate vector of the vortex center with
respect to the skyrmion center. Since FSk−V should depend on the distance a between the
skyrmion and the vortex only, we can average the magnetic field BV over directions of the
vector a. This procedure implies that

BV → −φ0

∞∫
0

dq

2π

q e−q|z|

1 + 2qλ
J0(qa)

[
sgn(z)J1(qr)er + J0(qr)ez

]
. (2.4)

We emphasize that the magnetic field BV is directed along −ez at the vortex center. The
opposite case can be obtained by reversing the sign of the flux quantum φ0 → −φ0 in expressions
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Figure 5: The dependence of the normalized interaction free energy, FSk−V, on a/R for the
chirality η = +1 (left panel) and η = −1 (right panel). The ratio of the skyrmion radius and
the Pearl length is unity, λ/R = 1 (see text).

below.
The free energy of the Pearl vortex (as well as anti-vortex) in a thin superconducting film is

given by [31]

FV = FV =
φ2
0

16π2λ
ln
λ

ξ
, (2.5)

where the superconducting coherence length is assumed to be much shorter than the Pearl
length, ξ � λ.

Using Eqs. (1.1) and (2.4), we express the interaction part of the free energy (2.2) as

FSk−V = Msφ0dF +Msφ0

∞∫
0

dq
1− e−qdF
1 + 2qλ

J0(qa)

∞∫
0

dr r
[
ηJ1(qr) sin θ(r) + J0(qr)

(
cos θ(r)− 1

)]
.

(2.6)

We note that the first term in the right hand side of Eq. (2.6) corresponds to the homogeneous
magnetization of the ferromagnetic film. Using the relation xJ0(x) = d(xJ1(x))/dx and the
definition (1.4), the above expression can be rewritten as

FSk−V = Msφ0dF −
φ0

4π

∞∫
0

dq
1− e−qdF
q(1 + 2qλ)

J0(qa)
[
G(+)(q) + ηG(−)(q)

]
. (2.7)

We emphasize that in agreement with general expectations [32], the interaction part of the
free energy can be expressed in terms of the supercurrent as FSk−V = Msφ0dF−φ0

∫
d2r[J(r)×

ez] · (r − a)/(2π|r − a|2). This implies that the derivative of the free energy with respect to
the vortex position yields the supercurrent (1.6), Jϕ(a) = φ−10 (∂FSk−V/∂a), cf. Eqs. (1.6) and
(2.7). We note that in the case of the linear ansatz the function G(+) in Eq. (2.7) should be
modified in accordance with Eq. (1.18).

Below we analyse the general expression (2.7) in the case of a thin ferromagnetic film,
dF � R, λ.
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2.1 The case of a smooth skyrmion profile

In the case of a smooth skyrmion profile, and for dF � R, λ, we find from Eq. (2.7),

FSk−V

Msφ0dF
= 1 +

∞∫
0

dy
J0(ya/R)

(1 + 2yλ/R)

∞∫
0

dx x
[
ηy + θ̄′(x)

]
J1(yx) sin θ̄(x). (2.8)

As in the case of the supercurrent, we start from the case of a skyrmion of size R � λ.
Neglecting unity with respect to 2yλ/R in the denominator of the integrand in the right hand
side of Eq. (2.8), we obtain the following asymptotic expression for the interaction free energy
at short distances, a� λ, (see Appendix B)1

FSk−V

Msφ0dF
= 1 +

R

2λ
fη

( a
R

)
, (2.9)

where the function fη(z) has the following asymptotic behavior

fη(z) =

ηb0 − 4c1 +
(

2c−1 + ηθ̄′(0)
)
z2/2, z � 1,

−2c2/z − c4/(4z3), z � 1.
(2.10)

At very long distances, a� λ, the free energy of interaction between the skyrmion and the
vortex becomes (see Appendix B),

FSk−V

Msφ0dF
= 1− 4c2R

2λ

a3
. (2.11)

We emphasize that at long distances, a� R, FSk−V becomes insensitive to chirality of the Néel
skyrmion. The coefficient c−1 is typically positive whereas θ̄′(0) is negative, therefore the inter-
action free energy may decrease with increase of a for η = +1. Since the ratio FSk−V/(Msφ0dF )

tends to unity at a → ∞ irrespective of the chirality, one can expect the existence of the
minimum of FSk−V at some non-zero value of the distance a. This situation is realized for the
exponential ansatz. In the case of 360-degree domain wall ansatz with η = +1 the nontrivial
minimum exists for δ/R & 0.64 only.

Next we consider the opposite case of the skyrmion with the radius much larger than the
size of the Pearl vortex, R� λ. The interaction free energy can be written as a series in powers
of λ/R (see Appendix B),

FSk−V

Msφ0dF
= 1 + hη,0

( a
R

)
+
λ

R
hη,1

( a
R

)
+ . . . (2.12)

The function hη,0 that determines the magnitude of the interaction free energy has the following
1We mention that FSk−V/(Msφ0dF ) at large distances, a � R, has a subleading term that depends on

chirality, −ηb2R3/(8aλ2). This term does not affect the behavior of FSk−V with the distance a for the smooth
ansatz but becomes essential in the case of the linear ansatz, see Sec. 2.2.
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asymptotic behavior (see Appendix B),

hη,0(z) = ηb−1 − 2 +

[
3

4
ηθ̄′′(0) ln z + θ̄′2(0) + ηβ0

]
z2

2
, (2.13)

at z � 1, and

hη,0(z) = −ηb2
2z3

, z � 1. (2.14)

Here the parameter β0 is given by the following lengthy expression,

β0 =
3

2
θ̄′(0) + θ̄′′(0)

[7

4
− 3(1 + 2G)

2π
− 6

π

1∫
0

dx

x3

(
K(x2)− π

2
− πx2

8

)]

+
3

2

∞∫
1

dx
sin θ̄(x)

x3
+

3

2

1∫
0

dx
[sin θ̄(x)

x3
+
θ̄′(0)

x2
+
θ̄′′(0)

