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Chapter 1

Introduction

1.1 Topological insulators

Topological and geometric ideas often attracted the attention of physicists. Recently, the interest to

topology was rekindled in the context of condensed matter physics by the discovery of topological

insulators and topological superconductors [1], [2]. Topological insulators are novel materials and

structures that insulate electric current in the bulk and, at the same time, host exotic conductive

modes on their boundaries. The emergence of these modes results from the non-trivial topology

of the electronic band structure in the bulk and is associated with strong spin-orbit coupling in the

material. Boundary electronic states in topological insulators possess linear energy spectrum. The

direction of movement of electrons in these states uniquely defines the direction of their spin. The

latter feature is often referred to as spin-momentum locking.

Topological insulatorsmight be realized in structures of different dimensionality. Two-dimensional

topological insulators (2D TIs) and gapless edge states in them are in the main focus of the thesis.

Still, it is worthwhile to briefly discuss three-dimensional topological insulators (3D TIs).

1.1.1 Three-dimensional topological insulators

Historically, the first materials found to be 3D TIs are Bi1−xSbx compounds. The existence of

topological surface states in Bi1−xSbx was first predicted theoretically [3] and later confirmed ex-

perimentally [4]. Soon after that, a large number of other 3D TIs was discovered [5].

Surface states of a 3D TI have a Dirac-cone energy spectrum that spans the band gap of the

bulk material. Due to spin-momentum locking of the surface states, their spin winds around the

Dirac cone in the momentum space as depicted in Figure 1.1.

TlBiSe2 is another example of a 3D TI. Conic energy dispersion of the surface states in this
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Figure 1.1: Schematic depiction of the Dirac-
cone energy spectrum of the surface states in a
three-dimensional topological insulator. The spin
of the surface states wraps around the cone. The
figure is adapted from [2].

topological insulator was measured by the means of angle-resolved photoemission spectroscopy

[6]. We present the result of this measurement in Figure 1.2. Large bulk band gap of 0.35 eV

makes TlBiSe2 a promising material to probe topological properties at the room temperature.

Figure 1.2: Result of angle-resolved photoemission spec-
troscopy measurement of surface state energy spectrum
in TlBiSe2 three-dimensional topological insulator. Dirac
cone at the Γ-point can be easily recognized. Adapted from
[6].

We note that because of time-reversal symmetry surface states come in pairs with the same

energy but with the opposite momentums and spins. For this reason, conic point in the spectrum is

protected against perturbations respecting time-reversal symmetry. If the time-reversal symmetry

in the 3D TI is broken, then the gap in the spectrum might appear.

1.1.2 Two-dimensional topological insulators

In contrast to 3D TIs that host two-dimensional surface states, the main feature of 2D TIs is the

presence of a pair of one-dimensional states localized near the edge of the structure. These edge

states are counter-propagating and spin-momentum locked: electrons moving from left to right

along the edge and electrons moving from right to left have their spins pointing in the opposite

directions. For this reason, edge states in 2D TIs are often called helical. An important feature of

2D TIs is that the right moving edge states are linked via time-reversal symmetry to the left moving

edge states. The spectrum of the edge electrons is linear and has Dirac point at k = 0. Level

crossing at the Dirac point is stable under perturbations respecting reversal symmetry. Typical

spectrum of the edge states in a 2D TI is sketched in Figure 1.3.

7



conductance band

valence band

Figure 1.3: Schematic depiction of the energy
spectrum of a 2D TI. Blue and orange parts of
the spectrum correspond to conductance and va-
lence bands in the bulk of the structure. Crossing
purple lines correspond to one-dimensional edge
states. Arrows denote the direction of spin of the
edge states.

Time reversal symmetry protects the edge states from elastic backscattering on a potential dis-

order. In principle, this leads to the ideal ballistic charge conductance G0 = e2/h along the helical

edge (2e2/h for two parallel ideal edges). Moreover, the presence of edge states in a 2D TI gives

rise to quantum spin Hall effect [7], [8].

Peculiar properties of the helical edge states and their insensitivity to potential disordermake 2D

TIs great candidates for applications in different innovative fields of technology: from spintronics

to quantum computing.

The first structure predicted to be a 2D TI is a narrow (001) CdTe/HgTe/CdTe quantum-well1

with inverted order of bulk bands [9]. The existence of spin-momentum locked edge states in

such heterostructures was demonstrated experimentally [10, 11, 12, 13, 14, 15, 16], confirming the

theoretical predictions. Later, a multitude of other structures was found to be 2D TIs. Among them

are InAs/GaSb quantum wells, WTe2 monolayers, and Bi bilayers.

However, although ideal quantized ballistic conductance is observed for short samples with

length∼ 1 µm, conductance is much smaller for long edges (see Figure 1.4 for a detailed example).

This fact hints that the edge electrons move in a diffusive fashion on large scales. Moreover, the

conductance saturates to a constant value at small temperatures.

