Московский физико-технический институт (национальный исследовательский университет)

Институт теоретической физики им. Л.Д.Ландау РАН

Выпускная квалификационная работа бакалавра

Поляризация электронов электрическим током в монослоях дихалькогенидов переходных металлов

Автор: Студент Б02-925 группы Эскоскин Даниил Сергеевич

Научный руководитель:

Доктор физико-математических наук, Член-корр. РАН Глазов Михаил Михайлович

Москва 2023

АННОТАЦИЯ

В данной работе изучается связь между спиновой поляризацией электронов и электрическим током в монослоях дихалькогенидах переходных металлов. Такие системы описываются точечной группой D_{3h} , которая относится к классу нецентросимметричных и негиротропных групп. В такой системе линейная связь между спином и током запрещена симметрией. Выполненный феноменологический анализ на основе теории групп показал, что спиновая поляризация пропорциональна третьей степени величины тока и косинусу тройного угла между током и кристаллографической осью. В рамках кинетического уравнения построена микроскопическая теория эффекта. Выполнен расчет величины поляризации и приведена физически-обоснованная оценка величины эффекта из качественных соображений.

содержание

Аннотация	2
І. Введение	4
II. Симметрийный анализ	6
III. Оценка эффекта из качественных соображений	11
IV. Микроскопическая теория поляризации	13
А. Рассеяние внутри одной долины	14
В. Междолинное рассеяние	15
С. Микроскопическая теория междолинного рассеяния	18
V. Спиновая поляризация	21
VI. Заключение	23
Список литературы	24

3

I. ВВЕДЕНИЕ

Связь орбитального движения электрона и его спиновых степеней свободы в конденсированных средах приводит к широкому кругу новых явлений, важных с точки зрения как фундаментальной физики, так и потенциальных применений в спинтронике, долинтронике и квантовых технологиях. Особый интерес представляют процессы ориентации спинов носителей заряда немагнитными способами, которые позволяют быстро инициализировать спиновые степени свободы. Эти процессы включают в себя оптическую ориентацию спинов и спиновый эффект Холла [1, 2], но особое местро среди них занимает эффект ориентации спинов электрическим током. В этом эффекте пропускание постоянного тока через образец приводит к возникновению стационарной и однородной спиновой поляризации. Эффект был предсказан для объемного теллура в 70-е годы прошлого века [3] и обнаружен вскоре после этого [4]. В последние годы он приобрел особую значимость в связи с наблюдением ориентации спинов электрическим током в классических полупроводниковых системах [5–8], этот эффект активно исследуют и в структурах, обладающих магнитным порядком [9].

С точки зрения теоретического описания эффект ориентации спинов током оказывается весьма нетривиальным [10–13], а величина спиновой поляризации носителей – крайне чувствительной к процессам энергетической и спиновой релаксации [14]. Представляется важным отметить, что степень поляризации электронов может быть увеличена в особых режимах транспорта: в режими стриминга электронов [15] и в условиях прыжковой проводимости [16].

Эффект ориентации спинов электрическим током возможен лишь в средах, относящихся к гиротропным классам симметрии, где компоненты полярного (истинного) вектора (т.е. компоненты электрического тока j или электрического поля \mathcal{E}) и компоненты аксиального (псевдо) вектора (спин или намагниченость S) преобразуются по эквивалентным представления группы симметрии среды. В средах с более высокой симметрией линейная связь между j и S запрещена. В недавних статьях [17, 18] обсуждался эффект второго порядка, в котором возникала поляризации пропорциональная квадрату поля или тока. В данной работе показано, что в нецентросимметричных средах спиновая или долинная поляризация носителей заряда может возникать в третьем порядке по постоянному току, протекающему в среде. Эффект описывается феноменологическим соотношением

$$S_{\alpha} = R_{\alpha\beta\gamma\delta} \mathcal{E}_{\beta} \mathcal{E}_{\gamma} \mathcal{E}_{\delta} = Q_{\alpha\beta\gamma\delta} j_{\beta} j_{\gamma} j_{\delta}, \tag{1}$$

где $\alpha, \beta, \gamma, \delta$ – декартовы индексы, а псевдотензоры четвертого ранга \hat{R} и \hat{Q} описывают отклик на поле и ток, соответственно. Предсказание проиллюстрирвано модельным расчетом для двумерных кристаллов на основе дихалькогенидов переходных металлов, описываемых формулой MX₂, где M=Mo, W и X=S, Se. Эти двумерные полупроводники [19–21] с гексагональной кристаллической решеткой (пчелиные соты) обладают двумя долинами в зоне Бриллюэна и значительным спин-орбитальным взаимодействием [22–24], которое приводит к эффекту связи спин-долина (spin-valley locking) [22, 25– 27]. Благодаря киральным правилам отбора при оптических переходах, возбуждение циркулярно поляризованным светом приводит к генерации электронов в определенной долине [28–31]. Эти кристаллы не обладают центром пространственной инверсии, и не обладают гиротропией. В работе показано, что электрическое поле, приложенное в плоскости, приводит к возникновению *z*-компоненты спиновой поляризации электронов $S_z \propto \mathcal{E}^3$ с характерной зависимостью третьего порядка от ориентации поля или тока по отношению к кристаллографическим осям. Развитая теория позволяет микроскопически описать обнаруженный в статье [32] эффект электрически-переключаемого кирально-излучающего транзистора (electrically switchable chiral light-emitting transistor effect).

II. СИММЕТРИЙНЫЙ АНАЛИЗ

Наиболее общие соображения, из которых можно найти связь между спиновой поляризацией и электрическим током или полем, это симметрийные. В таком случае задача сводится к поиску алгебраических комбинаций из компонент тока, имеющих такие же симметрии, как и псевдовектор спина. Говоря более строго, нужно найти функции компонент тока, преобразующиеся по тем же неприводимым представлениям точечной группы симметрии системы, что и спиновая поляризация. В частности, легко понять, что эффект спиновой поляризации постоянным током, описываемый уравнением (1), возможен только в средах, в группе симметрии которых отсутствует центр пространственной инверсии. Действительно, предположим, что центр инверсии есть, тогда применив операцию инверсию получим, что в правая часть домножится на -1, а в левой же ничего не поменяется, т.к. спин – псевдовектор и, как и магнитное поле, при инверсии перейдет сам в себя, а значит, в такой системе эффект невозможен.

Монослоих дихалькогенидов переходных металлов описываются точечной группой D_{3h} . Схематическое изображение кристаллической структуры и зоны Бриллюэна этих полупроводников представлено на рис. 1.