2x

]
,

(2.15)

where G ≈ 0.916 denotes the Catalan’s constant and K(x) stands for the complete elliptic
integral of the first kind. The function hη,1(z) that determines the dependence on distance of
the subleading contribution to FSk−V has the following asymptotic behavior (see Appendix B),

hη,1(z) = 4
(
2c−1 + ηθ̄′(0)

)
+ 3ηθ̄′′(0)z −

[9

4
θ̄′(0)θ̄′′(0) ln z +

4

3
η
(
θ̄′3(0)− θ̄′′′(0)

)
− β1

]
z2, z � 1,

(2.16)

and
hη,1(z) = −4c2

z3
, z � 1. (2.17)

Here the parameter β1 is given as

β1 =
9

2π
(1 + 2G)θ̄′(0)θ̄′′(0)− 1

2

∞∫
1

dx

x3
∂x
(
xθ̄′(x) sin θ̄(x)

)

− 1

2

1∫
0

dx

x3
∂x
(
xθ̄′(x) sin θ̄(x) + θ̄′2(0)x2 +

3

2
θ̄′(0)θ̄′′(0)x3

)

+
18

π
θ̄′(0)θ̄′′(0)

1∫
0

dx

x3

[
K(x2)− π

2
− πx2

8

]
+ θ̄′2(0)− 9

2
θ̄′(0)θ̄′′(0).

(2.18)

We mention two discrepancies with the case of a skyrmion of a small radius. At first, the
short distance behavior of the interaction free energy in the case of R � λ is not parabolic
generically, see Eq. (2.13). Secondly, the asymptotic behavior of FSk−V at a � R depends on
the skyrmion’s chirality.

Provided θ̄′′(0) > 0, the analytic results (2.13)–(2.14), suggest the existence of the global
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Figure 6: The dependence of the normalized interacting free energy, FSk−V, on a/R for the
linear ansatz for the skyrmion’s profile. The plots are for two chiralities and for two values of
ratio of the skyrmion radius and the Pearl length: λ/R = 0.1 (left panel) and λ/R = 10 (right
panel). Black dot near a ≈ 1.2R on the left panel marks the location of the global minimum of
the interaction energy. For λ/R = 10 (right panel) the global minimum is resided at a ≈ 2.8R
(see text).

minimum of FSk−V at a certain non-zero distance a in the case of positive skyrmion’s chirality
η = +1. For negative chirality, η = −1, the minimum of the interaction free energy is situated
at a = 0. Interestingly, the 360-degree domain wall ansatz is special since θ̄′′(0) = 0. Thus, for
the 360-degree domain wall ansatz the existence of the minimum in FSk−V is controlled by the
sign and magnitude of β0, see Eq.(2.15). For δ & 0.63R (δ . 0.36R) the interaction free energy,
FSk−V, has the minimum at nonzero value of a for the case of positive (negative) chirality,
η = +1 (η = −1).

In Figs. 5 we show the behavior of the interaction free energy as a function of a/R for both
chiralities, η = ±1 and for the skyrmion radius equal to the Pearl length. As one can see, for
positive chirality, η = +1, the minimum of FSk−V is reached at nonzero value of the distance a.

We mention that the sign of interacting free energy is determined by the sign of the magnetic
flux of the superconducting vortex. If the direction of the magnetic flux at the center of the
vortex is opposite to the direction of magnetization at the center of the skyrmion, i.e. magnetic
flux is parallel to the vector ez, the interacting free energy above will reverse its sign. Then
instead of the minimum at a = 0 (at a finite value of a) the minimum will occur at a =∞ (at
a = 0).

2.2 The case of the linear ansatz

As in the case of supercurrent, the interacting free energy for the linear ansatz for the
skyrmion profile needs a separate treatment. The interaction energy can be written in the form
similar to (2.7),

FSk−V,L = Msφ0dF −Msφ0R

∞∫
0

dq
1− e−qdF
q(1 + 2qλ)

J0(qa)
[
g
(+)
L (qR) + ηg(−)(qR)

]
. (2.19)
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Here the functions g(−) and g
(+)
L are defined in Eqs. (1.7) and (1.18), respectively. As it

was described in Sec. 1, the function g(+)
L (y) is given by a sum of two terms: one identical to

the case of the smooth profile θ(r), g(+), and the other one, δg(+), arising due to discontinuity
of θ′(r) at r = R, see Eq. (1.18). Accordingly we can represent the free energy as a sum
FSk−V,L ≡ FSk−V + δFSk−V. Here FSk−V is given by Eq. (2.8) with θ̄(x) = π(1 − x) for x 6 1

and zero overwise. The second term for a thin ferromagnetic film, dF � R, λ, is defined as

δFSk−V = −Msφ0dF

∞∫
0

dy
J0(ya/R)

(1 + 2yλ/R)
δg(+)(y). (2.20)

We have studied the behavior of FSk−V in the previous subsection, thus we can focus on
examining solely the contribution from δFSk−V.

Similar to the previous sections we begin with the case of a small skyrmion radius, R� λ.
At short distances, a� λ, we present the free energy likewise Eq. (2.9),

δFSk−V

Msφ0dF
=

R

2λ
δfη

( a
R

)
, (2.21)

where δfη behaves as follows (see Appendix B)

δfη(z) = 4c2

1− z2/4, z � 1,

1/(2z) + 1/(16z3), z � 1.
(2.22)

Collecting both contributions, FSk−V and δFSk−V, together, we can determine the behavior of
the free energy FSk−V,L ≡ 1 + (R/2λ)fη,L(a/R). The function fη,L has the following asymptotic
behavior at short distances, z � 1,

fη,L(z) = ηb0 − 4(c1 − c2) + [c−1 − c2 + ηθ̄′(0)/2]z2, (2.23)

whereas at z � 1 it becomes
fη,L(z) = (c2 − c4)/(4z3). (2.24)

Therefore, at R � r � λ the interacting free energy in the case of the linear ansatz can be
written as

FSk−V

Msφ0dF
= 1 +

(c2 − c4)R4

8λa3
− ηb2R

3

8aλ2
. (2.25)

Here, also, we add the term of the next order in R/λ which depends on the skyrmion chirality
(see [?]). This term dominates the second term in the right hand side of Eq. (2.25) for

√
Rλ�

r � λ. Since for the linear ansatz c2− c4 = 2(π2− 6)/π4, the second term proportional to 1/a3

matches with the corresponding asymptotic of the current J (+)
ϕ , cf. Eq. (1.20).

