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Annotation

Weyl semimetal is a solid material with isolated touching points between conduction and
valence bands in its Brillouin zone—Weyl points. Low energy excitations near these points
exhibit a linear dispersion and act as relativistic massless particles. Weyl points are sta-
ble topological objects robust with respect to most perturbations. We study effects of weak
disorder on the spectral and transport properties of Weyl semimetals in the limit of low ener-
gies. We use a model of Gaussian white-noise potential and apply dimensional regularization
scheme near three dimensions to treat divergent terms in the perturbation theory. In the
framework of self-consistent Born approximation, we find closed expressions for the average
density of states and conductivity. Both quantities are analytic functions in the limit of zero
energy. We also include interference terms beyond the self-consistent Born approximation
up to the third order in the disorder strength. These interference corrections are stronger
than the mean-field result and non-analytic as functions of energy. Our main result is the
dependence of conductivity on the electron concentration σ = σ0+An1/3+(B/σ0)n

2/3 ln |n|
with A ≈ −0.142 and B ≈ 0.018.
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1 Introduction

In 1928, Paul Dirac proposed [1] the first successful description of relativistic electrons
using quantum mechanics approach—the celebrated Dirac equation. This equation not only
provides the relativistic quantum description of electrons but also predicts the existence of
positrons. The Dirac equation is equally suitable for other quantum particles with spin
1/2. One year later, Hermann Weyl pointed out [2] that a simplified version of the Dirac
equation for particles with zero mass conserves chirality (projection of spin on the direction
of momentum) and hence splits into two independent equations for particles of left and
right chirality. For many years, the Weyl equation was a very successful tool for describing
neutrinos although since 1998 it is decisively established that neutrinos do have a tiny but
nonzero mass [3].

In recent years, the model of massless Weyl fermions has attracted a great attention in
condensed matter physics since the discovery of Weyl semimetals. The Weyl semimetal is
a solid-state crystal having isolated touching points (Weyl nodes or Weyl points) between
conduction and valence bands with low-energy excitations that act as relativistic massless
fermions. These fermions are described by the standard Weyl Hamiltonian:

H = vσp (1.1)

in the vicinity of a Weyl point. Here v is the fixed velocity of massless excitations (in
real materials it is a few orders of magnitude lower than the speed of light for the original
relativistic Weyl Hamiltonian) and σ = {σx, σy, σz} is a vector of three standard Pauli
matrices.

Each Weyl point has a definite chirality and can be represented as a magnetic monopole,
which is a source or sink of Berry flux, see Fig. 1.1. It is known that the net chirality of all
touching points in the Brillouin zone must vanish [4] hence there is always an even number
of Weyl nodes in the spectrum. As a consequence of the Nielsen-Ninomiya theorem [4], the
topological nature of such nodes protects them from opening a gap. Weak perturbations can
only shift a Weyl point in momentum or energy while preserving its topological nature. The
only possible way to open a spectral gap is by coupling two distant Weyl points. Hence the
Weyl semimetal properties are robust with respect to small and smooth perturbations.

Another consequence of the Nielsen-Ninomiya theorem [4] is that no Weyl semimetal is
possible in the presence of time reversal (T ) and inversion (P) symmetries. Hence there are
two kinds of Weyl semimetals with either T or P symmetry broken. A Weyl semimetal with
broken T symmetry has at least two Weyl nodes while in the case of broken P symmetry
the minimal number of Weyl nodes is four [7].

An important topological feature of any Weyl semimetal is the existence of low energy
surface states that form a Fermi arc [6] connecting projections of Weyl points on the crystal
surface (see Fig. 1.1). These states exist on the background of excitationless bulk spectrum
since the low energy excitations in the bulk occur only near isolated Weyl points. Fermi arc
surface states are very well visible in the momentum-resolved spectroscopic measurements
and are used as a hallmark for detecting Weyl semimetals. Recent experiments [8, 9] have
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Figure 1.1: (Left) The Brillouin zone of a Weyl semimetal. Weyl nodes are shown
as magnetic monopoles for the Berry flux. These points are connected by the Fermi
arc on the surface. (Right) Energy-resolved bulk and surface bands in a WSM with
zero Fermi energy. Pictures from Refs. [5, 6].

proposed several candidate materials for Weyl semimetals: TaAs, TaP, NbAs, NbP. So far,
the best candidate TaAs, studied in Ref. [9], has shown 12 pairs of Weyl nodes.

One of the hottest debated topics in the theory of Weyl semimetals is the proposed
quantum phase transition in the low-energy behavior of the density of states. Early numerical
simulations of disordered Weyl semimetals [10, 11] have suggested that the density of states
at zero energy undergoes a second-order transition from zero to a nonzero value when the
strength of potential disorder exceeds a certain threshold. This conclusion is supported by
some theoretical analysis. It was shown that a standard perturbation theory in weak disorder
[12–15] developed near the dimension d = 2 and then continued to d = 3 indeed suggests
vanishing density of states at zero energy. Alternative consideration in the framework of
the nonlinear sigma model [16–18] provided a similar result. At the same time, it is quite
clear that even an extremely small probability of a disorder realization that localizes an
electron at zero energy is enough to disprove the proposed phase transition [19, 20]. Another
nonperturbative approach [21] has suggested that for a broad class of “optimal” fluctuations
of disorder potential the density of states is still exactly vanishing. Finally, diagrammatic
calculations directly in 3D with Gaussian disorder and different types of momentum cutoff
regularization [22, 23] have shown the existence of the phase transition on the level of the
mean-field approximation. It can be thus claimed that although a true phase transition in
the density of states is hardly possible, there is a very sharp crossover from algebraic to
exponentially small density of states as a function of disorder strength [24].

In the present work, we will study disorder effects in a Weyl semimetal in the limit of weak
disorder only. Moreover, we will adopt the most standard Gaussian white-noise model of
disorder similar to the one considered in Ref. [23]. Technically, this problem is identical to the
well-studied Gross-Neveu model [25]. The Gross-Neveu model concerns relativistic particles
with point-like instantaneous interaction. In the Euclidean (imaginary time) representation
with zero mass and in the limit of zero flavours of the particles, it becomes identical to the
Gaussian white-noise disorder model. Taking the limit of zero flavours is needed to eliminate
diagrams with fermionic loops, which is equivalent to the replica limit for disordered systems.
Critical dimension of the Gross-Neveu model is d = 2. Close to this dimension, it is possible
to develop a standard perturbative renormalization group approach to take into account
logarithmically divergent diagrams. Such calculations were carried out up to the four loop
order in Refs. [26, 27]. However, disordered Weyl semimetals correspond to the 3D version
of the Gross-Neveu model where strong ultraviolet divergences make the renormalization
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group analysis problematic [28].
Massless relativistic excitations appear in a number of other solid-state systems, most no-

tably in graphene [29–33]. Since graphene is essentially a two-dimensional material, disorder
effects are well-described by the Gross-Neveu model just in its critical dimension [34–36].
Other common examples of disordered materials with massless spectrum include random
bond Ising model [37], critical state at the quantum Hall transition [38], two-dimensional
d-wave superconductors [39, 40], and surface states of topological insulators [41].