Эта группа имеет 6 классов сопряженности:

- 1-го инвариантного преобразования E;
- 1-го σ_h отражение относительно плоскости слоя;
- 2-х вращений C_3 на $\pm \frac{2\pi}{3}$ по z;
- 2-х вращений + отражений в плоскости слоя $S_3 = \sigma_h \cdot C_3$;
- 3-х вращений C'_2 относительно главных осей на π ;
- 3-х отражений σ_v относительно плоскостей, перпендикулярных слою и содержащих главные оси.

Согласно общим теоремам, эта группа имеет 6 неприводимых представлений, которые представлены ниже в таблице характеров (таб. I). В ней также представлены базисные функции вплоть до третьей степени по вектору, где x,y,z – компоненты вектора,

Рис. 1: Схематическое изображение кристаллической структуры монослоя MX_2 . (a) вид сбоку, (б) - вид сверху, (в) - зона Бриллюэна с обозначением высокосимметричных точек, в частности, долин K_{\pm} .

 S_x, S_y, S_z – компоненты псевдовектора. В таб. II приведены правила умножения неприводимых представлений этой группы.

Таблица I: Неприводимые представления точечной группы D_{3h} и их характеры. В таблице также приведены примеры базисных функций линейных (Linear), квадратичных (Quadratic) и кубических (Cubic) по компонентам вектора/псевдовектора.

D_{3h}	E	$\sigma_h(xy)$	$2C_3(z)$	$2S_3$	$3C_2'$	$3\sigma_v$	Linear	Quadratic	Cubic
Γ_1	1	1	1	1	1	1	_	$x^2 + y^2, z^2$	$y(3x^2 - y^2)$
Γ_2	1	1	1	1	-1	-1	S_z	_	$x(x^2 - 3y^2)$
Γ_3	1	-1	1	-1	1	-1	_	_	_
Γ_4	1	-1	1	-1	-1	1	z	_	$z^3, z(x^2 + y^2)$
Γ_5	2	-2	-1	1	0	0	$\{S_x, S_y\}$	$\{xz, yz\}$	$\{xyz, z(x^2 - y^2)\}$
Γ_6	2	2	-1	-1	0	0	$\{x, y\}$	$\{x^2-y^2,xy\}$	(xz^2, yz^2) { $x(x^2 + y^2), y(x^2 + y^2)$ }

Алгоритм симметрийного анализа таков: *z*-компонента спиновой поляризации преобразуется по неприводимому представлению Γ_2 : она является инвариантом по отношению ко всем операциям симметрии, кроме отражений в вертикальных плоскостях

Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6	
Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6	Γ_1
	Γ_1	Γ_4	Γ_3	Γ_5	Γ_6	Γ_2
		Γ_1	Γ_2	Γ_6	Γ_5	Γ_3
			Γ_1	Γ_6	Γ_5	Γ_4
				$\Gamma_1 + \Gamma_2 + \Gamma_6$	$\Gamma_3 + \Gamma_4 + \Gamma_5$	Γ_5
					$\Gamma_1+\Gamma_2+\Gamma_6$	Γ_6

Таблица II: Таблица умножения неприводимых представлений группы D_{3h} .

симметрии (содержащих ось z) и поворотов C'_2 , вокруг осей, лежащих в плоскости слоя. Компоненты вектора преобразуются по представлению Γ_6 . Отметим, что хотя прямое произведение $\Gamma_6 \times \Gamma_6$ содержит представление Γ_2 , квадратичного вклада $S_z \propto \mathcal{E}^2$ или j^2 нет, соответствующий вклад имел бы вид $S_z \propto [\mathbf{j} \times \mathbf{j}]_z$, но такая конструкция, очевидно, обращается в нуль. В третьем порядке возникает ненулевой вклад:

$$S_z = R_j (j_x^3 - 3j_x j_y^2) \propto R_{\mathcal{E}} (\mathcal{E}_x^3 - 3\mathcal{E}_x \mathcal{E}_y^2).$$
⁽²⁾

Здесь R_j и $R_{\mathcal{E}}$ коэффициенты, получаемые из микроскопических соображений (микроскопическая модель представлена в следуюзих разделах). Несложно увидеть, что левая и правая части (2) действительно преобразуются одинаковым образом: инвариантность к поворотам третьего порядка очевидна, также видно, что при отражении в плоскости σ_v ($x \to -x$) и левая, и правая части формулы (2) меняют знак.

Дополнительно можно проналазировать выражение (2) на поведение при инверсии времени. Выполняя замену $t \to -t$ мы видим, что спин и ток меняют знак, в то время как поле - не меняет знак. Отсюда ясно, что коэффициент R_j содержит четное, а $R_{\mathcal{E}}$ нечетное число диссипативных постоянных (например, времен релаксации τ).

Легко проверить, что электрический ток или поле, приложенные в плоскости монослоя (xy), не могут индуцировать компоненты спина в плоскости, так как структура обладает горизонтальной плоскостью отражения σ_h . Действительно, как несложно увидеть из таб. II, никакие степени представления Γ_6 не содержат представления Γ_5 , по

Рис. 2: Схема зон и правила отбора при оптических переходах в монослое MoS₂. Зоны маркированы неприводимыми спинорными представлениями группы волнового вектора C_{3h} согласно [33]. На вставке приведена схема зоны Бриллюэна. Из [34].

которым преобразуются компоненты спина в плоскости.

Перейдем теперь к анализу энергетического спектра и дисперсии электронов в монослоях дихалькогенидов переходных металлов. Схематически зонная структура монослоя MoS₂ показана на рис. 2. Нас будут интересовать две нижайшие по энергии подзоны зоны проводимости (представления Γ_{11} и Γ_{12} в обозначениях книги [33]). Симметрийный анализ, позволяющий установить вид эффективного гамильтониана вполне аналогичен приведенному выше: нужно построить инвариантную относительно преобразований симметрии матрицу 2 × 2 эффективного гамильтониана, содержащую низшие возможные степени квазиволнового вектора электрона k. Анализ (ср. с [24]) показывает, что

$$\mathcal{H} = \frac{\hbar^2 k^2}{2m} + \mathcal{H}_{vo}, \quad \mathcal{H}_{vo} = \beta \tau_z (k_x^3 - 3k_x k_y^2), \tag{3}$$

где волновой вектор k отсчитывается от центра долины (от точки K_+ или K_-), единичная матрица при вкладе с параболической дисперсией опущена для сокращения записи, m – эффективная масса электрона, τ_z – долинная матрица Паули, а феноменологическая

Рис. 3: Контурный график с изоэнергетическими уровнями в одной из зон. Из [24].

константа β может быть найдена из атомистических расчетов или из эксперимента.

Наличие вклада \mathcal{H}_{vo} делает спектр электрона в данной долине асимметричным, как показано на рис. 3.