Due to strict localization of the skyrmion and stronger suppression of the supercurrent at
distances, a � λ, we expect the interaction energy to decay faster as compared to the case of

19



a smooth profile. Indeed, the expression (2.20) yields (see Appendix B)

δFSk−V

Msφ0dF
=

4c2R
2λ

a3
, λ� a, (2.26)

that cancels out contribution (2.11). Therefore, the interacting free energy at large separations
a becomes sensitive to the chirality of skyrmion opposed to the case of smooth profile,

FSk−V

Msφ0dF
= 1− ηb2R

3

2a3
, λ� a. (2.27)

Different asymptotic expressions, Eqs. (2.23), (2.24), (2.25), and (2.27), suggest that the
vortex resides at a distance a ∼

√
Rλ from the center of the skyrmion for η = +1 and at a = 0

for η = −1.
In the opposite case of a large skyrmion radius, R� λ, the additional contribution δFSk−V

to the interacting free energy can be expanded in a series in powers of λ/R, much the same as
Eq. (2.12),

δFSk−V

Msφ0dF
= δhη,0

( a
R

)
+
λ

R
δhη,1

( a
R

)
+ . . . (2.28)

Asymptotic behavior of functions δhη,0(z), δhη,1(z) is investigated in Appendix B. Combining
them with contributions from hη,0(z) and hη,1(z) (see Eqs. (2.13), (2.14), (2.16), and (2.17)),
we obtain

hη,0,L(z) =

ηb−1 − 2 + 4c2 + [π2 + ηβ0]
z2

2
, z � 1,

−ηb2/(2z3), z � 1,
(2.29)

and
hη,1,L(z) = 8

(
c−1 − c2 −

πη

2

)
+ 6

(
2π3η

9
− c2 −

β1
6

)
z2, (2.30)

for z � 1, and
hη,1,L(z) = 9(c2 − c4)/(2z5), z � 1. (2.31)

The above asymptotic expressions suggest that for the positive chirality, η = +1, the vortex
have to be settled at a distance of order R from the skyrmion’s center, whereas for η = −1 the
vortex is situated exactly at the center of the skyrmion, a = 0.

We illustrate the dependence of the interacting free energy on the distance a in the case
of the linear ansatz in Fig. 6. On the left panel of Fig. 6 one can see the minimum of FSk−V

(marked by the black dot) for the positive chirality and λ/R = 0.1. For λ/R = 10 (right panel
of Fig. 6) and positive chirality the shallow global minimum of FSk−V (also indicated by the
black dot) is located at a ≈ 2.8R, which is consistent with our prediction, see Eq. (2.25).

We note that in the case of the linear ansatz the existence of the minimum of the interaction
free energy on a finite distance from the skyrmion’s center has been noticed in Ref. [33].
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3 The effect of the Pearl vortex on the skyrmion

The magnetic free energy of the chiral ferromagnetic film is given by [1]

Fmagn[m] = dF

∫
d2r

{
A(∇m)2 +K(1−m2

z) +D
[
mz∇ ·m− (m · ∇)mz

]}
. (3.1)

Here m(r) denotes the unit vector of magnetization direction, A = J/2 > 0 stands for the
exchange constant, D is the Dzyaloshinskii–Moriya interaction, and K > 0 denotes the per-
pendicular anisotropy constant. The magnetic free energy is normalized in such a way that
Fmagn is zero for the ferromagnetic state, mz = 1. We note that we include the energy of the
magnetic field BSk created by the skyrmion into the definition of the anisotropy constant K
(see Appendix C). Substituting m = mSk = MSk/Ms, see Eq. (1.1), into Eq. (3.1), we find

FSk ≡ Fmagn[mSk] = 2πdF

∞∫
0

dr r

{
A
[
θ′2(r) +

sin2 θ(r)

r2

]

+Dη
[
θ′(r) +

sin(2θ(r))

2r

]
+K sin2 θ(r)

}
. (3.2)

Assuming a scaling form of the skyrmion profile, θ(r) = θ̄(r/R), we obtain

FSk = dF

(
αAA− αDηDR + αKKR

2/2
)
, (3.3)

where

αA = 2π

∞∫
0

dx x
[
θ̄′2(x) +

sin2 θ̄(x)

x2

]
,

αD = −2π

∞∫
0

dx x
[
θ̄′(x) +

sin(2θ̄(x))

2x

]
,

αK = 4π

∞∫
0

dx x sin2 θ̄(x). (3.4)

We note that αA,D,K are positive constants in the case of the linear and exponential ansatz and
are positive functions of the parameter R/δ in the case of the 360-degree domain wall ansatz.
Minimizing FSk with respect to R, one can find the optimal radius of the skyrmion

R0 = αD|D|/(αKK) (3.5)

and the chirality η = sgnD. We note that the existence of a skyrmion in a chiral ferromagnetic
film is possible under the following condition,

αAA < αKKR
2
0/2. (3.6)
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In order to simplify the presentation, we shall start our considerations from the cases of the
linear and exponential ansatz. In the presence of vortex anti-vortex pair the skyrmion radius is
obtained by minimization of FSk +FSk−V with respect to R and a. Let us start from the case of
a skyrmion of small radius, R∗ � λ. For the negative chirality the optimal distance between the
skyrmion and the vortex is zero. Therefore, as it follows from Eqs. (2.9) and (3.3), for η = −1

the interaction between skyrmion and vortex results in increase of the skyrmion radius,

R∗ = R0 + (2c1 + b0/2)`2K/λ. (3.7)

Here `K =
√
Msφ0/(αKK) is the length scale associated with the anisotropy energy. In the

case of linear ansatz one needs to make the following substitution, c1 → c1 − c2 in Eq. (3.7),
see Eq. (2.23).