The aforementioned experimental results required a theoretical explanation. In the non-interacting

case, perturbations that respect time-reversal symmetry of the helical edge cannot induce backscat-

tering. For instance, as it was mentioned, elastic backscattering from potential disorder is prohib-

ited. However, the presence of inelastic processes [17] might drive conductance down from its

ideal value. Moreover, localized magnetic moments near the helical edge might lead to backscat-

tering of electrons [18, 19, 20, 21]. Electron-electron interactions might be also responsible for

conductance reduction giving rise to many-particle backscattering processes [22] or to spontaneous

breaking of time-reversal symmetry by the means of edge reconstruction [23]. The combined ef-

fect of electron-electron interactions and localized magnetic moments can further complicate the
1Generally speaking, to realize a two-dimensional topological insulator, Cd1−xHgxTe/HgTe/Cd1−xHgxTe quan-

tum wells with different orientations of growth might be used. In order to simplify the discussion and to shorten the
text, we focus on the case of (001) quantum well with x = 0.
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Figure 1.4: Resistance of Hall bar devices based on HgTe quantum wells as a function of gate
voltage. (a) Devices (I), (II) have long edges (∼ 10 µm), devices (III), (IV) have short edges (∼ 1
µm). Adapted from [10]. (b) Device with a long edge (≈ 30 µm). Different curves correspond to
T varying from 62 K to 1.5 K (bottom to top). Adapted from [15].

(a) (b)

picture of the helical edge transport [24, 25, 26, 27, 28].

For 2DTIs based onCdTe/HgTe/CdTe and InAs/GaSb quantumwells, many aspects of exper-

imental data might be explained qualitatively by suggesting that a large amount of charge puddles

is formed near the helical edge [18]. Charge puddles might appear because the aforementioned

semiconductor heterostructures have a narrow band gap in the bulk and, therefore, are very sensi-

tive to fluctuations of the chemical potential induced by regular impurities. Whenever the chemical

potential is shifted outside the gap, a small metallic region - a charge puddle - is generated.

Charge puddles located near the edge interact with the helical electrons differently depending

on the parity of the number of electrons trapped inside the puddle. If this number is even, then the

puddle serves as a source of inelastic scattering for the electrons. Contribution to the conductance

from such puddles has a strong power-law temperature dependence, dying out quickly at small

temperatures [17]. On the contrary, if the number of electrons in the puddle is odd, the situation

is altered dramatically. In that case, the ground state of the puddle is doubly degenerate so that it

effectively acts as a spin-1/2 magnetic impurity coupled to the helical electrons almost isotropically

[18]. Puddles of the latter type account for the correction to conductance that weakly depends on

temperature. Therefore, charge puddles with the odd number of electrons determine the transport

of semiconductor heterostructures at small temperatures.

However, not only charge puddles might induce significant backscattering. Usual magnetic

impurities might also be responsible for the suppression of ballistic conductance [19, 20, 21]. A

typical example of such magnetic impurities are Mn2+ atoms with S = 5/2 built into the lattice of

a CdTe/HgTe/CdTe quantum well.

One of the ways to distinguish between possible sources of electron backscattering in a 2D TI
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is to investigate the noise of the current flowing through the edge. In a recent work [29], authors

investigated the finite-frequency current noise induced by a single magnetic moment localized near

the helical edge. Keeping in mind the charge puddle, they assumed that the magnetic moment has

S = 1/2 and is coupled to the helical edge electrons in a weakly anisotropic way. Authors deter-

mined that the noise strongly depends on the frequency at scales much smaller than the temperature.

Interestingly, they realized that electron backscattering might happen in pairs under certain condi-

tions, i.e. the backscattering process might super-Poissonian.

1.2 Statement of the problem

In the present thesis, we consider a single magnetic impurity2 with spin S weakly coupled to the

helical edge of a 2D TI (see Figure 1.5 for clarification). We assume that voltage V is applied

to the leads attached to the edge. In that case, the current flowing along the helical edge can be

decomposed into two parts: positive ideal ballistic current I0 and negative backscattering current

∆I . The latter part of the total current is studied in the manuscript.

2D topological insulatorlead lead

Figure 1.5: Sketch of the considered system. Purple arrows denote the helical edge states. Red
arrow denotes the magnetic impurity. Voltage V is applied to the leads.

On the one hand, contrary to the work [29], we do not discuss finite frequency properties of

the system, limiting ourselves to zero-frequencies. On the other hand, we do not assume that S =

1/2 and that the coupling between the impurity and electrons is weakly anisotropic. Moreover,

whenever possible, we calculate higher cumulants of the backscattering current ∆I . In certain

limits, we determine the full counting statistics of the backscattering current.
2Throughout the thesis we will mostly discuss magnetic impurities. However, our theory is rather general and might

be applied to different types of magnetic moments localized near the edge of a 2D TI.
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1.3 Outline of the thesis

In Chapter 2 we formulate the theoretical model of the considered system that is utilized throughout

the thesis. We review Bernevig-Hughes-Zhang model of a 2D TI and discuss how it can be used

to describe helical edge states. We present the Kondo-type Hamiltonian of the interaction between

the edge states and the magnetic impurity.

In Chapter 3 we outline the general strategy for the calculation of cumulants of the backscat-

tering current. The approach is based on the generalized master equation for the density matrix of

the magnetic impurity. We discuss renormalizations that appear in the problem. The results of this

chapter are partially published in [20].