This work is devoted to 3D Weyl semimetals with weak Gaussian white-noise disorder.
As was already pointed out, this model suffers from strong ultraviolet divergences and hence
should be properly regularized. We will apply a standard technique of dimensional regular-
ization [42] and allow the dimensionality of the system to deviate from d = 3. But contrary
to the previous works, we will not perform any expansion near d = 2. Instead, we will con-
sider all disorder corrections in a completely arbitrary dimension and do an exact analytic
continuation of the results from the region d < 2 where ultraviolet divergences are absent
to d = 3. Since the Gross-Neveu model is not renormalizable in d = 3, we will not develop
any effective field theory description but instead consider disorder corrections directly to the
observable quantities: density of states and conductivity.

Our approach is quite similar to the standard problem of a conventional 3D metal with
parabolic spectrum and Gaussian disorder. Detailed analysis of weak disorder effects in this
model was performed in Refs. [43, 44]. It was shown that the model exhibits three types of
corrections to the conductivity. First, there are corrections of relative strength ∝ (Eτ)−1,
where E is the Fermi energy and τ is the mean free time of the electrons. Second, there
are weaker logarithmic corrections ∝ (Eτ)−2 ln(Eτ). Such logarithms do not represent truly
divergent contributions but require an accurate analysis of the diagrams on a ballistic scale.
Finally, there is another logarithmic contribution ∝ (Eτ)−2 log(E/∆), where ∆ is some
ultraviolet energy cutoff scale related e.g. to the band width or to the lattice spacing. This
type of a logarithmic divergence cannot be resolved in the low energy model with parabolic
spectrum and requires an extra parameter ∆. Divergent terms are present both in the
conductivity σ and in the total particle density n but cancel out in their ratio, i.e. mobility
of the metal µ = σ/(en).

The problem of a disordered Weyl semimetal considered in this work is technically more
challenging. We will encounter stronger ultraviolet divergences that can be absorbed into
redefinition of model parameters (Fermi energy, disorder strength etc). Such finite renor-
malizations are automatically taken into account by the dimensional regularization scheme
[42]. The remaining logarithmic divergences will be cut at the scale ∆. They do not cancel
out in any observable quantity and will constitute an important part of our results.

The structure of the work is the following. In Chapter 2 we formulate the problem
and explain some details of the dimensional regularization scheme. Chapter 3 contains the
mean-field calculation of the density of states and conductivity based on the self-consistent
Born approximation. This approach is similar to Ref. [23]. In Chapter 4 we calculate the
diagrams with two and three intersecting impurity lines. We show that these contributions
provide nonanalytic corrections to the observable quantities. Main results are summarized
and discussed in Chapter 5. Technically intricate details of the calculation of polarization
operators in an arbitrary dimension are given in Appendix A.
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2 Statement of the problem

We consider a standard model of a single-node Weyl semimetal in the presence of potential
disorder described by the following Hamiltonian:

H = σp+ V (r). (2.1)

For simplicity, we set the velocity of electrons to unity. In a real Weyl semimetal the number
of Weyl nodes is at least two. Our model implies that disorder scattering between these
nodes is negligible or, in other words, the disorder potential is smooth on the scale of inverse
distance between Weyl nodes in momentum space. Linear momentum dependence of the
Hamiltonian is of course also an approximation, that is valid only at low enough energies.

We assume that the random disorder potential obeys the standard Gaussian white-noise
statistics 〈

V (r)
〉
= 0,

〈
V (r)V (r′)

〉
= 2π2α δ(r− r′). (2.2)

Disorder strength is characterized by a single parameter α, that has a dimension of inverse
energy for a 3D problem. The only dimensionless small parameter of our model is

αE ≪ 1, (2.3)

where E is the Fermi energy measured from the Weyl point. All observable quantities are
even functions of E so, for definiteness, we assume E > 0.

We will calculate average density of states and conductivity of a Weyl semimetal pertur-
batively in αE using diagrammatic expansion. The unperturbed Green function of the Weyl
Hamiltonian is

GR/A(E,p) =
(
E − σp± i0

)−1
=

E + σp

(E ± i0)2 − p2
. (2.4)

In some parts of the calculation it will be more convenient to use Matsubara representation
with imaginary energy E = iϵ. Retarded/advanced functions are then retrieved by ana-
lytic continuation from positive/negative ϵ. For diagrams that involve both types of Green
functions we have to keep two different Matsubara energies. Hence it will be convenient to
change the sign of the Matsubara energy for advanced Green functions such that analytic
continuation is always performed in the upper complex halfplane of energy.

G(iϵR,p) = −iϵR + σp

ϵ2R + p2
, G(−iϵA,p) =

iϵA − σp

ϵ2A + p2
, ϵR/A 7→ ∓iE + 0. (2.5)

When only retarded Green functions are used (e.g. in the calculation of the density of states)
we will omit the index and write simply ϵ instead of ϵR since it obeys the usual convention
for Matsubara energy.

Calculating diagrams for a system with linear dispersion in 3D leads to strong ultraviolet
divergences. In fact, the theory is free of such problems only in the dimension d < 2.
To overcome this difficulty, we will use dimensional regularization scheme [42, 45]. This
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means calculating every diagram in an arbitrary dimension d and then performing analytic
continuation of the result in the parameter d from the domain of convergence d < 2 to the
point d = 3. Ultraviolet divergence, that occurs in most diagrams at d = 2, manifests itself
as a pole in the corresponding expression as a function of d. Analytic continuation allows
to bypass the pole and get some finite result for d > 2. We will comment on the physical
meaning of this mathematical trick later. Let us stress once again, that unlike numerous
other works we do not imply any kind of expansion in the vicinity of the critical dimension
d = 2 but rather allow for arbitrary values of d.

Three-dimensional momentum integrals are generalized to arbitrary d as∫
d3p

(2π)3
. . . 7→

∫
ddp

(2π)d
. . . =

∫
Sd−1p

d−1 dp

(2π)d
. . . , Sd−1 =

2πd/2

Γ(d/2)
. (2.6)

Here Sd−1 is the volume of a (d − 1)-dimensional unit sphere. The matrix-valued vector σ
is generalized to d dimensions by imposing anticommutation relations on its elements:

σaσb + σbσa = 2δab, δaa = d, tr 1 = 2. (2.7)

It might seem weird since no explicit matrix representation exists for σa in an arbitrary
dimension and the index a itself takes a fractional (or even complex!) number of distinct
values. Nevertheless, relations (2.7) are sufficient to calculate any given diagram without
resorting to explicit representations of σ matrices. Strictly speaking, the convention tr 1 = 2
does not hold for arbitrary d. For example in d = 4, a minimal representation of the Dirac γ
matrices has the size 4. However, we will apply dimensional scheme at d = 3 where standard
Pauli matrices have dimension 2. Hence, for our purposes, the relation tr 1 = 2 is valid.