In the case of the positive chirality the optimal distance between the vortex and the skyrmion
for the exponential ansatz is proportional to the skyrmion radius, a0 = ζ0R, see Eq. (2.9).
Interestingly, we find that in the case of η = +1 the skyrmion radius is also enlarged due to
interaction with the vortex,

R∗ = R0 − f+1(ζ0)`
2
K/(2λ). (3.8)

We note that f+1(ζ0) < 0.
In the case of the linear ansatz with η = +1, using Eq. (2.25), we can find the following

result for the skyrmion radius,

R∗ = R0 +
5b

3/2
2

24(3(c2 − c4))1/2
`2KR

3/2
∗

λ5/2
. (3.9)

Although, the above equation predicts ehnancement of the skyrmion radius due to interaction
with the vortex, the numerical constant 5b

3/2
2 /[24(3(c2 − c4))1/2] ≈ 0.04 such that the enhance-

ment is extremely small. The results (3.7)–(3.9) are applicable for λ� max{R0, `K}.
In Table 1 we present estimates of the change of the skyrmion radius due to interaction with

the vortex for several ferromagnet structures. As one can see from the Table 1, the increase
of the skyrmion radius δR = R∗ − R0 is typically small (of the order of a few per cent). Also
we note that the estimate of δR depends on the form of the skyrmion profile. We mention
that the estimates of the bare skyrmion radius R0 given in Table 1 on the basis of values of
the parameters D and K can significantly deviate from the values actually measured in the
experiment. For example, for the [Ir1Fe0.5Co0.5Pt1]10/MgO/Nb heterostructure the skyrmion
radius of the order of 50 nm has been reported [27]. This observation can indicate that in order
to estimate δR in a realistic structure one needs to find the actual skyrmion profile in the
presence of the vortex–anti-vortex pair.

In order a vortex–anti-vortex pair can be spontaneously generated in the presence of a
skyrmion the total free energy (2.1) should be less than the free energy of an isolated skyrmion
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(3.1). This implies the following inequality,

FSk(R∗) + FSk-V(a∗, R∗) + FSk-V̄(∞, R∗) + FV + FV̄ −FSk(R0) < 0. (3.10)

Assuming that R∗ varies slightly from R0 we can accordingly rewrite (3.10),

Msφ0
R0

2λ
fη(ζ0) +

φ2
0

8π2λdF
ln
λ

ξ
< 0, (3.11)

which implies λ � R0 > φ0/(4π
2|fη(ζ0)|MsdF ) ln(λ/ξ). We now shall examine whether the

vortex–anti-vortex pair can be generated spontaneously in the absence of the Dzyaloshinskii–
Moriya interaction, i.e. at D = 0. In this case R0 = 0 and we cannot neglect the change in
radius (3.7) or (3.8). The condition (3.10), in which we replace R∗ with δR = −fη(ζ0)`2K/2λ,
becomes

αAA− αKK|fη(ζ0)|2
`4K
8λ2

+
φ2
0

8π2λdF
ln
λ

ξ
< 0. (3.12)

We note that R∗ = δR� λ implies `K � λ. The inequality (3.12) holds true if Ms > M c
s =√

K(8αK/|fη(ζ0)|2)1/2 [αA(Aλ2/φ2
0) + (λ/8π2dF ) ln(λ/ξ)]

1/2

Now let us assume that the skyrmion radius is large, R � λ. Then, Eqs. (2.12) and (3.3)
result in the following equation for the skyrmion radius modified by the interaction with the
vortex,

R3
∗

R3
0

− R2
∗

R2
0

= hη,1(ζ0)
λ`2K
R3

0

. (3.13)

For negative chirality, η = −1, the optimal distance between the skyrmion and the vortex is
zero, ζ0 = 0. We note that h−1,1(0) = 4[2c−1 − θ̄′(0)] > 0, see Eq. (2.16). For positive chirality,
η = +1, the interaction between skyrmion and vortex has the minimum at finite distance,
ζ0 6= 0. However, as one can check (see Eq. (B.8)), h+1,1(ζ0) > 0. Therefore, for both chiralities
the skyrmion–vortex interaction leads to increase of the skyrmion radius,

R∗ = R0

(
1 +X−1/3 +X1/3

)
/3, (3.14)

where
X = 1 +

27u

2
+ 6
√

3u+ 81u2, u = hη,1(ζ0)
λ`2K
4R3

0

. (3.15)

We note that for R0 � (λ`2K)1/3 and `K � λ the skyrmion radius is parametrically enhanced,
R∗ ∼ (λ`2K)1/3 � R0. For R0 � (λ`2K)1/3, the radius of the skyrmion is only slightly increased,
R∗ ∼ R0. In this case Eq. (3.14) holds under assumption R0 � λ.

A spontaneous generation of the vortex–anti-vortex pair is governed by the condition (3.10).
In the first instance we assume that δR� R0 and rewrite (3.10) like the following

Msφ0hη,0(ζ0) +
φ2
0

8π2λdF
ln
λ

ξ
< 0. (3.16)
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This inequality can be fulfilled provided that Ms > M c
s = φ0/(8π

2|hη,0(ζ0)|λdF ) ln(λ/ξ).
Concerning the question whether the vortex-anti-vortex pair can be created in the absence of
Dzyaloshinskii–Moriya interaction, we shall replace R∗ in (3.10) with δR = (hη,1(ζ0)λ`

2
K)1/3,

arriving at

αAA+ αKK`
2
K

[
hη,0(ζ0) +

1

2

(
hη,1(ζ0)

λ

`K

)2/3
]

+
φ2
0

8π2λdF
ln
λ

ξ
< 0, (3.17)

where we have assumed that δR� λ. This limit also reads `K � λ, hence the condition (3.17)
is roughly similar to inequality (3.16) due to smallness of the second term in parentheses of
(3.17) in comparison with the first one. However, the condition (3.17) does increase the critical
value of the saturation magnetization M c

s = φ0/(8π
2|hη,0(ζ0)|λdF ) ln(λ/ξ) derived from (3.16).