In Chapter 4 we evaluate the average backscattering current for arbitrary spin S of the magnetic

impurity. For S = 1/2 we present the expression for the variance of the number of backscattered

electrons that is valid at arbitrary voltage. Moreover, we find the full counting statistics of the

backscattering current in the large voltage regime for S = 1/2.

In Chapter 5 we discuss zero-frequency noise for arbitrary S at large voltages. We calculate the

Fano factor of the backscattering current for different parameters of the electron-impurity coupling.
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Chapter 2

Theoretical model

In this chapter, we outline the theoretical framework that forms the basis for the thesis. We for-

mulate the general theoretical model that describes the behavior of electrons occupying the helical

edge of a 2D TI and their interaction with a magnetic impurity. We begin by explaining the way

in which the helical edge states appear in the clean case, i.e. when no magnetic impurities are

present in the 2D TI. We briefly remind the reader of the Bernevig-Hughes-Zhang model [9] that is

commonly used to describe the low-energy behavior of electrons in 2D TIs. Although in its initial

formulation the model describes electrons in TIs based on (001) CdTe/HgTe/CdTe quantumwells,

its general form happens to be universal. Therefore, after the proper redefinition of parameters, it

can be utilized to describe edge states in different topological insulators. For this reason, without

restriction of generality, in the thesis, we focus on the case of CdTe/HgTe/CdTe quantum well.

2.1 Bernevig-Hughes-Zhang model

Bernevig-Hughes-Zhang (BHZ)model describes the low-energy behaviour of non-interacting elec-

trons confined within the 2D (001) CdTe/HgTe/CdTe quantum well. The single particle version

of the corresponding Hamiltonian reads

HBHZ(k) = −Dk2I4×4 +

h(k) 0

0 h⋆(−k)

 , h(k) =

M −Bk2 Ak+

Ak− −M +Bk2

 , (2.1)

where I4×4 is a 4×4 unit matrix, k = (kx, ky), k2 = k2x+k
2
y , and k± = kx± iky. Hamiltonian (2.1)

operates in the basis consisting of four states spatially quantized in z-direction, i.e. in the direction

perpendicular to the plane of the 2D TI. These states are commonly denoted as |E1,+⟩, |H1,+⟩,

|E1,−⟩, |H1,−⟩. They can be characterized by projection mz of the angular momentum in z-
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direction. Electronic states |E1,±⟩ havemz = ±1/2 respectively while heavy hole states |H1,±⟩

have mz = ±3/2. This implies that Hamiltonian (2.1) has strong inbuilt spin-orbit coupling. For

instance, states with different mz are mixed by finite k due to Ak± terms. Details of the ”inner”

structure of the basis states as well as the corresponding envelope functions can be found in [9, 30].

It is worthwhile to mention that BHZ model respects time-reversal symmetry, which is indicated

by the connection of blocks of BHZ Hamiltonian. Moreover, BHZ Hamiltonian is rotationally

invariant, i.e. it preserves its form under the rotation of axes x and y. The energy spectrum of the

BHZ model is given by

E(k) = −Dk2 ±
√

(M −Bk2)2 + A2k2. (2.2)

Energy bands have double spin degeneracy. Typically,B < 0,D < 0, and |D| < |B| so that there is

a gap of 2|M | in the spectrum. Therefore, the considered system is a 2D band insulator in the bulk.

AtM > 0 the conduction band primarily consists of states |E1,±⟩, while the valence band consists

of states |H1,±⟩. IfM is changed to be negative, the band inversion occurs and |H1,±⟩ states float

above |E1,±⟩ states. As it will be discussed in the next section, band inversion corresponds to a

topological phase transition accompanied with the appearance of two counter-propagating gapless

spin-momentum locked edge states.

Physically, gap parameter M can be tuned by varying the thickness d of HgTe layer of the

quantum well. In the case d < 6.3 nm the parameter M > 0, while for d > 6.3 nm M < 0.

Realistic values of parameters of BHZ Hamiltonian are summarized in the Table 2.1. The energy

spectrum of 2D bulk electrons in the CdTe/HgTe/CdTe quantum well with d = 7 nm is depicted

in the Figure 2.1. As it was mentioned, the spectrum of BHZ model is rotationally invariant. For

this reason, we present here only a single cut of the full two-dimensional spectrum. We note that

the conduction band has a stronger dispersion than the valence band.

Finally, we underline that BHZ model is a two-band model and it is applicable only when all

the other bands can be treated as a perturbation. This is typically the case for CdTe/HgTe/CdTe

quantum wells with the width of HgTe layer ≈ 6.3 nm.

d, nm A, eV · nm B, eV · nm2 D, eV · nm2 M , eV
5.5 0.39 -0.48 -0.31 0.009
7.0 0.37 -0.69 -0.51 -0.010

Table 2.1: Realistic parameters of BHZ Hamiltonian (2.1). Parameters for two different quantum
well thicknesses d are presented. Values are adapted from [1].
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2.2 Topological order and edge states

In this section we discuss the topological nature of band inversion in BHZmodel and outline how it

results in the appearance of the gapless helical edge states. The first step in revealing the topology

behind BHZ Hamiltonian is to introduce the concept of Chern number.