Подчеркнем, что спин-орбитальное взаимодействие в добавок к анизотропии энергетического спектра снимает вырождение по спину в каждой из долин (расщепление Γ_{11} и Γ_9 в \mathbf{K}_+ и Γ_{12} и Γ_{10} в \mathbf{K}_- , см. рис. 2). В итоге в одной долине (\mathbf{K}_+) низшее состояние в зоне проводимости будет с $s_z = +1/2$, а в другой (\mathbf{K}_-) с $s_z = -1/2$, соответственно. В нашей работе будем рассматривать предел малых температур, меньших энергетического зазора между спиновыми состояниями внутри одной долины, так что верхние подзоны Γ_9 , Γ_{10} рассматриваться не будут.

III. ОЦЕНКА ЭФФЕКТА ИЗ КАЧЕСТВЕННЫХ СООБРАЖЕНИЙ

Рис. 4: Схематичное изображение смещения ферми-моря в каждой из долин под действием электрического поля. Красная и синяя стрелки показывают направления спина. Горизонтальные стрелки – процессы междолинного рассеяния электронов.

Жирная стрелка показывает направление предпочтительного рассеяния.

Прежде чем вычислять спиновую поляризацию из кинетических соображений попробуем оценить ее из энергетических. Электрическое поле приводит к дрейфу электронов. Асимметрия долин по отношению к направлению волнового вектора, в свою очередь, приводит к тому что характерные энергии дрейфующих электронов в каждой из долин будут отличаться. На качественном языке можно сказать, что наличие среднего дрейфового волнового вектора приводит за счет гамильтониана \mathcal{H}_{vo} (3) к появлению эффективного магнитного поля, действующего на спин электрона $\propto \beta k^3$. Спины электронов выстраиваются в этом эффективном поле, при этом возникает ненулевая поляризация частиц.

Для оценки по порядку величины достаточно учесть лишь линейный по β вклад в энергию в эффективном гамильтониане, а отличием между скоростью v и $\hbar k/m$ можно пренебречь. Действительно,

$$\boldsymbol{v}_{\boldsymbol{k}}^{\pm} = \frac{1}{\hbar} \frac{dE_{\boldsymbol{k}}^{\pm}}{d\boldsymbol{k}} = \frac{\hbar}{m} \boldsymbol{k} + \hbar^{-1} \beta \boldsymbol{\nabla}_{\boldsymbol{k}} \left(k^{3} \cos 3\theta \right) = \frac{\hbar}{m} \boldsymbol{k} \pm \frac{3\beta}{\hbar} [(k_{x}^{2} - k_{y}^{2})\hat{\boldsymbol{x}} - 2k_{x}k_{y}\hat{\boldsymbol{y}}], \qquad (4)$$

где θ полярный угол вектора k, отсчитанный от оси x. Тогда в качестве волнового вектора k в в гамильтониан можно подставлять $\hbar^{-1}mv_{dr}$, где $v_{dr} \propto E$ – дрейфовая скорость электронов, при этом угол θ определяется направлением электрического поля. Это дает разность энергий дрейфующего электрона в разных долинах:

$$E^{\pm} = \frac{m^2 v_{dr}^2}{2} \pm \beta \left(\frac{m v_{dr}}{\hbar}\right)^3 \cos 3\theta.$$
(5)

В меру разности энергий электрона $E^+ - E^-$ возникает спиновая поляризация. Если ассоциировать $E^+ - E^-$ с зеемановским расщеплением электронных спиновых подуровней во внешнем поле, то среднее значение *z*-компоненты спина электрона *s* в первом порядке по β будет описывается следующим выражением:

$$s \sim \frac{E^+ - E^-}{E_F} \sim \frac{\beta}{E_F} \left(\frac{mv_{dr}}{\hbar}\right)^3 \cos 3\theta,\tag{6}$$

где E_F – энергия Ферми электронов. Электроны предполагаются вырожденными, температура T в энергетических единицах мала по сравнению с энергией Ферми. Зависимость степени поляризации от величины поля (кубическая) и его направления ($\cos 3\theta$) соответствует симметрийной формуле (2). В итоге, задача сводится к нахождению безразмерного коэффициента в этом выражении, что и будет сделано далее на основе микроскопической теории.

IV. МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ ПОЛЯРИЗАЦИИ

Перейдем теперь к микроскопической модели эффекта. Теория спиновой поляризации электронов будет развиваться в рамках кинетического уравнения для функции распределения электронов f_k^{\pm} в долинах K_+ (и с проекцией спина +1/2) и K_- (с проекцией спина -1/2), соответственно. В условиях термодинамического равновесия (нет внешнего поля, $\mathcal{E} = 0$) функция распределения электронов равновесная и определяется спектром носителей заряда,

$$E_{\boldsymbol{k}}^{\pm} = \frac{\hbar^2 k^2}{2m} \pm \beta (k_x^3 - 3k_x k_y^2) = \frac{\hbar^2 k^2}{2m} \pm \varepsilon_{\boldsymbol{k}}.$$
(7)

Здесь ε_{k} – спин- (долинно-) зависимая поправка к энергии, она считается малой по сравнению с энергией Ферми электронов. Соответственно, равновесная функция равновесия имеет вид

$$f_0^{\pm}(\mathbf{k}) = f_0(E_{\mathbf{k}}^{\pm}) = \frac{1}{\exp\left(\frac{E_{\mathbf{k}}^{\pm} - \mu}{k_B T}\right) + 1},$$
(8)

где μ – химический потенциал, T – температура, а k_B больцмановская постоянная.

Для дальнейшего, введем средний спин электронов с волновым вектором k как

$$S_{\boldsymbol{k}} = \frac{1}{2} \left(f_{\boldsymbol{k}}^+ - f_{\boldsymbol{k}}^- \right) \,.$$

Тогда полный спин электронного газа $S = \sum_{k} S_{k}$, а спиновая поляризация:

$$s = 2S/N,\tag{9}$$

где $N = \sum_{k} \left(f_{k}^{+} + f_{k}^{-} \right)$ - это полное число (или концентрация, мы положим нормировочную площадь единицей) электронов.

Стационарное кинетическое уравнение для функции распределения электронов можно записать в виде

$$\frac{1}{\hbar}e\boldsymbol{\mathcal{E}}\cdot\frac{\partial f_{\boldsymbol{k}}^{\tau}}{\partial\boldsymbol{k}} = Q_{intra}\{f_{\boldsymbol{k}}^{\tau}\} + Q_{inter}\{f_{\boldsymbol{k}}^{\tau}; f_{\boldsymbol{k}}^{-\tau}\},\tag{10}$$

где e – заряд электрона, верхний индекс $\tau = +$ или – нумерует долины, $Q_{intra}\{f_k^{\tau}\}$ – интеграл внутридолинных столкновений, а $Q_{inter}\{f_k^{\tau}; f_k^{-\tau}\}$ – междолинных. Известно,

что в монослоях дихалькогенидов переходных металлов (как и в других типичных полупроводниках) внутридолинное рассеяние идет значительно быстрее междолинного [35], поэтому решение кинетического уравнения удобно выполнять последовательными приближениями: сначала вовсе пренебречь междолинными переходами и найти функции распределения f_k^{\pm} в долинах во внешнем поле, а потом учесть медленные междолинные процессы.