In the case of the 360-degree domain wall ansatz Eqs. (3.7), (3.8), and (3.13) remain valid.
However, the value of ζ0 depends on the ratio R∗/δ. The latter is determined from the mini-
mum of the total free energy with respect to δ. The corresponding analysis can be performed
numerically. As one can check, the following inequalities hold fη(ζ0) < 0 and hη,1(ζ0) > 0. These
inequalities imply that the skyrmion radius increases always in the presence of a vortex–anti-
vortex pair.

Table 1: The parametersMs (saturation magnetization), A (exchange constant),Ku (anisotropy
constant), and D (DMI constant) for a number of thin chiral ferromagnet films. The estimates
for the bare radius in zero external field (R0), change of skyrmion radius (δR ≡ R∗ − R0) and
an anisotropic scale (`K) for the exponential ansatz are given. In order to obtain the estimate
for change of radius δR we choose λ = 200 nm.

PtCoPt [34] IrCoPt [35] PtCoNiCo [36] PdFeIr [37] [IrFeCoPt]10 [27]
Ms (103 A/m) 580 956 600 1100 1450
A (10−12 J/m) 15 10 20 2.0 13.9
Ku (106 J/m3) 0.7 0.717 0.6 2.5 1.4
D (10−3 J/m2) +3 +1.6 +3 +3.9 +2.1
R0 (10−9 m) 4.1 2.1 4.8 1.5 1.4
δR (10−9 m) 0.06 0.09 0.07 0.03 0.07
`K (10−9 m) 10 13 10 7.5 12
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Conclusion

To summarize, we have studied an interaction of a Néel–type skyrmion and a vortex–anti-
vortex pair due to stray fields in a chiral ferromagnet–superconductor heterostructure. We
computed the supercurrent in a superconducting film induced by a skyrmion. For thin ferro-
magnet and superconductor films we found that the supercurrent has the maximum at the
distance from the center of a skyrmion that is of the order of the skyrmion radius. It is worth-
while to mention that the supercurrent is sensitive to a profile of the skyrmion and its chirality.
For example, in the case of smooth profiles (exponential and domain wall ansatzes), the su-
percurrent decays monotonously at large distances from the skyrmion center. For the case of
a linear profile, there are decaying oscillations of the supercurrent at large distances due to
discontinuity in θ′(r) at r = R. Therefore, measurements of dependence of the supercurrent on
distance can allow one to extract information on the profile of a skyrmion. We mention that the
behavior of the supercurrent with a distance from the center of the skyrmion is qualitatively
similar to the behavior of the supercurrent induced in a thin superconducting film by a Bloch
domain wall in a ferromagnetic film [30]. The radius of the skyrmion plays the same role as the
width of a domain wall.

We have also computed the energy of interaction between a Néel–type skyrmion and a Pearl
vortex. We found that the interaction with a Pearl vortex is sensitive to the skyrmion chirality. In
the case of a skyrmion with negative chirality, typically, it is more energetically favourable for a
vortex to be attracted to the skyrmion center. This occurs in the cases of linear and exponential
skyrmion profiles and for a domain wall ansatz with δ & 0.36R. In the case of positive skyrmion
chirality a vortex is situated at a finite distance from the center of the skyrmion. This happens
for linear and exponential profiles and in the case of domain wall ansatz with δ & 0.63R. For the
exponential and domain wall profiles the optimal distance becomes of the order of the skyrmion
radius whereas for a linear ansatz the vortex is located at max{R,

√
Rλ}.

It is worthwhile to mention that in the case of a Bloch–type skyrmion it is always energetically
favorable for a vortex to settle at the center of the skyrmion [24]. Such a behavior is related with
the absence of the radial component of magnetization in a Bloch–type skyrmion. Therefore, the
Bloch–type skyrmion interacts with the z-component of the magnetic field of a Pearl vortex
only. This leads to the absence of terms proportional to the chirality η in Eqs. (2.10) and (2.13).
As a result, the function fη(z) and hη,0(z) behave as increasing parabolas at z � 1. Such a
behavior implies the minimum of the interaction free energy at zero distance between the center
of the Bloch-type skyrmion and the Pearl vortex.

The fact that it is energetically favourable for a Pearl vortex to take place at a finite distance
from the center of a Néel-type skyrmion might have interesting implications for skyrmion lattices
[38, 39] and dynamics of skyrmions [25] in superconductor–ferromagnet heterostructures [40].

We have investigated how a Pearl vortex affects a Néel-type skyrmion due to their mutual
interaction. We found that a vortex–anti-vortex pair leads to an increase of the radius of the
Néel–type skyrmion. We note that this result can be contrasted with the case of a Bloch–type
skyrmion for which a vortex–anti-vortex pair can either increase or decrease the skyrmion radius
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[24]. It is also possible that a vortex–anti-vortex pair will be spontaneously generated in the
presence of a Néel–type skyrmion provided the skyrmion radius and Pearl penetration length
are large enough in comparison with the length associated with the anisotropy energy in a
chiral ferromagnet, λ,R0 � `K . In the opposite case of small bare skyrmion radius, R0 � `K ,
spontaneous generation of a vortex–anti-vortex pair is not possible. Although, the relation,
λ,R0 � `K , does not typically holds in chiral ferromagnets (see Table 1), recently, spontaneous
generation of vortex–anti-vortex pairs in the [Ir1Fe0.5Co0.5Pt1]10/MgO/Nb heterostructure with
Néel–type skyrmions of large radius (about 50 nm) and negative chirality has been observed
[27]. In agreement with our analysis a superconducting vortex (anti-vortex in the terminology
of Ref. [27]) was pinned to the center of a skyrmion.