2.2.1 Chern number

In order to define Chern number we recall that Hamiltonian 2.1 consists of two blocks connected

via time-reversal symmetry. Symmetry relation between the blocks allows us to consider only the

upper-left block. Part of this block that has a non-trivial spin structure is given by 2× 2 hermitian

matrix h(k). It can be parametrized as

h(k) = σ · d(k), d(k) = (Akx,−Aky,M −Bk2), σ = (σx, σy, σz). (2.3)

Here σx, σy, and σz are Pauli matrices acting in |E1,+⟩, |H1,+⟩ subspace. We introduce the

normalized version of the vector d(k): n(k) = d(k)/|d(k)|. Non-trivial topology manifests itself

in a finite value of the number

W =
1

4π

∫
dkxdky n(k) ·

[
∂n(k)

∂kx
× ∂n(k)

∂ky

]
. (2.4)

Integer quantityW is called Chern number, it describes the number of times the vectorn(k)wraps

around the three-dimensional sphere. In other words, Chern number is the winding number for the

vector field n(k). We note that W = 0 whenever M and B have a different sign. This happens

because in that case the sign of nz(k) ∝ M − Bk2 is either always negative or always positive.

We assume that B < 0 which means that the winding number nullifies forM > 0. Therefore, the

direct order of energy bands of the quantumwell corresponds to the trivial topology of the insulator.

However, for M < 0 the sign of nz changes at k =
√
M/B, giving rise to the winding number
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W = 1. This implies that band inversion puts the insulator into a topologically non-trivial state.

We will discuss the consequences of this non-trivial topology in the next subsection.

2.2.2 Edge states in Bernevig-Hughes-Zhang model

According to the general statement, known as bulk-boundary correspondence, gapless edge states

always appear on the boundary between two media with different winding numbers [1], [2]. For

systems characterized by 2×2Hamiltonians of the form h(k), the number of edge states is given by

the difference of winding numbers. In the case of BHZmodel, the number of edgemodes is doubled

because the total Hamiltonian consists of two blocks linked via time-reversal symmetry. Therefore,

a pair of edge states connected by time-reversal symmetry appear whenever a topologically non-

trivial BHZ-type insulator (W = 1) is put in contact with a trivial insulator or vacuum (W = 0).

We proceed by analytically investigating the structure of the edge states in BHZ model. For

the sake of simplicity, we assume that a semi-plane of topologically non-trivial BHZ insulator is

restricted by vacuumwhich is modeled by zero boundary conditions for the electron wave function.

We assume that vacuum spans the whole of x > 0 semi-plane. In that case one needs to solve the

following Schrödinger equation:

H ij
BHZ(−i∂x, ky)ψj(x, ky) = Eψi(x, ky), ψi(x = 0, ky) = 0, i = 1, ..., 4. (2.5)

We note that due to the block structure of Hamiltonian (2.1) all solutions can be associated either

with the upper block or with the lower block. For any solution ψ↑
i (x, ky) associated with the upper

block ψ↑
i (x, ky) ≡ 0, i = 3, 4, while for any solution ψ↓

i (x, ky) associated with the lower block

ψ↓
i (x, ky) ≡ 0, i = 1, 2. Due to the time-reversal symmetry, solutions in the upper block that have

energy E and wave vector ky generate solutions with the same energy E and wave vector −ky in

the lower block according to the following rule: ψ↓
i (x,−ky) = (ψ↑

i−2(x, ky))
⋆, i = 3, 4. Therefore,

to gather the full information about the eigenstates of the system it is enough to work with the upper

block of BHZ Hamiltonian. Schrödinger equation restricted to the upper block readsM − (B +D)(−∂2x + k2y) A(−i∂x + iky)

A(−i∂x − iky) −M + (B −D)(−∂2x + k2y)

ψ↑
1

ψ↑
2

 = E

ψ↑
1

ψ↑
2

 , (2.6)

where ψ↑
1/2(x = 0) = 0. Our goal is to find the solution of equation (2.6) localized near the edge of

the system and to show that it is indeed present whenM and B are of the same sign. In principle,

it is possible to cope with this task for any values of parameters of the system. However, for
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illustrative purposes and in order to avoid bulky derivations we restrict ourselves to the electron-

hole symmetric case D = 0. We start with considering a zero wave vector ky = 0. Then the

solution to (2.6) is given by a superposition of exponents eλx, where λ satisfies the following secular

equation:

B2λ4 − (A2 − 2BM)λ2 +M2 − E2 = 0. (2.7)

As long as we are interested in localized solutions, we assume that two roots of equation (2.7) have

a positive real part and two roots have a negative real part. Roots with a negative real part are

non-physical as they correspond to solutions exponentially growing into the bulk. Therefore, we

stick to two roots with a positive real part and call them λ− and λ+. In that case it is trivial that

ψ↑
1/2 = C1/2(e

λ−x − eλ+x) to satisfy the boundary conditions. On the other hand (2.6) implies

(M − E)

∫ 0

−∞
dxψ↑

1(x) +B∂xψ
↑
1(0) = 0, (M + E)