For the sake of convenience, we also generalize the disorder correlation function (2.2) to
arbitrary dimension as follows:〈

V (r)V (r′)
〉
=

(2π)d

Sd−1

α δ(r− r′). (2.8)

The parameter α itself has a dimension that depends on d: [α] = E2−d.
Our main goal is to calculate average density of states ρ and conductivity σ in the limit

of small energy or, equivalently, weak disorder, cf. Eq. (2.3). We will use standard Kubo
expressions for these quantities. Density of states is given by a single average Green function
at coincident points:

ρ(E) = − 1

π
Im

∫
ddp

(2π)d
tr
〈
GR(E,p)

〉
. (2.9)

For a clean system, it is easy to calculate the density of states just by the area of the Fermi
surface. In 3D, this yields

ρ0(E) =
4πE2

(2π)3
=

E2

2π2
. (2.10)

The same result follows from Eq. (2.9) with the Green function from Eq. (2.4).
Kubo formula for conductivity is

σ(E) = − 1

4π
Tr
〈
jx
[
GR(E)−GA(E)

]
jx
[
GR(E)−GA(E)

]〉
. (2.11)

Here ‘Tr’ implies the trace operator acting on Pauli matrices and also an integral in the
momentum space. Current operators are related to the electron velocity

j = e
∂H0

∂p
= eσ. (2.12)
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If one expands the brackets in Eq. (2.11), there are in total three different terms with products
of different types of Green functions. Each individual term contains a formally divergent
momentum integral in 3D hidden in the ‘Tr’ notation. But the integral of all the terms
combined in Eq. (2.11) converges. It seems that this property prevents us from discarding
the terms with the products GRGR and GAGA. But here we can use one important advantage
of the dimensional scheme. Namely, if we consider dimensions d < 2, the momentum integral
of each individual term becomes convergent. Moreover, the integrals involving two similar
Green functions vanish due to gauge invariance [their integrands can be rewritten in terms
of a total vector divergence divp⟨jGR/A(p)⟩ in the momentum space]. Hence we can simply
discard the terms with the products of similar Green functions if, at the same time, we
treat the remaining divergent integral as its analytic continuation from d < 2. With this
convention, we can use the following simplified Kubo formula for conductivity:

σ(E) =
1

2π
Tr
〈
jxGR(E) jx GA(E)

〉
. (2.13)

In the following chapters we will develop a diagrammatic expansion of ρ(E) and σ(E) in
the small parameter αE based on Eqs. (2.9) and (2.13)
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3 Self-consistent Born approximation

A standard approach in the theory of weakly disordered metals is the self-consistent Born
approximation (SCBA). It takes into account only the diagrams with non-intersecting im-
purity lines. Such diagrams are most important because all the Green functions can be
taken close to the mass shell (Fermi surface) without violating conservation of momentum.
Other diagrams, with intersection of impurity lines acquire an extra small factor in the limit
Eτ ≫ 1. To estimate the disorder scattering rate in our model, we can apply the Fermi
golden rule 1/τ ∼ αρ(E). With the density of states (2.10), this yields

Eτ ∼ 1

αE
≫ 1. (3.1)

Hence the criterion of weak disorder (2.3) also implies validity of SCBA. Let us stress quite a
counterintuitive feature of the Weyl semimetal model: disorder effects get weaker with lower-
ing the energy and shrinking of the Fermi surface. For most other common Hamiltonians the
situation is opposite: parameter Eτ grows with increasing energy. Weyl semimetals are spe-
cial in this respect because their density of states has a relatively strong energy dependence
with a soft gap at E = 0.

In the framework of SCBA, the electron Green function averaged over disorder realiza-
tions acquires a self energy which is independent of momentum

G(iϵ,p) =
1

iϵ− σp− Σ(iϵ)
. (3.2)

The self energy Σ(iϵ) can be found from the self-consistency equation shown diagrammati-
cally in Fig. 3.1. The diagram in the right-hand side of the equation involves the Green
function (3.2) that includes the same self energy as in the left-hand side. This self-consistency
equation automatically takes into account all the diagrams with non-intersecting impurity
lines. Explicitly, the equation is

Σ =
(2π)d

Sd−1

α

∫
(ddp) G(iϵ,p) = α

∫ ∞

0

(iϵ− Σ) pd−1 dp

(iϵ− Σ)2 − p2
= −iπα(ϵ+ iΣ)d−1

2 sin(πd/2)
. (3.3)

⃝Σ =
Figure 3.1: SCBA equation (3.3) in the diagrammatic representation. Dashed line
represents the disorder correlator (2.8). Solid straight line is the disorder-averaged
Green function (3.2) which includes the same self energy Σ as in the left-hand side
of the equation.
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While the momentum integral here converges only for d < 2, we can perform analytic
continuation of the result directly to the point d = 3. This way we arrive at a simple
quadratic equation for the self energy that can be readily solved:

Σ =
iπα

2
(ϵ+ iΣ)2 = iϵ+

i

πα

(
1−

√
1 + 2παϵ

)
. (3.4)

This equation and its solution can be directly compared to a similar SCBA equation studied
in Ref. [23]. In that work, the divergence of the integral (3.3) was regulated by limiting the
momenta 0 < p < ∆. As a result, the right-hand side of the equation acquired an extra
contribution ∝ ∆. However, this extra term only slightly modifies the solution in the limit
of weak disorder. Moreover, it can be absorbed into a redefinition of the parameter α and
does not show up in the observable quantities.

After analytic continuation of Eq. (3.4) in the upper complex half-plane iϵ 7→ E + i0, we
obtain the retarded self energy

ΣR = E +

√
1− 2iπαE − 1

iπα
≈ −iπαE2

2
+

π2α2E3

2
+ . . . (3.5)

The real part of the self energy can be always hidden in the renormalization of the Fermi en-
ergy. In turn, the imaginary part is directly observable since it defines the electron scattering
rate

γ =
1

2τ
= − ImΣR ≈ παE2

2
. (3.6)

We see that our SCBA approach within dimensional regularization scheme correctly repro-
duces the leading Fermi golden rule estimate of this rate, cf. Eq. (3.1).

3.1 Density of states
Average density of states in the presence of disorder is given by Eq. (2.9). This equation
contains exactly the same momentum integral as in the right-hand side of the SCBA equation
(3.3). This allows us to express the density of states via the self energy directly in 3D:

ρ(E) = − 2

π
Im

∫
(d3p)

E − ΣR

(E − ΣR)2 − p2
= −ImΣR

π3α
. (3.7)

Using the solution (3.4), we obtain a rather simple and closed expression for the density of
states

ρ(E) =
Re

√
1 + 2iπαE − 1

π4α2
≈ E2

2π2

(
1− 5

4
π2α2E2 + . . .

)
. (3.8)

In the limit of weak disorder, the density of states acquires a small negative correction
∝ α2E2. In the next chapter we will show that other diagrams, not included in SCBA,
provide a stronger correction in this limit. Let us also point out that the SCBA result for
the density of states is an analytic function at small E. Corrections beyond SCBA will
violate this property as well.

3.2 Conductivity
Semiclassical conductivity is defined by the Kubo formula (2.13) with the two Green func-
tions averaged separately. In addition, the current vertex correction shown in Fig. 3.2 should
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+ + + + . . . =

Figure 3.2: Diagrams for conductivity with the current vertex correction.

be included in order to account for all the diagrams with non-intersecting impurity lines. As
we will see shortly, each rung of the ladder diagram multiplies the current operator by the
same constant W :

Wjx = α

∫
GR(iϵR,p)jxG

A(−iϵA,p) p
d−1 dp = eα

∫
ϵRσxϵA + (σp)σx(σp)

(ϵ2R + p2)(ϵ2A + p2)
pd−1 dp. (3.9)

Here we use Matsubara representation with both energies ϵR/A positive, cf. Eq. (2.5). These
energies also include the corresponding self-energy parts.

Averaging over directions of p and applying anticommutation rules (2.7), we simplify the
second term in the numerator of Eq. (3.9):

(σp)σx(σp) 7→
p2

d
σaσxσa =

2− d

d
p2σx. (3.10)

This way we prove that the right-hand side of Eq. (3.9) is indeed proportional to σx and
hence the current operator retains its matrix form.