For R0 � (λ`2K)1/3 � `K , we predict that a vortex–anti-vortex pair existing in a super-
conducting film can substantially increase the skyrmion radius: it becomes equal to R∗ ∼
(λ`2K)1/3 � R0. The typical values of R0, `K , and R∗ are listed in Table 1. Abrupt increase
of the skyrmion radius can be used as indication of appearance of vortex–anti-vortex pairs in
superconducting films. It is an experimental challenge to detect enhancement of the skyrmion
radius in a thin ferromagnet–superconductor heterostructure due to generation of vortex–anti-
vortex pair in a superconducting film.

Our analysis of the skyrmion stability in the presence of a superconducting vortex was
restricted to study of change of the skyrmion radius under assumption that the vortex does
not affect the skyrmion profile. In fact, this is not necessary the case and one needs to find the
skyrmion profile in the presence of the superconducting vortex from minimization of the total
free energy FSk +FSk−V. In particular, we expect that the superconducting vortex can lead to
an elongated skyrmion profile [40].

Finally, we mention that it would be interesting to generalize our results to the case of
skyrmions confined to nanodots [41] as well as to more exotic magnetic excitations, e.g. anti-
skyrmions, bimerons, biskyrmions, skyrmioniums, etc. [42]
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Appendices

A Derivation of the asymptotic expressions for the supercurrent

In this Appendix we present some details of derivation of asymptotic expressions for the
supercurrent.

A.1 The case of a smooth skyrmion profile

We start from the case of the smooth skyrmion profile. According to Eq. (1.8) the supercur-
rent is determined by the functions g(±)(y), see Eq. (1.7).

To find the asymptotic behavior of the functions g(±)(y) in the case of a small argument,
y � 1, we approximate the Bessel function J1(xy) by xy/2 and find,

g(+)(y) = −y/2
∞∫
0

dxx2θ̄′(x) sin θ̄(x) ' 2c2y,

g(−)(y) = −y2/2
∞∫
0

dx x2 sin θ̄(x) ' −b2y2/2.

(A.1)

Asymptotic expressions at large arguments, y � 1, can be found in the following way.
Changing the variable x to xy under the integral sign in the definitions of the functions g(±)(y),
see Eq. (1.7), one can then expand the function θ in powers of 1/y. Then, we obtain

g(+) = lim
β→+0

∞∫
0

dxJ1(x)e−βx
[
θ̄′(0) +

3x

2y
θ̄′′(0)

]
θ̄′(0)x2

y3
' −9θ̄′(0)θ̄′′(0)/(2y4),

g(−) = lim
β→+0

y

∞∫
0

dxJ1(x)e−βx
[
θ̄′(0)

x

y
+

x2

2y2
θ̄′′(0)

]
x

y2
' −3θ̄′′(0)/(2y3).

(A.2)

Equations (A.1) and (A.2) are equivalent to Eqs. (1.9), (1.11).
We will now present derivation of asymptotic expressions for the supercurrent in the case of

a small skyrmion, R � λ. At the shortest distances from the center of the skyrmion, one can
neglect unity in the denominator of the expressions (1.8) and, then, expand the Bessel function
in series in r/R� 1. Then, we retrieve,

J (±)
ϕ = Ms

dF r

4λR

∞∫
0

dy yg(±)(y). (A.3)

The integral
∞∫
0

dy yg(±)(y) can be simplified with the help of the following identity yJ1(xy) =
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−∂x(J0(xy)). Then, we obtain

∞∫
0

dy yg(±)(y) =

∞∫
0

dx χ0,1(x)

∞∫
0

dy J0(xy) =

4c−1, for ‘ +′ sign,

2θ̄′(0), for ‘−′ sign,
(A.4)

where χ0(x) = [x sin θ̄(x)]′ and χ1(x) = [xθ̄′(x) sin θ̄(x)]′. This results in Eqs. (1.13)–(1.14).
For the case of long distances, r � R, we rewrite the expressions for the supercurrent

components, J (±)
ϕ (r), in a more convenient way, raising the denominator into exponent by

means of an additional integration,

J (±)
ϕ = Ms

dF
R

∞∫
0

dy

∞∫
0

dt e−t(1+2yλ/R)yg(±)(y)J1(yr/R). (A.5)

Let us first consider the integration with respect to the y variable. Since for r/R � 1 the
integral over y is dominated by small values of y, for g(+) we obtain,

∞∫
0

dy ye−2ytλ/RJ1(xy)J1(yr/R) ' x

2

∞∫
0

dy y2e−y(2tλ/R)J1(yr/R) =
x

2

3(2λt/r)

[1 + (2λt/r)2]5/2
R3

r3
.

(A.6)

and for g(−)

∞∫
0

dy y2e−2ytλ/RJ1(xy)J1(yr/R) ' x

2

∞∫
0

dy y3e−y(2tλ/R)J1(yr/R) = −3x

2

1− 4(2λt/r)2

[1 + (2λt/r)2]7/2
R4

r4
.

(A.7)

Hence for the supercurrent we find

J (+)
ϕ = 2c2Ms

dFR
2

r3

∞∫
0

dt
3(2λt/r)e−t

[1 + (2λt/r)2]5/2
,

J (−)
ϕ =

3b2
2
Ms

dFR
3

r4

∞∫
0

dt e−t
1− 4(2λt/r)2

[1 + (2λt/r)2]7/2
.

(A.8)

In this integral forms for the supercurrent components, J (±)
ϕ , one can clearly figure out the

behavior of J (±)
ϕ (r) for r � λ and r � λ. For r � λ we can substitute e−t by unity and,

then, obtain the asymptotic behaviour at intermediate distances Eqs. (1.13)–(1.14), R� r �
λ. Otherwise, when r is much larger than λ, we neglect the term proportional to the small
parameter λ/r in the denominator of (A.8). Then, one gets the last expressions in Eqs. (1.13)–
(1.14).