∫ 0

−∞
dxψ↑

2(x) +B∂xψ
↑
2(0) = 0. (2.8)

Combining these equations, we find that Bλ−λ+ =M ± E so that E = 0. Moreover, we see that

two roots of (2.7) with a positive real part exist only whenM and B have the same sign, i.e. when

the topological winding numberW equals to unity. In that case we find (assuming A > 0)

λ± =
A

2|B|

(
1±

√
1− 4BM

A2

)
(2.9)

and up to normalization the solution at ky = 0 is given by

ψ↑
1

ψ↑
2

 = θ(−x)(eλ−x − eλ+x)

1

i

 , ψ↑
3/4 = 0. (2.10)

In the realistic case 4BM ≪ A2 the length scale λ+ ≈ A/|B| and λ− ≈ |M |/A. This implies

λ− ≪ λ+ so that the penetration depth of the edge state is 1/λ−. For the parameters of BHZ model

presented in Table 2.1 we find 1/λ+ ∼ 1 nm and 1/λ− ∼ 40 nm. We see that 1/λ+ is of the atomic

scale. Therefore, for such choice of parameters, the analysis for |x| . 1/λ+ is, strictly speaking,

invalid. However, on the large scales, we can neglect the quickly decaying exponent and safely use

the obtained result. Treating finite ky as a perturbation, we find that to the lowest order in ky the

energy dispersion of the discussed state is

E↑(ky) = −Aky. (2.11)
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The time reversed solution of equation (2.6) isψ↓
3

ψ↓
4

 = θ(−x)(eλ−x − eλ+x)

 1

−i

 , ψ↓
1/2 = 0. (2.12)

Perturbative energy dispersion for this solution is

E↓(ky) = Aky. (2.13)

It is possible to verify that the dispersion relations (2.11) and (2.13) are exact for BHZ model with

D = 0 [31]. Finite D alters the dispersion relations as

E↑/↓(ky) = −D
B
M ∓ A

√
B2 −D2

B2
ky (2.14)

Finishing this section, we mention that it is possible to describe the edge states of a 2D TI with the

effective 2× 2 Hamiltonian operating in the edge state subspace:

H0(ky) = −vkyσz. (2.15)

In this expression we omitted possible constant energy shifts, the velocity v is determined by (2.14),

and σz is a Pauli matrix acting in the edge state subspace. We note that although it is temping to

think that σ/2 corresponds to the spin of the edge states, this is, strictly speaking, not the case.

Indeed, according to (2.10) and (2.12) each edge state is a superposition of states withmz = ±1/2

andmz = ±3/2. Therefore, the edge states are not spin polarized. Still, the edge electrons moving

in one direction have their average angular momentum pointing up, while electrons moving in the

other direction have their average angular momentum pointing down. For this reason we will often

refer to s = σ/2 as the spin of the edge electrons, keeping in mind the subtleties behind such

notation.

Obtained edge states are robust to perturbations preserving the time-reversal symmetry of the

electron system. As a consequence, they are protected from elastic backscattering on a potential

disorder. However, magnetic impurities can induce electron backscattering and perturb the ideal

conductivity of the helical edge of a 2D TI.
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2.3 Magnetic impurity in Bernevig-Hughes-Zhang model

In this section, we discuss the way in which a magnetic impurity can be treated within two-band

BHZ approach discussed previously. Physical configuration we keep in mind is a sole Mn2+ atom

with spin S = 5/2 built into the lattice of CdTe/HgTe/CdTe quantum well. The impurity atom

might be located inside HgTe layer as well as in one of CdTe layers. We assume that the impurity is

point-like for all relevant applications. However, for the validity of the subsequent derivations, the

impurity still has to be large on the atomic scales. Due to the large dielectric constants and small

effective masses of 3D HgTe and CdTe, this is the case. The Hamiltonian of the electron-impurity

exchange interaction in the bulk of the 2D TI can be written as [19, 32]

H2D
e−i = δ(r − r0)


J1Sz −iJ0S+ JmS− 0

iJ0S− J2Sz 0 0

JmS+ 0 −J1Sz −iJ0S−

0 0 iJ0S+ −J2Sz

 , (2.16)

where r = (x, y) and r0 = (x0, y0) denotes the position of the impurity. Coupling constants J1, J2,

J0, and Jm can be expressed via 3D bulk electron-impurity coupling constants of HgTe and CdTe

and via the z-dependant envelope functions of states |E1,±⟩ and |H1,±⟩ [19, 32].

We note that the Hamiltonian (2.16) preserves the total mz projection of the whole system

(electron and impurity) as well as the overall time-reversal symmetry. Despite this, the magnetic

impurity breaks the time-reversal symmetry of the helical edge considered as a separate system.