The remaining integral over p, that defines the factor W , can be split into two parts with
either retarded or advanced denominator:

W = α

∫
ϵRϵA + p2(2− d)/d

(ϵ2R + p2)(ϵ2A + p2)
pd−1 dp

=
α

d(ϵ2R − ϵ2A)

∫ (
ϵA[dϵR + (d− 2)ϵA]

ϵ2A + p2
− ϵR[(d− 2)ϵR + dϵA]

ϵ2R + p2

)
pd−1 dp. (3.11)

This separation allows us to express the integrals of the two terms through the self energy
using the SCBA equation (3.3):

W =
−i

d(ϵ2R − ϵ2A)

([
dϵR + (d− 2)ϵA

]
ΣA +

[
(d− 2)ϵR + dϵA

]
ΣR
)
. (3.12)

Finally, we perform analytic continuation to real energies according to the rules

iϵR 7→ E − ΣR, −iϵA 7→ E − ΣA (3.13)

and get the following result:

W =
E + (d− 2)ReΣ

d(E − ReΣ)
. (3.14)

The diagrams in Fig. 3.2 represent a simple geometric series with the denominator W .
Summing up this series and setting d = 3, we obtain the conductivity

σ =
e2

2π3α

W

1−W
=

e2

4π3α

E +ReΣ

E − 2ReΣ
. (3.15)

With the solution (3.5), we can get a closed expression for the conductivity including all
diagrams with non-intersecting impurity lines.

σ =
e2

4π3α

1− 2Re
√
1 + 2iπαE

Re
√
1 + 2iπαE − 2

≈ e2

4π3α

(
1 +

3

2
π2α2E2 + . . .

)
. (3.16)
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Exactly at the Weyl point, E = 0, the conductivity remains finite. Its value is ∝
1/α. This result fully agrees with the previous studies [22, 23]. Equation (3.16) suggests a
correction ∝ E2 to this constant. In the next chapter, we will show that other diagrams, not
included in SCBA, provide a stronger correction, that is also non-analytic at small energies.
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4 Interference corrections

In the previous chapter, we have calculated the average density of states and conductivity
of a Weyl semimetal using self-consistent Born approximation. This approach automatically
includes the complete set of diagrams with non-intersecting impurity lines. In a sense, it
is a mean-field approach neglecting possible interference of electrons scattering on different
impurities. We will now take into account such interference effects and consider diagrams
with crossed impurity lines.

The most prominent effect based on quantum interference of electrons is Anderson local-
ization [46]. It has numerous forms depending on the symmetry of disordered Hamiltonian,
on certain topological features of the spectrum, and on the system dimensionality. For the
case of 3D Weyl semimetals, as for any other 3D material, localization effects are weak unless
disorder strength exceeds a certain threshold value. This weak localization correction in 3D
is δσ ∼ e2/l, where l is the electron’s mean free path. Using Eq. (3.6), we can estimate the
weak localization correction in our model as δσ ∼ e2αE2. Such a correction is the result of
summation of an infinite set of maximally crossed diagrams [47]. Quite curiously, weak lo-
calization effect is of the same order as the correction to conductivity due to non-intersecting
diagrams (3.16). In this chapter we will calculate crossed diagrams with two and three im-
purity lines. It will be shown that these diagrams provide a stronger interference correction
than the weak localization effect.

Our calculation is technically similar to the treatment of ballistic interference effects in
a conventional disordered metal with parabolic dispersion. Such a calculation was carried
out in Refs. [43, 44]. However, in the case of Weyl semimetals additional complications arise
due to the matrix structure of the Hamiltonian (2.1).

4.1 Density of states
The first non-trivial diagram that provides an interference correction to the density of states
(3.8) involves two crossed impurity lines. This diagram is shown in Fig. 4.1. Since all the
Green functions in this diagram are taken at the same energy, we can considerably simplify
the calculation by computing the corresponding vacuum diagram first and then taking its
derivative in energy

δρ(E) = − 1

π
Im

∂F2(E + i0)

∂E
, (4.1)

F2(iϵ) = −1

4

(
(2π)dα

Sd−1

)2 ∫
(ddq) tr

[
Π(iϵ,q)Π(iϵ,−q)

]
, (4.2)

Π(iϵ,q) =

∫
(ddp)G(iϵ,p+ q)G(iϵ,−p). (4.3)

Strictly speaking, we should retain the self-energy contribution in the Green functions and
take analytic continuation from a Matsubara energy iϵ to the energy E + iγ. However, for
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δρ(E) = − 1

π
Im = − 1

π
Im

∂

∂E

Figure 4.1: Interference correction to the density of states in two equivalent forms:
as a Green function at coincident points and as an energy derivative of a vacuum
diagram.

the calculation of the density of states, the extra imaginary part of the self energy γ can be
neglected since it provides a correction of a higher order in αE.

Four Green functions in the vacuum diagram Fig. 4.1 are split into two similar pairs and
the result of momentum integration inside each pair is denoted by Π. Let us first analyze
this latter integral of the product of two Green functions.

Π(iϵ,q) =

∫
(ddp)

(iϵ+ σp+ σq)(iϵ+ σp)

[ϵ2 + (p+ q)2][ϵ2 + p2]
=

∫
(ddp)

−ϵ2 + iϵσ(2p+ q) + p2 + (σp)(σq)

[ϵ2 + (p+ q)2][ϵ2 + p2]
.

(4.4)
At this stage, we will average over directions of the momentum p. We separate a component
of p parallel to q and a perpendicular component p⊥:

p =
pq

q2
q+ p⊥. (4.5)

The denominator of the integrand in Eq. (4.4) is independent of the direction of p⊥. Hence
we can average the numerator with respect to this direction. Effectively, it means dropping
all the terms which are odd in p⊥. The result is

Π(iϵ,q) =

∫
(ddp)

−ϵ2 + p2 + pq+ iϵσq(1 + 2pq/q2)

[ϵ2 + (p+ q)2][ϵ2 + p2]
. (4.6)

Next, we replace the scalar product

pq =
(p+ q)2 − p2 − q2

2
(4.7)

and expand the integrand in separate fractions such that their numerators do not contain p.

Π(iϵ,q) =

∫
(ddp)

[
−2ϵ2 − q2/2

[ϵ2 + (p+ q)2][ϵ2 + p2]

+

(
1

2
− iϵσq

q2

)
1

ϵ2 + (p+ q)2
+

(
1

2
+

iϵσq

q2

)
1

ϵ2 + p2

]
. (4.8)

Finally, we shift the variable in the second term p+ q 7→ p and combine it with the last
term of the integrand. This way we represented Π as a combination of two basic integrals:

I(iϵ) =

∫
pd−1 dp

ϵ2 + p2
=

πϵd−2

2 sin(πd/2)
, I(iϵ, iϵ, q) =

∫
pd−1 dp

[ϵ2 + (p+ q)2][ϵ2 + p2]
. (4.9)

The first of these integrals we have already encountered earlier in the calculation of the self
energy (3.3). The second integral is more complicated since its denominator has a nontrivial
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dependence on the angle between p and q. This latter integral is in fact similar to the
polarization operator for a Hamiltonian with quadratic dispersion. Calculation of such a
polarization operator and its analytic continuation to real energies is analyzed in detail in
Appendix A. The final result for Π is

Π(iϵ,q) = I(iϵ)−
(
2ϵ2 +

q2

2

)
I(iϵ, iϵ, q). (4.10)

Once the value of Π is known, we can readily use Eq. (4.2) and represent the vacuum
diagram as a single integral in q. At the same time, we perform analytic continuation to real
energies and obtain

F2(E + i0) = −α2

2

∫
(ddq)

[
IR +

(
2E2 − q2

2

)
IRR(q)

]2
. (4.11)

Here IR is the retarded form of the first integral in Eq. (4.9) and IRR is the retarded-retarded
form of the polarization operator (A.6).