Now we consider the case of large skyrmion R� λ. We start from the limit of short distances
r � rλ. In this regime we neglect the term proportional to λ/R in the denominator in the right
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hand side of Eq. (1.8). For J (+)
ϕ we can use the identity∫ ∞

0

dy yJα(xy)Jα(zy) = δ(x− z)/x, (A.9)

and find

J (+)
ϕ =−Ms

dF
R

∞∫
0

dxθ̄′(x) sin θ̄(x)δ(x− r/R) = −Ms
dF
R
θ̄′(r/R) sin θ̄(r/R), r � rλ. (A.10)

Equation (A.10) is equivalent to Eq. (1.15).
For the sensitive to chirality component of the supercurrent, J (−)

ϕ , the easiest way to de-
rive the asymptotic expression at closest distances is done by employing the relation Jϕ(a) =

φ−10 ∂(FSk−V/∂a) and differentiating the expression (2.13) with respect to z, inserting z = r/R.
The derivation of (2.13) is presented in Appendix B.

The asymptotic expressions (1.16)–(1.17) for r � rλ can be easily derived from Eq. (A.8).

A.2 The case of the linear ansatz

Let us start from the case of R � λ and derive the asymptotic expression (1.20) for the
non-chiral term in supercurrent, J (+). At shortest distances, r � R, one can proceed similar to
the case of the smooth profile,

J (+)
ϕ = Ms

dF
2λ

∞∫
0

dy g
(+)
L (y)J1(yr/R). (A.11)

Since g(+)
L (y) = g(+)(y) + δg(+)(y), for the first contribution to J (+)

ϕ we can use the expression
(A.4). While for the second term, δg(+)(y) = −4c2J1(y), we apply the identity

∞∫
0

dyJ1(y)J1(yr/R) =
2R

πr

[
K(R2/r2)− E(R2/r2)

]
' r/(2R) +O(r3/R3), r � R. (A.12)

Here K(z) and E(z) denotes the complete elliptic integrals of the first and second kinds. To-
gether, these two contributions give the final result, cf. Eq. (1.20),

J (+)
ϕ =

(
π Si(π)− 1 +

4

π2

)
Ms

dF r

4λR
. (A.13)

To find the behaviour of the J (+)
ϕ at large distances we use the method described near Eq.

(A.5) above. The only difference is that instead of the expression for the smooth profile function
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g(+)(y) we need to use the expression (1.18) for g(+)
L (y). Then, we retrieve,

∞∫
0

dy y2e−2ytλ/RJ0(xy)J1(yr/R) ' −x
2

4

∞∫
0

dy y4e−2ytλ/RJ1(yr/R)

=
x2R5

4r5
15(2λt/r) (4(2λt/r)2 − 3)

[1 + (2λt/r)2]9/2
. (A.14)

This leads to the following approximate expression,

J (+)
ϕ = Ms

dFR
4

r5
6− π2

2π4

∞∫
0

dt e−t
30λt (4(2λt/r)2 − 3)

r [1 + (2λt/r)2]9/2
. (A.15)

In the case of R � r � λ, the exponent e−t in the right hand side of Eq. (A.15) can be
approximated by the unity. Then, we obtain, cf. Eq. (1.20),

J (+)
ϕ = −3(π2 − 6)

4π4
Ms

dFR
4

λr4
. (A.16)

In the limit of longest distances, r � λ, we neglect the terms (2λt/r)2 in the enumerator and
denominator under the integral sign in Eq. (A.15). Then, we find, cf. Eq. (1.20),

J (+)
ϕ = −45(π2 − 6)

π4
Ms

dFλR
4

r6
. (A.17)

Finally, we derive asymptotic expressions for J (+)
ϕ for the case of a large skyrmion radius,

R � λ. As it was explained in the main text, we have to combine the contributions from the
term g(+)(y), given by Eq. (1.7), and due to δg(+)(y) = −4c2J1(y). Let us start from the limit
r � R. We can use Eq.(A.10) for the asymptotic expression, corresponding to the contribution
from g(+)(y). In the case of the linear ansatz it reads (MsdF/R)π2(r/R). In order to find the
contribution due to the second term, δg(+)(y), we replace the Bessel function J1(yr/R) by
yr/(2R) and expand denominator in powers of yλ/R. Then, we find

−2c2
r

R
lim
β→+0

∞∫
0

dy e−βyyJ1(y)

[
1− 2yλ

R
+O

(
λ2

R2

)]
' −12c2

λr

R2
. (A.18)

Bringing these two contributions together, we retrieve, cf. Eq. (1.21),

J (+)
ϕ =

π2MsdF r

R2

(
1− 3

π2 − 4

π4

λ

R

)
, r � R. (A.19)

For r � R� λ one can repeat derivation following Eqs. (A.14) and (A.15). Then one arrives
eventually at the expression (A.17).
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B Derivation of the asymptotic expressions for the interaction en-
ergy

B.1 The case of a smooth skyrmion profile

In this appendix we present some details of derivation of the asymptotic expressions for
FSk−V.

We start from the case of a small skyrmion and a large vortex, R� λ. In the regime of short
distances, a � R, we can neglect the unity in comparison to the large parameter λ/R in the
denominator under the integral sign in the right hand side of Eq. (2.8). Expanding the Bessel
function J0(ya/R) in series of ya/R, we obtain

FSk−V

Msφ0dF
' 1 +

∞∫
0

dy
1− (a/R)2y2/4

2yλ/R

∞∫
0

dx x
[
ηy + θ̄′(x)

]
× J1(yx) sin θ̄(x). (B.1)

This expression can be easily simplified to the form of Eq. (2.9).
For the intermediate distances, R� a� λ, one can simplify Eq. (2.8) by using the following

identities,

∞∫
0

dy J0(yz)J1(xy) = Θ(x− z)/x, (B.2)

∞∫
0

dy

y
J0(y)J1(xy) =

2

πx

[
E
(
x2
)
− (1− x2)K

(
x2
)]
×Θ(1− x) +

2

π
E
(
x−2
)

Θ(x− 1).

After some simplifications, the expression for the interaction energy can be brought to the form
of Eq. (2.9).