In order to obtain the effective Hamiltonian of the interaction between the edge states and the

magnetic impurity we project (2.16) onto the edge states subspace. This results in the following

Hamiltonian [19, 20]:

He−i = δ(y − y0)
1

ξ

∣∣eλ−x0 − eλ+x0
∣∣2JijSiσj. (2.17)

Here ξ is the normalization constant defined by the condition ξ = 2
∫ 0

−∞ dx
∣∣eλ−x − eλ+x

∣∣2 and the
coupling matrix is given by

Jij =


Jm 0 2J0

0 Jm 0

0 0 Jz

 , Jz = J1 + J2. (2.18)

As a next step, in order to clarify the physics of the electron-impurity interaction Hamiltonian
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(2.17), we consider scattering of a single helical edge electron with a given σz on the magnetic

impurity. In this regard, it is convenient to introduce the effective spinM of the electron-impurity

system, which is given by sum of the impurity spin S and s = σ/2 of the electron.

Hamiltonian (2.17) can be split into several contributions. The first contribution is ∝ JzSzsz.

It is incapable of flipping the electron spin and the spin of the magnetic impurity and is, therefore,

of little interest. The second contribution is ∝ Jm(S−s+ + S+s−), where s± = sx ± isy and

S± = Sx ± iSy. It is responsible for processes in which the electron flies towards the impurity,

both impurity and electron flip their spins, and the electron flies back. Such process is schematically

depicted in Figure 2.2 (a). As a result, totalMz = Sz+sz is conserved. Albeit the discussed angular-

momentum-conserving processes can backscatter single electrons, in the following chapters it will

be shown that they cannot induce a persistent backscattering current ∆I . Finally, in Hamiltonian

(2.17) there is a contribution ∝ J0(S+ + S−)sz that is responsible for processes in which the spin

of the electron is not flipped but the impurity spin is flipped (see Figure 2.2 (b) for clarification).

These processes do not preserve Mz and, combined together with S−s+ + S+s− processes, they

induce the backscattering current.

At the first glance, the presence of terms that do not conserve z-projection of the angular mo-

mentum in Hamiltonian (2.17) might seem somewhat unexpected. However, they are completely

justified physically because:

• The system in question has strong spin-orbit coupling.

• The system is not rotationally invariant.

• The edge state with the given sz = ±1/2 actually corresponds to the superposition of states

with the projection of the angular momentum ±3/2 and ±1/2.

Finishing this section, we introduce the dimensionless coupling matrix J :

He−i =
1

ν
δ(y − y0)JijSisj, Jij =

2ν

ξ

∣∣eλ−x0 − eλ+x0
∣∣2Jij, sj = σj/2. (2.19)

Here ν = 1/2πv is the density of the edge states (per spin projection). Through the thesis we will

assume that the dimensionless coupling constants Jij are small, i.e. |Jij| ≪ 1. This will allow for

the perturbative treatment of the problem.
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(a) (b)

Figure 2.2: Different scattering processes of the helical edge electron (purple) on the magnetic
impurity with S = 1/2 (red). Pale arrows denote the initial configuration while bright colors
denote the final configuration. (a) Process induced by the Jm term, total Mz is conserved. (b)
Process induced by J0 term in the Hamiltonian, totalMz changes by unity.

2.4 Final formulation of the model

2.4.1 Inversion asymmetry of the quantum well

Before formulating the final version of the model used throughout the thesis, we discuss how inver-

sion asymmetry of the quantumwell may alter the picture of the edge states described in section 2.2.

In the previous considerations, effects of the inversion asymmetry were neglected. However, for

realistic CdTe/HgTe/CdTe quantum wells, inversion asymmetry might be of a great importance.

We follow articles [32, 33, 34] in the discussion.

The overall inversion asymmetry of a CdTe/HgTe/CdTe quantum well comes from two main

sources. First of all, both HgTe and CdTe have zinc blende structure and belong to tetrahedron sym-

metry group Td which lacks inversion symmetry. Secondly, the presence of CdTe/HgTe interfaces

further breaks the inversion symmetry of the system with the respect to the middle of the quantum

well. Indeed, each interface has a corrugated atomic structure and there is a relative rotation of π/2

between the corrugations of the different interfaces. Results of [33] based on atomistic numerical

calculations indicate that the interface inversion asymmetry is much more important than the bulk

inversion asymmetry for narrow quantum wells with d ≈ dc = 6.3 nm. Therefore, in the present

discussion, we mainly keep in mind the interface mechanism of the inversion symmetry breaking.

In terms of BHZ Hamiltonian, the presence of interface inversion asymmetry results in the

appearance of the off-diagonal terms:

HBHZ +HIIA = −Dk2I4×4 +

 h(k) iσyγ

−iσyγ⋆ h⋆(−k)

 . (2.20)

Parameter |γ| defines the characteristic energy scale of interface inversion asymmetry. According

to the atomistic calculations [33], |γ = 5 − 10| meV for narrow CdTe/HgTe/CdTe quantum

wells. Notice that finite value of γ breaks the rotational symmetry of BHZ Hamiltonian: after the
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rotation of coordinate axes by angle θ in (x, y) plane γ → γe2iθ. Nevertheless, rotations by π still

preserve the form of the Hamiltonian. This is consistent with the picture of corrugated interfaces.

Moreover, the low-energy spectrum of the asymmetric quantumwell remains rotationally invariant.

γ manifests itself in breaking the spin degeneracy at k ̸= 0:

E(k) = −Dk2 ±
√

(A|k| ± |γ|)2 + (M −Bk2)2. (2.21)

Splitting of the electronic spectrum of the quantum well was recently experimentally detected [35].