Integral (4.11) diverges at large q in 3D. We can extract this divergent part by using the
simplified form of the polarization operator (A.8b) and expanding in q ≫ E:

F2(E + i0) = const − α2

∫ ∞

E

dq

[
π2

256
q3d−9(q2 − 4E2)2 − iπ

60
Edq2d−7(5q2 − 16E2)

]
. (4.12)

Lower bound of the integral is set to E since this is effectively the only available parameter
of the proper dimension. The exact value of this lower bound is immaterial since we can
always change it at the cost of redefining the constant term.

Dimensional regularization implies that the divergent integral in Eq. (4.12) is calculated
assuming d is low enough (d < 4/3 in this case) and then the result is analytically continued
to d = 3. Strongly divergent terms provide some finite contributions after this procedure.
This is fully analogous to how the divergent real part of the self energy is removed by
renormalization of the chemical potential. The only non-trivial contribution comes from the
very last term whose divergence in 3D is logarithmic.

F2(E + i0) = const − 4iπα2

15
Ed+2

∫ ∞

E

dq q2d−7 = const +
2iπα2

15

E3d−4

d− 3
. (4.13)

Thus, the function F2 acquires a simple pole at d = 3. This is a standard manifestation
of a logarithmic divergence in dimensional scheme. We can convert this pole into explicit
logarithm by expanding the numerator near d = 3:

F2(E + i0) =
2iπ

15
α2E5

(
1

d− 3
+ 3 lnE + . . .

)
=

2iπ

5
α2E5 ln |E/∆|. (4.14)

The divergent term 1/(d − 3) should be replaced by some large number related to the
ultraviolet cutoff scale ∆. We simply incorporate this scale into the logarithmic factor as
shown in the last expression.

Interference correction to the average density of states can be found from Eq. (4.1).
Together with the SCBA expression (3.8), this gives the final result

ρ(E) =
E2

2π2
− 2α2E4 ln |E/∆|+O(α2E4). (4.15)

Remarkably, interference correction to the density of states is stronger than a similar correc-
tion from SCBA due to just an extra logarithm factor. At the same time, this logarithmic
correction is non-analytic as a function of energy in the limit E → 0 unlike the SCBA result.
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Figure 4.2: Interference corrections to conductivity with two crossed impurity lines.

4.2 Conductivity
Let us now consider similar interference corrections to the quasiclassical conductivity (3.16).
The calculation will be carried out exactly with the same strategy as we did for the density of
states. First, we will reduce every diagram to a single d-dimensional integral over momentum
q in terms of polarization operators. Then we will expand the integrand in small ratio γ/E
and retain only relevant leading terms of this expansion. Finally, we will analyse ultraviolet
behavior of each term and apply dimensional scheme to treat divergent contributions.

4.2.1 Diagrams with two crossed impurity lines

There are in total three different interference diagrams for conductivity with two crossed
impurity lines, see Fig. 4.2. All these diagrams can be generated from the single vacuum
diagram Fig. 4.1 by inserting two current vertices in different positions. However, unlike
the case of the density of states, we cannot calculate conductivity by taking derivatives of
the vacuum diagram in some parameter because the conductivity diagram involves both
retarded and advanced Green functions.

Consider the first diagram, Fig. 4.2a. We can write it explicitly as

δσ(2)
a =

e2α2

2π(1−W )2

∫
(ddq) pd−1

1 dp1 p
d−1
2 dp2 tr

[
σxG

R(p1 + q)GR(p2 + q)GR(−p1)

× σxG
A(−p1)G

A(−p2)G
A(p1 + q)

]
. (4.16)

Here we have already included two vertex corrections (3.14).
Our first goal is to reduce the integrand to a product of polarization operators. Each

polarization operator will incorporate integration over p1 or p2 and the q integral will be ana-
lyzed later. However, our expression contains four Green functions which involve momentum
p1. Therefore we reduce the denominators by applying the identity

1

(ϵ2R + p2)(ϵ2A + p2)
=

1

ϵ2A − ϵ2R

(
1

ϵ2R + p2
− 1

ϵ2A + p2

)
(4.17)

twice. This is fully analogous to the splitting of denominators in Eq. (3.11).
The next step is taking the trace of σ matrices in the numerator and averaging over

directions of p1,2 as was explained earlier in the calculation of the density of states. Finally,
we apply Eq. (4.7) to the momenta p1,2 and split the integrand in individual fractions whose
numerators are independent of p1,2. This way we represent δσ

(2)
a as a single q integral of a

quadratic expression in terms of polarization operators.

δσ(2)
a =

∫ ∞

0

dq Sa(q). (4.18)
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Figure 4.3: Momentum dependence of the integrand Sa(q) for the representation
(4.18) of the diagram Fig. 4.2a (thick black curve). Parameters of the plot γ/E =
0.05. Three asymptotic expressions Eqs. (4.19), (4.20) are shown by the red, blue,
and orange lines, respectively.

Explicit form of the function S
(2)
a (q) for an arbitrary d is very cumbersome hence we only

show the integrand graphically in Fig. 4.3 for the case d = 3. There are three qualitatively
different regions in this function:

Sa(q) =


SI
a(q), q ≲ γ,

SII
a (q), γ ≪ q < 2E,

SIII
a (q), q > 2E.

(4.19)

To analyse the integral, we can do further simplifications by setting d = 3 in the first two
regions and by expanding to the leading orders in the small parameter γ/E. This way we
obtain the following expressions:

SI
a(q) = − 3e2

16π3

[
2γ

q
−
(
1 +

4γ2

q2

)
arctan

q

2γ

][
6γ

q
+

(
1− 12γ2

q2

)
arctan

q

2γ

]
, (4.20a)

SII
a (q) =

9e2

64π

(
1

3
− q2

E2
+

7q4

16E4
− q6

96E6

)
, (4.20b)

SIII
a (q) =

3e2α

64π
q2d−5

[
15− q2

2E2
− 16E2

4E2 − q2
+

(
q3

4E3
− 15q

2E
+

2E

q

)
arctanh

2E

q

]
. (4.20c)

These three asymptotic forms are also illustrated in Fig. 4.3. Let us remind that parameters
γ and α are related by Eq. (3.6) in 3D. For d ≈ 3, a slightly more general relation

γ =
π

2
αEd−1. (4.21)

is used.
The first asymptotic region q ≲ γ provides a contribution to the conductivity ∝ αE2.

This part is normally taken into account in the weak localization correction. We will neglect
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it in favor of other, larger contributions. Integral over the second region γ ≪ q < 2E
converges and provides a correction∫ 2E

0

dq SII
a (q) =

3e2|E|
35π

. (4.22)

This correction is smaller than the leading Drude result (3.16) but, at the same time, larger
than both weak localization and the subleading term in Eq. (3.16). Remarkably, unlike the
SCBA result, this term is of an odd power in E and hence exhibits a cusp at E = 0. We
stress this fact by writing explicitly the absolute value |E| in Eq. (4.22) thus allowing for E
of any sign.