А. Рассеяние внутри одной долины

Для определения функций распределения f_k^{\pm} в пренебрежении междолинными процессами мы воспользуемся удобным "гидродинамическим" приближением, а именно, будем считать, что частота межэлектронных столкновений значительно превосходит частоту рассеяния электронов по импульсу на примесях или фононах. Тогда функция распределения с учетом поля есть сдвинутая в **k**-пространстве на дрейфовый импульс:

$$f_{\boldsymbol{k}}^{\pm} = f_0 \left(E_{\boldsymbol{k}}^{\pm} - \hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr} - \delta \mu^{\pm} \right) \approx f_0(E_{\boldsymbol{k}}^{\pm}) + \delta f_{\boldsymbol{k}}^{\pm}.$$
 (11)

Здесь

$$\delta f_{\boldsymbol{k}}^{\pm} = -f_0^{\prime \pm} \delta \mu_{\pm} - f_0^{\prime \pm} \hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr} + \frac{1}{2} (f_0^{\prime\prime})^{\pm} (\hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr})^2 + \frac{1}{6} (f_0^{\prime\prime\prime})^{\pm} (\hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr})^3,$$
(12)

и мы используем штрихи для обозначения для производных рановесной функции распределения по энергии: $f_0^{\prime\pm} = df_0^{\pm}/dE_k^{\pm}$. В формулах (11) и (12) \boldsymbol{v}_{dr} – дрейфовая скорость электронов, и мы включили член с $\delta\mu_{\pm}$, описывающий эффективное изменение химического потенциала в долинах за счет эффектов "разогрева" электронного газа.

Дрейфовую скорость можно определить из условия баланса импульса: импульс, приобретаемый электронами от поля в единицу времени уравновешивается потерями импульса при рассеянии на статических дефектах или фононах. Соответственно, уравнение баланса импульса можно записать в виде

$$e\mathcal{E}\sum_{k} f_{0} = \sum_{k} \hbar k \frac{\delta f_{k}}{\tau_{1}}, \qquad (13)$$

где τ_1 – время импульсной релаксации (т.е. время рассеяния на примесях и фононах с сохранением долины). Для определения дрейфовой скорости можно пренебречь кубическими по k членами в спектре (строго говоря, их учет приведет к тому, что дейфовая

скорость будет разной в разных долинах). Из (13) следует оценка для дрейфовой скорости

$$\boldsymbol{v}_{dr} = \frac{e\boldsymbol{\mathcal{E}}\tau_1}{m}.$$
(14)

Величины $\delta \mu_{\pm} = \pm \delta \mu$ следует определить из условия сохранения числа электронов в каждой долине (напомним, что междолинное рассеяние мы пока не учитываем). Так как мы ищем вклад, линейный по $\beta \mathcal{E}^3$, то разложим δf_k^{\pm} вплоть до линейных по β членов. В итоге получаем:

$$\delta f_{\boldsymbol{k}}^{\pm} = -f_0^{\prime \pm} \hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr} + \frac{1}{2} (f_0^{\prime\prime})^{\pm} (\hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr})^2 + \delta \tilde{f}_{\boldsymbol{k}}^{\pm}, \qquad (15)$$

$$\delta \tilde{f}_{\boldsymbol{k}}^{\pm} = \frac{1}{6} \frac{d^3 f_0}{dE_k^3} (\hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr})^3 \pm \frac{1}{6} \frac{d^4 f_0}{dE_k^4} (\hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr})^3 \varepsilon_{\boldsymbol{k}} \pm \frac{d f_0}{dE_k} \delta \mu.$$

Потребовав сохранения числа частиц в каждой из долин, т.е. $\sum_{k} \delta f_{k}^{\pm} = 0$ получим, что $\delta \mu = \beta m^{3} v_{dr}^{3} / \hbar^{3}$. Действительно:

$$\langle \delta \tilde{f}_{\boldsymbol{k}}^{\pm} \rangle = \pm \left[\frac{\beta \hbar^3 k^6 v_{dr}^3}{48} \frac{d^4 f_0}{dE_k^4} + \frac{\beta m^3 v_{dr}^3}{\hbar^3} \frac{df_0}{dE_k} \right] = \pm \frac{\beta m^3 v_{dr}^3}{\hbar^3} \left(\frac{E_k^3}{6} \frac{d^4 f_0}{dE_k^4} + \frac{df_0}{dE_k} \right).$$
(16)

Этот результат, полученный для δf_{k}^{\pm} , пригодится нам для нахождения вклада междолинного рассеяния.

В. Междолинное рассеяние

Перейдем теперь к решению кинетического уравнения с учетом междолинного рассеяния. Интеграл столкновений в случае упругого рассеяния с изменением долины имеет простой вид

$$Q_{inter}\{f_{k}^{\tau}; f_{k}^{-\tau}\} = \sum_{k'} (f_{k'}^{-\tau} - f_{k}^{\tau}) \delta(E_{k'}^{-\tau} - E_{k}^{\tau}) W_{kk'}^{\tau-\tau},$$
(17)

где $W_{kk'}^{\tau-\tau}$ – квадрат модуля междолинного матричного элемента рассеяния, умноженный на $2\pi/\hbar$. Механизмы междолинного рассеяния обсуждаются ниже в разд. IV C.

Наша основная задача – определить средний спин, возникающий в системе. Так как мы предполагаем, что функции распрпеделения внутри долины контролируются межэлектронными столкновениями, то это означает, что и с учетом междолинного рассеяния решение кинетического уравнения будет иметь вид сдвинутого распределения Ферми-Дирака (11)

$$f_{\boldsymbol{k}}^{\pm} = f_0 \left(E_{\boldsymbol{k}}^{\pm} - \hbar \boldsymbol{k} \cdot \boldsymbol{v}_{dr} - \delta \mu^{\pm} \right), \qquad (18)$$

однако теперь уже химические потенциалы будут определяться балансом процессов междолинного рассеяния, и при этом, вообще говоря, $\sum_{k} f^+ \neq \sum_{k} f^-$. Для определения стационарной спиновой поляризации нам достаточно вычислить суммарный темп генерации (а потом умножить его на характерное время релаксации, см. ниже).