Spectrum for the quantum well with d = 7 nm (see Table 2.1) and |γ| = 5 meV is depicted in

Figure 2.3.

Inversion asymmetry does not break time-reversal symmetry, i.e. HIIA term in the Hamiltonian

(2.20) commutes with the time-reversal symmetry operator T . For this reason, even large γ cannot

destroy the edge states or open the gap in their spectrum when M and B are of the same sign.

However, finite γ alters the energy dispersion of the edge states by renormalizing the velocity v in

(2.15). In the electron-hole symmetric case D = 0 the dispersion relation is given by [34]

E↑/↓(ky) = ∓A |M |√
M2 + |γ|2

ky (2.22)

which is to be compared with (2.11) and (2.13). Moreover, the simple structure of the edge states

(2.10) and (2.12) also changes significantly: each edge state is a four-component vector for γ ̸= 0.

Because of that, after projecting the impurity matrix (2.16) onto the edge state subspace we get

the dimensionless coupling matrix Jij which typically has all nine non-zero components instead

of (2.19). This is a crucial consideration for the final formulation of the model.
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Figure 2.3: Cut of electronic energy spec-
trum E(k) in BHZ model with the inver-
sion asymmetry parameter γ = 5 meV.
Parameters from Table 2.1 for d = 7 nm
are used.
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2.4.2 The model

For magnetic impurities in CdTe/HgTe/CdTe quantum wells inversion asymmetry complicates

the dimensionless coupling matrixJij . However, there are other reasons why the electron-impurity

coupling matrix might be more complicated than that given by (2.19). First of all, in any real phys-

ical realization of a 2D TI the edge is not straight due to structural imperfections. Secondly, Kondo

renormalization might generate new terms in the coupling matrix. For instance, for the four com-

ponent matrix (2.19) Jzx term appears at small energy scales (see section 3.5 for details). Thirdly,

not only magnetic atoms might effectively serve as magnetic impurities. As it was discussed in

section 1.1, charge puddles might appear in semiconductor heterostructures. Coupling matrix for

the interaction between the effective spin S = 1/2 of a charge puddle and the helical edge electron

is given by Jij = δijJiso + δJij , where constants δJij are much smaller than Jiso and δJij is of a

general form [17, 18]. Finally, even if magnetic atoms are considered, the coupling matrix given

by (2.19) is specific for CdTe/HgTe/CdTe quantum wells, which implies that for other 2D TI the

coupling matrix might be of a different form.

For the mentioned reasons in the following sections we consider the general Hamiltonian

H = H0 +He−i = −vkyσz + δ(y − y0)
1

ν
JijSisj. (2.23)

For the main part of the thesis we assume that Jij is of the general form, except for requirement

|Jij| ≪ 1. We note that Hamiltonian (2.23) preserves its form under rotations of the impurity:

S → RS, J → RTJ , where R ∈ SO(3). This implies, for instance, that matrix J can always

be brought to lower triangular form. However, we mention that the form of Hamiltonian (2.23) is

altered under rotations of the electron spin. This is due to the helical nature of the electrons at the

edge of a 2D TI.

To solve the transport problem and to investigate the statistics of the backscattering current we

use several additional approximations and assumptions. To begin with, we assume that the helical

edge is infinite in both directions. This implies that the leads are located at y = ±∞. We assume

that the temperature of both leads is T . We model the voltage applied to the leads by a difference

of chemical potentials V of the edge states moving in the opposite directions. Next, we assume

that a single magnetic impurity is present in the system at y0 = 0. Besides, we assume that effects

of Kondo renormalization are weak and that the anisotropy for the magnetic impurity is negligible.

Magnetic anisotropy for S > 1/2, as well as Kondo renormalizations, are briefly discussed in

section 3.5. Finally, we neglect electron-electron interactions.

Concluding this chapter, we present the second quantized form of the single-particle Hamilto-
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nian (2.23):

H = iv

∫
dyψ†(y)σz∂yψ(y) +

1

ν
JijSiψ

†(0)sjψ(0) (2.24)

Here ψ(y) = (ψ↑(y), ψ↓(y))
T , ψ†(y) = (ψ†

↑(y), ψ
†
↓(y)) and ψ↑/↓ (ψ†

↑/↓) stands for the annihilation

(creation) operator for the helical electrons with spin pointing up/down. To shorten the equations

we will often use the following notation for the spin density operators: ŝj(y) = ψ†(y)sjψ(y).

Throughout the thesis we prefer the second quantized form (2.24) over (2.23).
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Chapter 3

Generalized master equation

3.1 Introduction

As it was outlined in the introduction, our task is to investigate the backscattering current induced

by a magnetic impurity located near the helical edge. Beginning this chapter, we formulate the

problem in more formal terms.

We assume that voltage V > 0 is applied to the leads adjoined to the helical edge of a 2D TI.