Contribution of the third asymptotic region q > 2E has an extra α factor compared to
SII
a hence it should be negligible at first sight. However, it contains an ultraviolet divergence

that can lead to an extra logarithmic factor as we have already seen in the calculation of the
density of states. To analyse ultraviolet behavior, we expand SIII

a (q) in the limit q ≫ E and
keep divergent terms only.∫ ∞

2E

dq SIII
a (q) = const + e2α

∫ ∞

2E

dq

(
q2d−5

32π
+

3E2q2d−7

40π

)
= const − 3e2αE2d−4

80π(d− 3)
= const − 3e2

40π
αE2 ln |E/∆|. (4.23)

We conclude that the contribution of this part, although having an extra αE factor as
compared to Eq. (4.22), is still dominant compared to both the weak localization and the
SCBA subleading term (3.16) due to an extra logarithm. Collecting all the terms together,
we have the following result for the diagram Fig. 4.2a:

δσ(2)
a =

3e2|E|
35π

− 3e2

40π
αE2 ln |E/∆|. (4.24a)

Calculation of the other two diagrams in Fig. 4.2 is performed in exactly the same way.
The only slight technical difference for the diagram Fig. 4.2c is the presence of two identical
Green functions. This means that in some terms we will encounter a square of the Green
function’s denominator. These terms should be expressed via an energy derivative of the
polarization operator. The results for the two diagrams are

δσ
(2)
b =

3e2

20π
αE2 ln |E/∆|, (4.24b)

δσ(2)
c = −e2|E|

5π
+

e2

8π
αE2 ln |E/∆|. (4.24c)

Overall interference correction to the conductivity from diagrams Fig. 4.2 is the sum of
Eqs. (4.24):

δσ(2) = −4e2|E|
35π

+
e2

5π
αE2 ln |E/∆|. (4.25)

This result contains both the leading (∝ α0) and the subleading (∝ α1) terms. Higher
diagrams with three crossed lines have an extra α factor and can provide additional con-
tributions to the subleading interference correction. These diagrams will be studied in the
next section.
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Figure 4.4: Two-particle irreducible vacuum diagrams with three impurity lines.
Momentum labels (and triangular shape) show the separation into three polariza-
tion operators each involving an integral over p1,2,3.

2Re 2Re 2

(a) (b) (c) (d)

2Re 2Re 4Re 2Re

(e) (f) (g) (h)

2Re 2Re 4Re 4Re

(i) (j) (k) (l)

2

(m)

Figure 4.5: Interference corrections to the conductivity with three crossed impurity
lines.

4.2.2 Diagrams with three crossed impurity lines

In this section we study interference diagrams for conductivity with three crossed impurity
lines. All such diagrams (except one, see below) can be generated from just two distinct
vacuum diagrams by inserting two current vertices in all possible positions. The relevant
vacuum diagrams are shown in Fig. 4.4. Each of the two diagrams can be represented as an
integral over single momentum q of a product of three polarization operators, see momentum
labels in Fig. 4.4. This property is preserved after insertion of current vertices since they
can only double certain denominators, that are later decoupled by the identity (4.17).

The full list of three-impurity diagrams is shown in Fig. 4.5. There is one special diagram
(h) in this list which is not generated from the vacuum diagrams of Fig. 4.4. We will consider
this diagram separately in the end. All other diagrams are calculated with the same method
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Figure 4.6: Momentum dependence of the integrand Sd(q) for the representation
(4.26) of the diagram Fig. 4.5d (thick black curve). Parameters of the plot γ/E =
0.02. Three asymptotic expressions (4.27) are shown by the red, blue, and orange
lines.

as was described in the previous section for diagrams with two impurities. As a typical
example, we will explain the calculation of the diagram Fig. 4.5d and then give the results
for all other diagrams.

The diagram Fig. 4.5d can be written as a momentum integral of up to three polarization
operators (A.8) after taking the trace of all the Green functions, averaging over directions
of momenta p1,2,3, and algebraically splitting into individual fractions whose numerators are
independent of p1,2,3. All these steps are completely analogous to the calculation of the
two-impurity diagrams in the previous section. After extensive algebra, we arrive at the
single q integral

δσ
(3)
d =

∫ ∞

0

dq Sd(q). (4.26)

The integrand of this expression is shown in Fig. 4.6. We can again approximate it in three
asymptotic regions of small, intermediate, and large q:

Sd(q) =


SI
d(q), q ≲ γ,

SII
d (q), γ ≪ q < 2E,

SIII
d (q), q > 2E.

(4.27)

These asymptotic forms are calculated in the same way as we did it earlier for the two-
impurity diagram. They are also shown in Fig. 4.6, however, explicit asymptotic expressions
are still too bulky to write them here.

The first region provides a finite correction of the order αE2 completely similar to the
previously studied case of two impurities. We will disregard this contribution altogether.
In the second region we now have one extra α factor in comparison to the diagram with
two impurities. Hence it seems that we can neglect the contribution from this region as
well. However, as can be seen from Fig. 4.6, this intermediate region develops a new type of
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divergence towards lower values of q. Specifically, we can extract the following asymptotics:

Sd(γ ≪ q ≪ E) = SII
d (q ≪ E) = −3(16− π2)

128π

e2αE2

q
. (4.28)

Integral of this term is not truly divergent since it is limited by γ from below. But it does
provide a logarithmic correction:∫ 2E

0

dq Sd(q) = const +
3(16− π2)

128π
e2αE2 ln |αE|. (4.29)

The constant term here is of the order αE2 without any logarithm.
Finally, we can evaluate the contribution of the region q > 2E. Full asymptotic expression

SIII
d is also not needed for this calculation. It suffices to take only divergent terms in the

limit q → ∞ and apply the dimensional regularization recipe.∫ ∞

2E

dq Sd(q) = const + e2α

∫ ∞

2E

dq

(
q2d−5

48π
+

23E2q2d−7

120π

)
= const − 23e2αE2d−4

240π(d− 3)
= const − 23e2

120π
αE2 ln |E/∆|. (4.30)

Full contribution of the diagram Fig. 4.5d is thus

δσ
(3)
d =

e2

π
αE2

[
3

128
(16− π2) ln |αE| − 23

120
ln |E/∆|

]
. (4.31d)

All other diagrams of Fig. 4.5 except (h) are evaluated in the same way and the results
are

δσ(3)
a =

e2

π
αE2

[
3

256
(16− 3π2) ln |αE|

]
, (4.31a)

δσ
(3)
b =

e2

π
αE2

[
3

128
(π2 − 16) ln |αE| − 41

120
ln |E/∆|

]
, (4.31b)

δσ(3)
c =

e2

π
αE2

[
1

768
(9π2 + 16) ln |αE|+ 1

120
ln |E/∆|

]
, (4.31c)

δσ(3)
e =

e2

π
αE2

[
−1

3
ln |E/∆|

]
, (4.31e)

δσ
(3)
f =

e2

π
αE2

[
47

24
ln |E/∆|

]
, (4.31f)

δσ(3)
g =

e2

π
αE2

[
−2

3
ln |E/∆|

]
, (4.31g)

δσ
(3)
i =

e2

π
αE2

[
− 7

24
ln |E/∆|

]
, (4.31i)

δσ
(3)
j = 0, (4.31j)