Пользуясь тем, что спиновое состояния электрона жестко привязано к долине, вычислим темп генерации спина, как:

$$G = \frac{1}{2} \sum_{k} Q_{inter} \{ f_{k}^{+}; f_{k}^{-} \} - Q_{inter} \{ f_{k}^{-}; f_{k}^{+} \}.$$

Учитывая тот факт, что $W_{\boldsymbol{k}\boldsymbol{k}'}^{\tau-\tau} = W_{\boldsymbol{k}'\boldsymbol{k}}^{-\tau\tau} = W_{\boldsymbol{k}'\boldsymbol{k}}^{\tau-\tau} \equiv W_{\boldsymbol{k}'\boldsymbol{k}}^{vf}$ (эти соотношения следуют из эрмитовости матричных элементов возмущения, описывающего рассеяние и симметрии к инверсии времени, верхний индес vf означает "valley flip" – междолинное рассеяние), преобразуем темп генерации G к следующему удобному для дальнейшего виду

$$G = \frac{1}{2} \sum_{kk'} \left[(\delta f_{k'}^{-} - \delta f_{k}^{+}) \delta (E_{k'}^{-} - E_{k}^{+}) - (\delta f_{k'}^{+} - \delta f_{k}^{-}) \delta (E_{k'}^{+} - E_{k}^{-}) \right] W_{kk'}^{vf}.$$
 (19)

Подставляя $\delta \tilde{f}_{k}^{\pm}$ из (15) в (19) легко убедиться, что в линейном по β режиме возможны два вклада в темп генерации.

Первый из них связан с наличием линейных по β и кубических по \mathcal{E} вкладов в функцию распределения $\delta \tilde{f}_{k}^{\pm}$. Поскольку для этого вклада β уже учтено в функции распределения, учитывать его в законах сохранения энергии не нужно, в результате чего достаточно подставить изотропную часть $\langle \delta \tilde{f}_{k}^{\pm} \rangle$ в уравнение (19):

$$G^{(1)} = -\frac{\beta m^3 v_{dr}^3}{\hbar^3} \sum_{\boldsymbol{k}\boldsymbol{k}'} \left(\frac{E_k^3}{6} \frac{d^4 f_0}{dE_k^4} + \frac{df_0}{dE_k} \right) \delta(E_{\boldsymbol{k}'} - E_k) W_{\boldsymbol{k}\boldsymbol{k}'}^{vf}.$$

$$(20)$$

$$n^3 v_{dr}^3 \sum \left(E_k^3 d^4 f_0 + df_0 \right) - 1 = \beta m^3 v_{dr}^3 \sum df_0 \left(1 - d^3 - E_k^3 \right)$$

$$= -\frac{\beta m^3 v_{dr}^3}{\hbar^3} \sum_{k} \left(\frac{E_k^3}{6} \frac{d^4 f_0}{dE_k^4} + \frac{df_0}{dE_k} \right) \frac{1}{\tau_0^{vf}} = -\frac{\beta m^3 v_{dr}^3}{\hbar^3} \sum_{k} \frac{df_0}{dE_k} \left(\frac{1}{\tau_0^{vf}} - \frac{d^3}{dE_k^3} \frac{E_k^3}{6\tau_0^{vf}} \right).$$

Здесь мы ввели время междолинной релаксации *n*-ой гармоники функции распределения согласно

$$\frac{1}{\tau_n^{vf}} = \frac{m}{2\pi\hbar^2} \langle W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} (1 - \cos n\vartheta) \rangle, \qquad (21)$$

где среднее взято по углу между \boldsymbol{k} и $\boldsymbol{k}', \vartheta = \angle \boldsymbol{k}, \boldsymbol{k}'$, при постоянном модуле k' = k.

Второй вклад возникает из учета линейного по β вклада в энергию в законе сохранения, реализуемого с помощью δ -функции. При расчете этого вклада необходимо учесть независимые от β вклады 3-й угловой гармоники в $\delta \tilde{f}_{k}^{\pm}$ (которые одинаковы в долинах K_{+} и K_{-} , так как их различие возникает в меру β). Для этого вклада получаем

$$G^{(2)} = \frac{m^{3} v_{dr}^{3} \beta}{3\hbar^{3}} \sum_{\boldsymbol{k}\boldsymbol{k}'} \left[E_{\boldsymbol{k}'}^{3/2} f_{0}'''(E_{\boldsymbol{k}}') \cos 3\varphi_{\boldsymbol{k}'} - E_{\boldsymbol{k}}^{3/2} f_{0}'''(E_{\boldsymbol{k}}) \cos 3\varphi_{\boldsymbol{k}} \right] \left[E_{\boldsymbol{k}'}^{3/2} \cos 3\varphi_{\boldsymbol{k}'} + E_{\boldsymbol{k}}^{3/2} \cos 3\varphi_{\boldsymbol{k}} \right] \times W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} \frac{d}{dE_{\boldsymbol{k}}} \delta(E_{\boldsymbol{k}'} - E_{\boldsymbol{k}}) = -\frac{m^{3} v_{dr}^{3} \beta}{3\hbar^{3}} 2 \sum_{\boldsymbol{k}\boldsymbol{k}'} E_{\boldsymbol{k}'}^{3/2} f_{0}'''(E_{\boldsymbol{k}'}) \cos 3\varphi_{\boldsymbol{k}'} \delta(E_{\boldsymbol{k}'} - E_{\boldsymbol{k}}) \frac{d}{dE_{\boldsymbol{k}}} W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} \left[E_{\boldsymbol{k}'}^{3/2} \cos 3\varphi_{\boldsymbol{k}'} + E_{\boldsymbol{k}}^{3/2} \cos 3\varphi_{\boldsymbol{k}} \right] = -\frac{m^{3} v_{dr}^{3} \beta}{3\hbar^{3}} 2 \sum_{\boldsymbol{k}\boldsymbol{k}'} E_{\boldsymbol{k}'}^{3/2} f_{0}'''(E_{\boldsymbol{k}'}) \cos 3\varphi_{\boldsymbol{k}'} \delta(E_{\boldsymbol{k}'} - E_{\boldsymbol{k}}) \frac{d}{dE_{\boldsymbol{k}}} W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} \left[E_{\boldsymbol{k}'}^{3/2} \cos 3\varphi_{\boldsymbol{k}'} + E_{\boldsymbol{k}}^{3/2} \cos 3\varphi_{\boldsymbol{k}} \right] = -\frac{m^{3} v_{dr}^{3} \beta}{3\hbar^{3}} 2 \sum_{\boldsymbol{k}\boldsymbol{k}'} E_{\boldsymbol{k}'}^{3/2} f_{0}'''(E_{\boldsymbol{k}'}) \cos 3\varphi_{\boldsymbol{k}'} \times \\ \delta(E_{\boldsymbol{k}'} - E_{\boldsymbol{k}}) \left\{ \frac{3}{2} E_{\boldsymbol{k}'}^{1/2} \cos 3\varphi_{\boldsymbol{k}'} W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} + \left[E_{\boldsymbol{k}'}^{3/2} \cos 3\varphi_{\boldsymbol{k}'} + E_{\boldsymbol{k}}^{3/2} \cos 3\varphi_{\boldsymbol{k}} \right] \frac{d}{dE_{\boldsymbol{k}}} W_{\boldsymbol{k}\boldsymbol{k}'}^{vf} \right\}.$$
(22)