The case of the longest distances, a � λ, can be studied in the following way. One can
transform the expression in the denominator under the integral sign in the right hand side
of Eq. (2.8) into the exponent with the help of an additional integration, 1/(1 + 2yλ/R) =∫∞
0
dt e−t(1+2yλ/R). Then expanding the Bessel function J1(xy) in its argument to the lowest

order, we derive Eq. (2.11).
Now let us consider the opposite case of large skyrmion radius, R� λ. Making in Eq. (2.8)

expansion in powers of λ/R, we obtain Eq. (2.12) with the functions hη,0(z) and hη,1(z) that
are given as

hη,0 =

∞∫
0

dxdy xJ0(yz)J1(yx)
[
ηy + θ̄′(x)

]
sin θ̄(x) (B.3)

and

hη,1 = −2

∞∫
0

dxdy xyJ0(yz)J1(yx)
[
ηy + θ̄′(x)

]
sin θ̄(x). (B.4)
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We shall start with the asymptotic behavior of the functions hη,0(z) and hη,1(z) at z � 1.
Using the following identities d[xJ1(xy)]/dx = yxJ0(xy), yJ1(xy) = −dJ0(xy)/dx, the identity
(A.9), and the relation

∞∫
0

dyJ0(yz)J0(yx) =
2

π

K(x2/z2)/z, z > x,

K(z2/x2)/x, z < x,
(B.5)

we can simplify Eqs. (B.3) and (B.4) as follows

hη,0(z) = cos θ̄(z)− 1 +
2η

π

z∫
0

dx

z
χ0(x)K

(
x2

z2

)
+

2η

π

∞∫
z

dx

x
χ0(x)K

(
z2

x2

)
(B.6)

and

hη,1(z) = −2η
χ0(z)

z
− 4

π

z∫
0

dx

z
χ1(x)K

(
x2

z2

)
− 4

π

∞∫
z

dx

x
χ1(x)K

(
z2

x2

)
, (B.7)

where χ0(x) = [x sin θ̄(x)]′ and χ1(x) = [xθ̄′(x) sin θ̄(x)]′. Next we rewrite the integrals over the
region x > z in the right hand side of Eqs. (B.6) and (B.7) in the following form,

2

π

∞∫
z

dx

x
χ0,1(x)K

(
z2

x2

)
=

∞∫
z

dx

x
χ0,1(x) +

z2

4

∞∫
z

dx

x3
χ0,1(x)

+
2

π

∞∫
z

dx

x
χ0,1(x)

[
K

(
z2

x2

)
−
(
π

2
+
πz2

8x2

)]
. (B.8)

Written in this way, each of the terms converges at z → 0 and the asymptotic behaviour of
hη,0(z) and hη,1(z) can be easily extracted. Then we reproduce Eqs. (2.13) and (2.16).

For large values of the argument, z � 1, it is enough to consider the term in Eqs. (B.6)
and (B.7) which is proportional to the integral over the region x < z. We can also expand the
complete elliptic function of the first kind as K (x2/z2) = π/2+πx2/(8z2)+9πx4/(128z4)+ . . . .
Then one can derive Eqs. (2.14) and (2.17).

B.2 The case of the linear ansatz

For linear ansatz we represent the free energy as a sum FSk−V,L ≡ FSk−V + δFSk−V, see Eq.
(2.20). For the analysis of FSk−V we refer to the previous subsection, while in this subsection
we are examining exclusively δFSk−V defined in Eq. (2.20). We begin with the case of large
vortex and small skyrmion, λ � R. For small distances, a � λ, we neglect the unity in the
denominator of the expression under the integral sign in Eq. (2.20) and employ the identity
(??).

Expanding the expression (??) in powers of x and 1/x, we obtain Eq. (2.22). At longest
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distances one can repeat the derivation, following Eq. (??), eventually arriving at Eq. (2.26).
For large skyrmion radius, R� λ, it is convenient to present δFSk−V as follows,

δFSk−V

Msφ0dF
= 4c2

∫ ∞
0

dy J0(ya/R)J1(y)− 8c2
λ

R

∫ ∞
0

dy
yJ0(ya/R)J1(y)

1 + 2yλ/R
. (B.9)

The first term can be easily simplified using the identity (B.2). The second term turns into
(λ/R)δhη,1(a/R) after setting λ/R→ 0 in denominator of the integrand. Its asymptotic behav-
ior at small distances, a� R, can be extracted by expanding J0(ya/R) in powers of a/R,

lim
β→+0

∫ ∞
0

dy e−βyy(1− y2a2/(4R2))J1(y) = 1 +
3a2

4R2
. (B.10)

At large distances, a� R, the second term in (B.9) is dominated by very small y, thus one
can substitute J1(y) with (y/2− y3/16 + . . . ) and find

lim
β→+0

∫ ∞
0

dy e−βyyJ0(ya/R)(y/2− y3/16) = −R3/(2a3)− 9R5/(16a5). (B.11)

The first term cancels out (2.17), thus, finding the next order in the expansion of the function
hη,1(z) (see previous subsection) and summing it up with (B.11), we find (2.31).

We notice that the second term in (B.9) converges to a discontinuous function in a = R with
λ/R→ 0. However, for all finite values of λ/R, the function remains continuous.

C Magnetic self-energy of the isolated skyrmion

The magnetic self-energy of the single isolated skyrmion can be represented as (see e.g. [33])

Fmagn
Sk = −1

2

dF∫
0

dz

∫
d2rMSkBSk. (C.1)

Inserting BSk = ∇ × ASk and using the exact solution for ASk, cf. Eq. (1.3), we derive the
asymptotic expression for Fmagn

Sk in the case of a thin ferromagnetic film, dF � R,

Fmagn
Sk = −2πdFM

2
s

∫
d2r(1−m2

z). (C.2)

Consequently, contribution from demagnetization field to the total free energy of an isolated
skyrmion can be included as a rescaling of the perpendicular anisotropy constant: K → K −
2πM2

s , see Eq. (3.1).
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