δσ
(3)
k =

e2

π
αE2

[
− 1

12
ln |E/∆|

]
, (4.31k)

δσ
(3)
l =

e2

π
αE2

[
13

60
ln |E/∆|

]
, (4.31l)

δσ(3)
m = 0. (4.31m)
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It remains to calculate the last diagram Fig. 4.5h. Not all impurity lines intersect in
this diagram hence it decouples into two separate integrals. Consider first the part with two
current vertices and three adjacent Green functions.

e2α

2π(1−W )2

∫
pd−1 dpGR(p)σxG

A(p)σxG
R(p)

=
9e2α

8π

∫
pd−1 dp

iϵA(p
2 − ϵ2R)− 2iϵRp

2(2− d)/d

(ϵ2R + p2)2(ϵ2A + p2)
= −3ie2E1−d

8π2α
. (4.32)

We observe that after p integration this part of the diagram has a trivial matrix structure
and can be taken out of the overall matrix trace. Then, the rest of the diagram with two
crossed impurity lines is identical to the diagram Fig. 4.1 for the interference correction to
the density of states. Using Eq. (4.13), we obtain the following result for the correction to
conductivity:

δσ
(3)
h =

3e2E1−d

4π2α
Im

∂F2

∂E
= const +

e2αE2d−4

2π(d− 3)
=

e2

π
αE2 ln |E/∆|. (4.31h)

Summing up all three-impurity diagrams, we obtain

δσ(3) =
e2

8π

(
5

3
− 3π2

16

)
αE2 ln |αE|+ 51e2

40π
αE2 ln |E/∆|. (4.33)

Together with the SCBA expression (3.16) and with the corrections from diagrams with two
impurities (4.25), we have the final result for conductivity

σ =
e2

4π3α
− 4e2|E|

35π
+

e2

8π

(
5

3
− 3π2

16

)
αE2 ln |αE|+ 59e2

40π
αE2 ln |E/∆|+O(αE2). (4.34)

We have thus established the leading and the subleading terms in the energy dependence of
conductivity.

The result (4.34) is written in terms of the disorder strength parameter α and the Fermi
energy E. Both these parameters also include some uncontrollable renormalization constants
that were implicitly included by the dimensional regularization procedure [e.g. an ultraviolet
divergent part of the self energy in Eq. (3.3)]. Neither the Fermi energy nor the disorder
strength are observable parameters of the material. At the same time, conductivity can be
measured directly as a function of electron concentration. The latter can be also controlled,
at least in principle, by chemical doping or external gating.

Electron concentration is related to the Fermi energy by integrating the density of states.
For our purpose, it is in fact sufficient to retain just the leading term in Eq. (4.15), which is
the density of states of a clean Weyl semimetal (2.10)

n(E) =

∫ E

0

dE ρ(E) =
E3

6π2
, E = (6π2n)1/3. (4.35)

We substitute this expression for energy into Eq. (4.34) and find

σ =
e2

ℏ

[
σ0 + An1/3 +

n2/3

σ0

(
B ln |n/σ3

0|+ C ln |n/∆3|
)]

. (4.36)

We have also introduced here the parameter σ0 corresponding to the conductivity at zero
doping in units e2/ℏ. This parameter is also directly measurable and replaces α. Our result
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(4.36) is thus a relation involving only observable quantities. Three constants in this relation
are

A = −4× 61/3

35π1/3
≈ −0.1418, (4.37)

B =
62/3

32π8/3

(
5

3
− 3π2

16

)
≈ −0.0009, (4.38)

C =
59

80× 61/3π8/3
≈ 0.0192. (4.39)

While the electron concentration is at least partially controllable in the experiment, it
seems unfeasible that amount of disorder can be changed at will. That is why the two
logarithmic terms in Eq. (4.36) can hardly be distinguished. A simplified version of our
result with the two logarithms combined reads

σ = e2
[
σ0 + An1/3 + (B + C)

n2/3

σ0

ln |n|
]
. (4.40)

Here a normalization constant under the logarithm is unspecified and the prefactor of the
second term is B + C ≈ 0.0183.
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5 Summary and discussion

To summarize, we have studied spectral and transport properties of a 3D Weyl semimetal in
the presence of Gaussian white-noise disorder. We have developed perturbation theory in the
weak disorder limit controlled by the parameter αE ≪ 1 using dimensional regularization
scheme near d = 3. Both semiclassical and interference contributions were taken into account
to calculate the average density of states and conductivity.

In the framework of the self-consistent Born approximation, we have found a closed
analytic expression for the self energy in three dimensions (3.4). This allowed us to derive
full mean-field results for the density of states (3.8) and conductivity (3.16) taking into
account the whole set of non-intersecting diagrams. Both quantities are analytic functions
in the limit E → 0 and have a regular expansion in powers of the small parameter α2E2.

We have also considered interference corrections due to diagrams with two and three
intersecting impurity lines. These interference terms are dominant in comparison with the
semiclassical result and also non-analytic in the limit E → 0. Density of states includes an
extra ultraviolet logarithmic correction (4.15) as compared to the mean-field result (3.8).
Conductivity acquires a leading universal (independent of the disorder strength) correction
∝ |E| and two subleading corrections with the ultraviolet and infrared logarithms (4.34). The
leading correction to the conductivity is due to the diagrams with two crossed impurity lines
while the subleading logarihmic terms also include a contribution from the diagrams with
three crossed impurities. Our results produce a prediction for the concentration dependence
of conductivity (4.36) that can be directly checked in an experiment.

It is worth mentioning some similarities between our results and interference corrections
in a conventional metal with parabolic spectrum studied in Refs. [43, 44]. The leading cor-
rection in both models is of a relative strength αE ∼ (Eτ)−1 and comes from the same
two diagrams Fig. 4.2(a,c). The subleading correction with the infrared logarithm has a
relative strength (αE)2 ln(αE) ∼ (Eτ)−2 ln(Eτ). In a conventional metal it comes from
all three diagrams with two crossed impurities Fig. 4.2 and in addition from four diagrams
Fig. 4.5(a–d). In a Weyl semimetal only the latter four diagrams provide this correction.
Finally, the ultraviolet logarithmic correction ∼ (αE)2 ln(E/∆) comes from almost all in-
terference diagrams with two and three impurities considered in this work, while in the case
of conventional metal such a correction appears only in two diagrams Fig. 4.2c and Fig.
4.5h. Ultraviolet logarithm cancels in the expression for electron mobility µ = σ/(en) in a
conventional metal model while for the Weyl semimetal such a cancellation does not occur.