Первое слагаемое, пропорциональное $W^{vf}_{\mathbf{kk}'}$, легко считается и дает:

$$G_1^{(2)} = -\frac{m^3 v_{dr}^3 \beta}{\hbar^6} \frac{1}{2} \sum_{\boldsymbol{k}} \frac{E_k^2}{\tau_0^{vf}} \frac{d^3 f_0}{dE_k^3}.$$
 (23a)

Прежде чем вычислить сумму, в которой имеется производная по матричному элементу столкновений $\frac{d}{dE_k}W^{vf}_{kk'}$, найдем чему равна производная по энергии обратного времени релаксации:

$$\frac{d}{dE_k} \frac{1}{\tau_n^{vf}} = \sum_{\mathbf{k}'} \frac{d}{dE_k} \delta(E_k - E'_k) W_{\mathbf{k}\mathbf{k}'}^{vf} (1 - \cos n\vartheta)$$
$$= \sum_{\mathbf{k}'} \left[\delta(E_k - E'_k) \frac{d}{dE_k} W_{\mathbf{k}\mathbf{k}'}^{vf} + W_{\mathbf{k}\mathbf{k}'}^{vf} \frac{d}{dE_k} \delta(E_k - E'_k) \right] (1 - \cos n\vartheta),$$

Интегрируя по частям второе слагаемое, получим:

$$\sum_{\mathbf{k}'} \delta(E_k - E'_k) (1 - \cos n\vartheta) \frac{d}{dE_k} W^{vf}_{\mathbf{k}\mathbf{k}'} = \frac{1}{2} \frac{d}{dE_k} \frac{1}{\tau_n^{vf}}.$$

Пользуясь этим соотношением и суммируя соответствующий вклад в генерацию по импульсам **k**, **k**', получим:

$$G_2^{(2)} = -\frac{m^3 v_{dr}^3 \beta}{3\hbar^3} \sum_{k} E_k^3 \frac{d^3 f_0}{dE_k^3} \frac{d}{dE_k} \left(\frac{1}{\tau_0^{vf}} - \frac{1}{2\tau_3^{vf}}\right)$$
(23b)

В результате полная скорость генерации $G = G^{(1)} + G^{(2)}$ выражается следующим образом

$$G = -\beta k_{dr}^3 \sum_{\boldsymbol{k}} \left\{ \frac{E_k^3}{3} f_0^{\prime\prime\prime} \left(\frac{1}{\tau_0^{vf}} - \frac{1}{2\tau_3^{vf}} \right)^\prime + \frac{E_k^2}{2} f_0^{\prime\prime\prime} \frac{1}{\tau_0^{vf}} + \left(\frac{E_k^3}{6} f_0^{\prime\prime\prime\prime} + f_0^\prime \right) \frac{1}{\tau_0^{vf}} \right\}$$
(24)

Нам осталось получить спин электронов из требования баланса между генерацией спина *G* в (24) и релаксацией спина за счет этого же междолинного рассеяния. Из кинетического уравнения получаем

$$S = \tau_0^{vf}(E_F)G. \tag{25}$$

Действительно, для электронов с достаточной степенью вырождения поляризация будет определяться узкой полоской энергий ~ k_BT вблизи энергии Ферми, где зависимостью времени междолинной релаксации τ_{vf}^0 от энергии можно пренебречь, так как $E_F \gg k_BT$.

Формулы (24) и (25) являются основными результатами нашей работы. В разделе V мы проанализируем этот результат, однако прежде мы обсудим возможные механизмы междолинного рассеяния электронов в монослоях дихалькогенидов переходных металлов.

С. Микроскопическая теория междолинного рассеяния

Вид матричных элементов междолинного рассеяния можно установить, пользуясь соображениями симметрии. Соответствующий симметрийный анализ для рассеяния на фононах был выполнен в работе [35]. Однако, фононы, связывающие долины, обладают заметной энергией (десятки мэВ), поэтому при низких температурах процессы рассеяния будут подавлены: поглощение фононов будет экспоненциально мало в силу малого числа возбужденных фононов, а испускание будет заблокировано либо заполнением конечных состояний (если энергия Ферми достаточно высока), либо просто отстутствием таких состояний. Междолинное рассеяние с переворотом спина возможно, тем не менее, на короткодействующих дефектах. Симметрийный анализ показывает, что они должны быть асимметричными по направлению z (например, находится вне плоскости слоя или же иметь асимметричными потенциал), т.к. в таком случае спин может "зацепиться" за него и изменить ориентацию. Действительно, в группе волнового вектора C_{3h} интересующие нас электронные состояния преобразуются по сопряженным спинорным представлениям $\Gamma_{12} = \Gamma_{11}^*$, см. рис. 2 и книгу [33]. $\Gamma_{12} \times \Gamma_{11}^* = \Gamma_4$, по этому неприводимому представлению преобразуется z-компонента вектора. В группе D_{3h} , описывающей симметрию монослоя, представления подгруппы C_{3h} Γ_{12} и Γ_{11} объединяются в представление Γ_9 и $\Gamma_9 \times \Gamma_9 = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$. Матричный элемент рассеяния на таких дефектах будет иметь вид

$$\mathcal{M}_{imp} = M_f^{imp} (\mathbf{k}' - \mathbf{k}) [\mathbf{\tau} \times (\mathbf{k}' + \mathbf{k})]_z, \qquad (26)$$

где, напомним, волновые вектора начального и конечного состояния отсчитываются от соответствующей долины и считаются малыми по сравнению с $K_+ - K_-, \tau$ – вектор из долинных матриц Паули, $M_f^{imp}(k'-k)$ некоторая функция переданного волнового вектора.

Соответствующий результат может быть получен, если учесть, что основное состояние в зоне проводимости c в каждой из долин при ненулевых k имеет "примесь" высоколежащей зоны проводимости c + 2. Тогда, из $k \cdot p$ -теории возмущений получаем, что (также это можно проверить из симметрийных соображений):

$$|\tau\rangle = -\frac{1}{\sqrt{2}} \left(\mathcal{X} + i\mathcal{Y}\right)|\uparrow\rangle + \xi \mathcal{Z}_{+} \left(k_{x} - ik_{y}\right)|\downarrow\rangle, \tag{27}$$

$$|-\tau\rangle = -\frac{1}{\sqrt{2}} \left(\mathcal{X} - i\mathcal{Y}\right) |\downarrow\rangle + \xi \mathcal{Z}_{-} \left(k_x + ik_y\right) |\uparrow\rangle, \tag{28}$$

где $\mathcal{X} \pm i\mathcal{Y}$ – блоховские функции в K_{\pm} долинах (при k = 0), \mathcal{Z}_{\pm} – блоховские функции в верхней зоне c + 2 [24, 34], ξ – малая константа подмешивания. Это, в итоге, дает:

$$W^{vf} = N_i |M_{imp}^f(\mathbf{k}' - \mathbf{k})|^2 (k^2 + k'^2 + 2\mathbf{k} \cdot \mathbf{k}').$$
(29)

В частности, из (29) получаем выражение для темпа междолинного рассеяния:

$$\frac{1}{\tau_{vf}^0} = \frac{2\pi}{\hbar} N_i \sum_{\mathbf{k}'} |\langle -\tau | \mathcal{M}_{imp} | \tau \rangle|^2 \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}) = \frac{2\pi}{\hbar} N_i \frac{m}{2\pi\hbar^2} 2k_F^2 \langle |M_f^{imp}|^2 (1 + \cos\vartheta) \rangle_{\vartheta}, \quad (30)$$

V. СПИНОВАЯ ПОЛЯРИЗАЦИЯ

Перейдем теперь к анализу результатов и обсудим спиновую (долинную) поляризацию электронов, возникающую в монослое под действием электрического поля. Из уравнения (14) и связи между \boldsymbol{k} и \boldsymbol{v} при $\beta \to 0$ имеем

$$\boldsymbol{v}_{dr} = \frac{e\boldsymbol{\mathcal{E}}\tau_1}{m}, \quad \boldsymbol{k}_{dr} = \frac{e\boldsymbol{\mathcal{E}}\tau_1}{\hbar}.$$
 (31)

Нам также потребуется связь между энергией Ферми, фермиевским волновым вектором и концентрацией электронов, которая записывается в следующем виде:

$$\frac{k_F^2}{2\pi} = N, \quad E_F = \frac{\hbar^2 k_F^2}{2m} = \frac{\pi \hbar^2 N}{m}.$$
(32)

Как и раньше, будем считать, что $k_B T \ll E_F$, и направим \mathcal{E} вдоль оси x, когда поляризация максимальна ($\cos \theta = 1$ в (6)).

Для начала рассмотрим простейший случай, предполагая, что τ_n^{vf} не зависит от энергии электрона. Из формулы (24) путем интегрирования по частям и пользуясь тем, что при низких температурах $f'_0 \approx -\delta(E - E_F)$, получим, что

$$G = \frac{m}{2\pi\hbar^2} \frac{\beta k_{dr}^3}{\tau_0^{vf}} \tag{33}$$

Тогда с учетом (32) и определения степени поляризации электронов (9) имеем

$$s = 2\frac{G\tau_0^{vf}}{N} = \frac{\beta k_{dr}^3}{E_F}.$$
(34)

Для реалистичной модели рассеяния на короткодействующих дефектах, обсуждавшейся в разделе IV C, можно воспользоваться полученными выражениями для W^{vf} , откуда можно получить итоговое выражение для спиновой поляризации в зависимости от электрического поля. Для этого посчитаем $1/\tau_n^{vf}$, предполагая, что $|M_f^{imp}|^2$ не зависит от переданного волнового вектора:

$$\frac{1}{\tau_n^{vf}} = \frac{2\pi}{\hbar} N_i \frac{m}{2\pi\hbar^2} 2k_F^2 \langle |M_f^{imp}|^2 (1+\cos\vartheta)(1-\cos n\vartheta) \rangle_{\vartheta} = \frac{2mN_i}{\hbar^3} k^2 \langle |M_f^{imp}|^2 (1+\cos\vartheta)(1-\cos n\vartheta) \rangle_{\vartheta} = \frac{4m^2N_i}{\hbar^5} E_k |M_f^{imp}|^2 \left(1-\frac{\delta_{n,1}}{2}\right) = \frac{\alpha_n}{\hbar} E_k,$$

где безразмерная константа $\alpha_n = \alpha_0 \equiv 4N_i m^2 \hbar^{-4} |M_f^{imp}|^2$ при $n \neq 1$ и $\alpha_1 = 2N_i m^2 \hbar^{-4} |M_f^{imp}|^2$. Отметим, что в выражении (24) для *G* отсутствует τ_1 . Поэтому разные вид констант α_n в зависимости от *n* не играет роли. Тогда

$$G = -\beta k_{dr}^3 \sum_{\boldsymbol{k}} f_0' \left\{ \left(\frac{1}{\tau_n^{vf}} \right)' E_{\boldsymbol{k}} + \left(\frac{1}{\tau_n^{vf}} \right) \right\} = -\frac{2\beta k_{dr}^3}{\hbar} \sum_{\boldsymbol{k}} \alpha_0 E_{\boldsymbol{k}} f_0' = \beta k_{dr}^3 \frac{2\alpha_0}{\hbar} \frac{m}{2\pi\hbar^2} E_F, \quad (35)$$

и спиновая поляризация равняется:

$$s = 2\frac{\beta k_{dr}^3}{E_f}.$$
(36)

Этот результат в два раза больше, чем (34) для случая, когда время рассеяния не зависит от энергии. В любом случае, по порядку величины для эффекта ориентации спина током в монослоях дихалькогенидов работает оценка (6). Ситуация аналогична тому, что известно для гиротропных двумерных систем, где гамильтониан содержит линейные по k слагаемые [10–14], но механизмы эффекта различны. Еще раз подчеркнем, что величина стационарной поляризации не зависит от скорости междолинных переходов: физически, это обусловлено тем, что и темп генерации $G \propto 1/\tau^{vf}$, и темп релаксации также $\propto 1/\tau^{vf}$. В результате чего, скорость междолинного рассеяния из ответа для стационарной поляризации выпадает. В экспериментах с временным разрешением темп междолинного рассеяния можно извлечь из скорости возникновения или релаксации поляризации при включении или после выключения поля.

VI. ЗАКЛЮЧЕНИЕ

В работе построена теория ориентации спиновых и долинных степеней свободы электронов в монослоях дихалькогенидов переходных металлов электрическим полем. Ключевая особенность таких систем отсутствие центра инверсии, но и гиротропии, что делает связь поля и спиновой поляризации в линейном по полю режиме невозможной.

Из симметрийных соображений была найдена связь компонент тока и спиновой поляризации, которая оказалась пропорциональна третьей степени тока, умноженной на косинус утроенного угла между током и кристаллографической осью x, осью – проходящей через два соседних эквивалентных атома кристаллической решетки.