The model of the random potential disorder can be directly generalized to include a
possible random vector potential. This will lead to appearance of two distinct disorder
parameters instead of a single quantity α. The whole calculation scheme developed in this
work can be applied to this more general model with minimal modifications. While the
number of relevant diagrams will increase dramatically (each impurity line will be of either
scalar or vector type), we expect that qualitative results of our calculation will still hold.
Only the coefficients in the expansion (4.34) will be modified. This more general model will
be the subject of a separate study.
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A Polarization operator

In this Appendix we discuss the momentum integral which involves denominators of two
Green functions in an arbitrary dimension d. By analogy, we name such an integral polar-
ization operator. Calculation of the polarization operator starts with the standard Feynmann
trick that allows us to combine the two denominators into a single one at the cost of in-
troducing an auxiliary integral over the Feynmann parameter x. After that, d-dimensional
integration over momentum is straightforward. In the Matsubara formalism, we thus obtain
the following expression for the polarization operator:

I(iϵ1, iϵ2, q) =

∫
pd−1 dp

[ϵ21 + (p+ q)2][ϵ22 + p2]
=

∫ 1

0

dx

∫
pd−1 dp

[xϵ21 + (1− x)ϵ22 + p2 + x(1− x)q2]2

=
π(2− d)

4 sin(πd/2)

∫ 1

0

dx
[
xϵ21 + (1− x)ϵ22 + x(1− x)q2

]d/2−2
. (A.1)

Parameters ϵ1,2 are assumed real and positive.
The indefinite integral over x can be expressed through the hypergeometric function with

the help of the following identity:∫
dx (x− a)s(b− x)s = const − (b− a)s(b− x)s+1

s+ 1
F

(
s+ 1,−s, s+ 2,

b− x

b− a

)
= const +

1

2
(x− a)s(b− x)s(2x− a− b)F

(
1,−s,

3

2
,− (2x− a− b)2

4(x− a)(b− x)

)
. (A.2)

Here a and b correspond to the roots of the integrand in Eq. (A.1). It is easy to check
that a < 0 and b > 1. The first expression in Eq. (A.2) follows from the basic integral
representation of the hypergeometric function [48, Eq. 15.6.1]. More symmetric second
expression is a result of the quadratic transformation [48, Eq. 15.8.19] followed by the linear
transformation [48, Eq. 15.8.2]. [Note that arbitrary constants in the two forms of Eq. (A.2)
are different.] The argument of the hypergeometric function in the latter expression of Eq.
(A.2) remains finite and negative everywhere for 0 < x < 1. Hence this indefinite integral
can be used directly to evaluate Eq. (A.1) by taking the difference of its values between
x = 1 and x = 0.

I(iϵ1, iϵ2, q) = M(iϵ1, iϵ2, q) +M(iϵ2, iϵ1, q), (A.3)

M(iϵ1, iϵ2, q) =
π(2− d)ϵd−4

1

8q2 sin(πd/2)

(
q2 − ϵ21 + ϵ22

)
F

(
1, 2− d

2
,
3

2
,−(q2 − ϵ21 + ϵ22)

2

4ϵ21q
2

)
. (A.4)

This is the most compact explicit expression of the polarization operator for arbitrary d.
However, it is not well-suited to analyze the limit of large q, that is needed to properly apply
dimensional regularization. Hence we perform the transformation [48, Eq. 15.8.2] with the
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Figure A.1: Left: Transformation of variables for analytic continuation iϵ1,2 = iγ±t
in the calculation of IRA. For large energies, the point t = q/2 should be bypassed
to avoid the branch point of the hypergeometric function in Eq. (A.5). Right:
Corresponding transformation of the argument of the hypergeometric function.
Two curves correspond to M(ϵ1, ϵ2) and M(ϵ2, ϵ1). One of these two contours
always intersect the branch cut of the hypergeometric function [1,+∞).

function M and obtain its alternative form:

M(iϵ1, iϵ2, q) =
π

2 sin(πd/2)

[
ϵd−2
1

q2 − ϵ21 + ϵ22
F

(
1,

1

2
,
d

2
,− 4ϵ21q

2

(q2 − ϵ21 + ϵ22)
2

)

− Γ2(d/2)

Γ(d− 1)
q2−d

[(
q2 + ϵ21 + ϵ22

)2 − 4ϵ21ϵ
2
2

](d−3)/2

sgn
(
q2 − ϵ21 + ϵ22

)]
. (A.5)

With the two results for M(iϵ1, iϵ2, q), we can readily find the polarization operator with
two Green functions of the same kind. This amounts to setting ϵ1 = ϵ2 = ϵ and performing
analytical continuation in the upper complex half-plane iϵ 7→ iγ ± E. (Here we include the
real part of the self-energy into E while keeping the imaginary part γ explicit.) This yields
two equivalent expressions for IRR/AA suitable for small or large q expansion:

IRR/AA(q) =
π(2− d)

4 sin(πd/2)
(γ ∓ iE)d−4F

(
1, 2− d

2
,
3

2
,

q2

4(E ± iγ)2

)
=

π

sin(πd/2)

[
(γ ∓ iE)d−2

q2
F

(
1,

1

2
,
d

2
,
4(E ± iγ)2

q2

)

− Γ2(d/2)

q Γ(d− 1)

[
q2 − 4(E ± iγ)2

](d−3)/2

]
. (A.6)

The case of mixed retarded-advanced polarization operator is much more subtle. Analytic
continuation in two different energy parameters can be performed as follows. We set iϵ1,2 =
iγ±t and continuously change t from 0 to E. At the initial value t = 0, both energies ϵ1,2 are
positive and equal. Hence the Matsubara expression (A.5) applies and the signum function
in the last term is 1. For relatively low energies E < q/2, we can analytically continue t
directly along the real axis and reach the point t = E. Substituting the end point of this
trajectory into Eq. (A.5) yields the result for M and hence for IRA.
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For larger energies, the argument of the hypergeometric function in Eq. (A.5) becomes
1 when t reaches the value q/2. This is a branch point of the hypergeometric function
(its branch cut runs from 1 to +∞) hence it should be bypassed. We will assume that t
circumvents the point q/2 from above in the complex plane on its way to t = E > q/2.
Then the argument of the hypergeometric function in M(iϵ1, iϵ2, q) circumvents the branch
point 1 from the left (see Fig. A.1) and we remain on the same principal branch of the
hypergeometric function. But at the same time in the second term M(iϵ2, iϵ1, q) of Eq.
(A.3), the argument of the hypergeometric function evolves along the (almost) complex
conjugate path, it circumvents the branch point 1 from the right and crosses the branch cut
(see Fig. A.1). This means that we should add the value of the jump across the branch cut
[48, Eq. 15.2.3] in order to stay on the principal branch. Adding together M(iγ+E, iγ−E, q)
and MM(iγ − E, iγ + E, q), we represent the polarization operator IRA as

IRA(q) =
π

2 sin(πd/2)

[(
(γ − iE)d−2

q2 + 4iEγ
F

(
1,

1

2
,
d

2
,
4(E + iγ)2q2

(q2 + 4iEγ)2

)
+
{
E 7→ −E

})

− 2Γ2(d/2)

Γ(d− 1)
q2−d

[(
q2 − 4E2

)(
q2 + 4γ2

)](d−3)/2

θ(q − 2E)

]
. (A.7)

This expression is equally well suited for both small and large q expansion. Let us note that
the same result can be obtained if we bypass the branch point in t from the other side (from
below). The only difference is that the roles of the two terms in Eq. (A.3) are interchanged.

We have so far established exact expressions for the polarization operator for any values
of the parameters E, γ, and q and for arbitrary d. For the computation of diagrams, we
are mostly interested in the 3D limit. More specifically, deviations from d = 3 should be
taken into account only in the limit q ≫ E where dimensional regularization is applied.
This means we can substitute d = 3 in Eqs. (A.6) and (A.7) everywhere except the last
terms where we keep qd−3 asymptotics. This yields the following simplified versions of the
polarization operators:

IRA(q) =
π

2q

(
π

2
qd−3 − Ed−3 arctan

2γ

q

)
, (A.8a)

IRR/AA(q) =
π

2q

(
π

2
qd−3 − Ed−3 arctan

2γ ∓ 2iE

q

)
. (A.8b)
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