Была построена микроскопическая теория эффекта в рамках кинетического уравнения с учетом как внутри- так и междолинных процессов рассеяния электронов. Выявлены два вклада в темп генерации, первый из которых связан с асимметрией распределения внутри долины, а второй – с проявлением анизотропии спектра в законе сохранения энергии. Проанализированы микроскопические процессы междолинного рассеяния на короткодействующих дефектах.

Из простой качественной оценки был найден коэффициент пропорциональности между третьей степенью тока и спиновой поляризацией с точностью до безразмерной постоянной. Микроскопическая теория показывает, что эта константа порядка 1 для актуальных процессов рассеяния. Фактически степень поляризации электронов определяется отношением кубических по волновому вектору долинно-зависимых членов в эффективном гамильтониане (взятых на дрейфовом волновом векторе) к характерной кинетической энергии электронов. Степень поляризации в стационарных условиях не зависит от времени междолинного рассеяния.

Одним из возможных дальнейших направлений развития этой работы мог быть анализ и микроскопическая теория этого эффекта в других негиротропных и нецентросимметричных кристаллах.

- [1] F. Meier and B. Zakharchenya, eds., Optical orientation (Horth-Holland, Amsterdam, 1984).
- [2] M. I. Dyakonov, ed., Spin physics in semiconductors, 2nd ed., Springer Series in Solid-State Sciences 157 (Springer International Publishing, 2017).
- [3] E. Ivchenko and G. Pikus, New photogalvanic effect in gyrotropic crystals, JETP Lett. 27, 640 (1978).
- [4] L. E. Vorob'ev, E. L. Ivchenko, G. E. Pikus, I. I. Farbshtein, V. A. Shalygin, and A. V. Shturbin, Optical activity in tellurium induced by a current, JETP Lett. 29, 441 (1979).
- [5] A. Y. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, Currentinduced spin polarization at a single heterojunction, Applied Physics Letters 85, 5929 (2004).
- [6] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Coherent spin manupulation without magnetic fields in strained semiconductors, Nature 427, 50 (2004).
- [7] C. L. Yang, H. T. He, L. Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas, Phys. Rev. Lett. 96, 186605 (2006).
- [8] S. Ganichev, S. Danilov, P. Schneider, V. Bel'kov, L. Golub, W. Wegscheider, D. Weiss, and W. Prettl, Electric current-induced spin orientation in quantum well structures, Journal of Magnetism and Magnetic Materials 300, 127 (2006).
- [9] A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Rev. Mod. Phys. 91, 035004 (2019).
- [10] A. G. Aronov and Y. B. Lyanda-Geller, Nuclear electric resonance and orientation of carrier spins by an electric field, JETP Lett. 50, 431 (1989).
- [11] V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in twodimensional asymmetric electron systems, Solid State Commun. 73, 233 (1990).
- [12] A. Aronov, Y. B. Lyanda-Geller, and G. Pikus, Spin polarization of electrons by an electric current, JETP 73, 537 (1991).
- [13] E. L. Ivchenko, Y. B. Lyanda-Geller, and G. E. Pikus, Current of thermalized spin-oriented

photocarriers, JETP **71**, 550 (1990).

- [14] L. E. Golub and E. L. Ivchenko, Spin orientation by electric current in (110) quantum wells, Phys. Rev. B 84, 115303 (2011).
- [15] L. E. Golub and E. L. Ivchenko, Spin dynamics in semiconductors in the streaming regime, in Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, edited by D. P. Adorno and S. Pokutnyi (Nova Science Publishers, 2014) pp. 93–104.
- [16] D. S. Smirnov and L. E. Golub, Electrical spin orientation, spin-galvanic, and spin-hall effects in disordered two-dimensional systems, Phys. Rev. Lett. 118, 116801 (2017).
- [17] C. Xiao, H. Liu, W. Wu, H. Wang, Q. Niu, and S. A. Yang, Intrinsic nonlinear electric spin generation in centrosymmetric magnets, Phys. Rev. Lett. 129, 086602 (2022).
- [18] C. Xiao, W. Wu, H. Wang, Y.-X. Huang, X. Feng, H. Liu, G.-Y. Guo, Q. Niu, and S. A. Yang, Time-reversal-even nonlinear current induced spin polarization, Phys. Rev. Lett. 130, 166302 (2023).
- [19] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS₂: A new direct-gap semiconductor, Phys. Rev. Lett. **105**, 136805 (2010).
- [20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS₂, Nano Letters **10**, 1271 (2010).
- [21] A. V. Kolobov and J. Tominaga, *Two-Dimensional Transition-Metal Dichalcogenides* (Springer International Publishing, 2016).
- [22] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS₂ and other group-VI dichalcogenides, Phys. Rev. Lett. **108**, 196802 (2012).
- [23] K. Kośmider, J. W. González, and J. Fernández-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Phys. Rev. B 88, 245436 (2013).
- [24] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal'ko,
 k · *p* theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials
 2, 022001 (2015).
- [25] P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek, X. Marie, and S. A. Crooker, Gate-controlled spin-valley locking of resident carriers in WSe₂ monolayers, Phys. Rev. Lett. **119**, 137401 (2017).

- [26] Y. Zhang, C. Xiao, D. Ovchinnikov, J. Zhu, X. Wang, T. Taniguchi, K. Watanabe, J. Yan, W. Yao, and X. Xu, Every-other-layer dipolar excitons in a spin-valley locked superlattice, Nature Nanotechnology 10.1038/s41565-023-01350-1 (2023).
- [27] L. Tao, Perspectives of spin-valley locking devices, Chinese Physics B (2023).
- [28] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS₂ by optical helicity, Nat Nano 7, 494 (2012).
- [29] G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, Valley polarization and intervalley scattering in monolayer MoS₂, Applied Physics Letters 101, 221907 (2012).
- [30] G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, Robust optical emission polarization in MoS₂ monolayers through selective valley excitation, Phys. Rev. B 86, 081301 (2012).
- [31] M. M. Glazov and E. L. Ivchenko, Valley orientation of electrons and excitons in atomically thin transition metal dichalcogenide monolayers (brief review), JETP Letters **113**, 7 (2021).
- [32] Y. Τ. Suzuki, J. Τ. J. Zhang, Oka, R. Ye, and Υ. Iwasa, Electrically switchable chiral light-emitting transistor, Science 344, 725(2014),http://www.sciencemag.org/content/344/6185/725.full.pdf.
- [33] G. F. Koster, R. G. Wheeler, J. O. Dimmock, and H. Statz, Properties of the thirty-two point groups (MIT Press, 1963).
- [34] M. V. Durnev and M. M. Glazov, Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides, Physics-Uspekhi 61, 825 (2018).
- [35] Y. Song and H. Dery, Transport theory of monolayer transition-metal dichalcogenides through symmetry, Phys. Rev. Lett. 111, 026601 (2013).