This implies that the chemical potential of the lead located at y = −∞ is given by µ− = µ− V /2,

while the chemical potential of the lead at y = +∞ is given by µ+ = µ + V /2. In that case,

because e = −1, the current starts to flow in y-direction along the helical edge. In the absence

of magnetic impurities, the current is purely ballistic, it is given by I0 = (e2/h)V . When a single

magnetic impurity is placed near the edge at y = 0, the ideal current I0 is lowered, i.e. I0 gets a

small negative correction∆I . We refer to this correction as the backscattering current. We analyze

the backscattering current from different perspectives in the present and in the following chapters.

From now on, we use units e = −1, ~ = 1 so that G0 = e2/h = 1/2π.

Due to the specifics of helical edge electrons, there exists a compact expression determining the

backscattering current [18]. In order to derive it, we note that the charge current flowing along the

helical edge is always accompanied by spin polarization of the edge, as indicated by Hamiltonian

(2.24). Indeed, the direction of movement of a helical electron and the direction of its spin are

locked. If the positive charge current flows (V > 0), then more electrons move against the y-axis

and, therefore, more electrons have their spin pointing up. This consideration allows us to link the

backscattering current to the rate of change of z-projection of the total electron spin of the helical
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edge. To this end, we introduce the second quantized operator of the latter quantity:

Σz =

∫
dyŝz(y) =

1

2

∫
dyψ†(y)σzψ(y). (3.1)

Whenever Σz decreases by unity, a single electron is backscattered. As a consequence,

∆I = −edΣz

dt
=
dΣz

dt
. (3.2)

The operator equation (3.2) is central to the thesis, we utilize it in order to investigate the backscat-

tering current. Finishing the introduction to the present chapter, we remind the reader of the result,

announced in section 2.3. Namely, it was said that if the interaction between the magnetic impurity

and the helical electrons preserves the total z-projection of the angular momentum of the system,

then the backscattering current is absent. This is clear from (3.2). Indeed, if z-projection of the

angular momentum of the electron-impurity system is preserved, thenΣz can maximally change by

2S and, consequently, cannot accumulate with time. For this reason, momentum non-conserving

processes are of uttermost importance in the considered problem.

3.2 Cumulant generating function

We are interested in the zero-frequency behavior of the backscattering current. In this regard, we

calculate the statistics of the number of backscattered electrons during the time interval t. We

introduce the operator of the latter quantity as

∆N(t) = Σz(t)− Σz(0). (3.3)

In this expression the time dependence is introduced through the Heisenberg representation for the

operator Σz:

Σz(t) = eiHtΣze
−iHt, (3.4)

whereH is given by (2.24). As a next step, we need to introduce the cumulant generating function

G(λ). However, there is a difference between how it is done for classical and for quantum systems.

In the classical case G(λ) is given by the expression

G(λ, t) = ln⟨eiλ∆N(t)⟩ = ln⟨eiλΣz(t)−iλΣz(0)⟩. (3.5)
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Here Σz(t) and Σz(0) are simple numbers and the average is taken over all possible configurations

of the system. In that case, the cumulants can be calculated as

⟨⟨∆Nn(t)⟩⟩ = ⟨⟨[Σz(t)− Σz(0)]
n⟩⟩ = (−i)n (∂/∂λ)nG(λ, t). (3.6)

However, in the quantum case the expression for the cumulant generating function is more compli-

cated. The main reason for that is the noncommutativity of Σz(t) operator at different times. The

proper way to introduce G(λ, t) is [36]

G(λ, t) = ln Tr
[
eiλΣz(t)e−iλΣz(0)ρ(0)

]
. (3.7)

In this expression ρ(0) is the initial density matrix of the whole system (the edge electrons and the

impurity). Equation (3.7) is valid provided that ρ(0) commutes with Σz(0) = Σz. We assume ρ(0)

is given by

ρ(0) = ρS(0)⊗
exp

[
−β
∫
dyψ†(y) (iσzv∂y − σzV /2− µ)ψ(y)

]
Tre exp

[
−β
∫
dyψ†(y) (iσzv∂y − σzV /2− µ)ψ(y)

] . (3.8)

Here ρS(0) = 1
2S+1

I(2S+1)×(2S+1), Tre denotes the trace over all electronic states, and β = 1/T is

the inverse temperature of the leads. In that case, ρ(0) and Σz indeed commute and we can utilize

formula (3.7). We assume that the duration t of the considered time interval is sufficiently long so

that the impurity has time to relax to its steady state and to backscatter a large number of electrons

afterwards. Next, we note that the generating function (3.7) can be rewritten as

G(λ, t) = ln Tr
[
eiH

−λte−iHλtρ(0)
]
, Hλ = ei

λ
2
ΣzHe−iλ

2
Σz . (3.9)

In other words, to evaluate the cumulant generating function we need to consider the evolution of

the system on a closed Keldysh contour. The Keldysh partition function is non-trivial due to the

presence of a quantum field±Σz which has a plus sign on the forward branch of theKeldysh contour

and a minus sign on the backward branch. To proceed, we rewrite (3.9) in a slightly different

manner:

G(λ, t) = ln Trρλ(t). (3.10)

Here ρλ(t) satisfies

dρλ(t)

dt
= −iHλρλ(t) + iρλ(t)H−λ, ρλ(0) = ρ(0). (3.11)
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Therefore, in order to calculate G(λ) and investigate the statistics of the backscattering current,

one has to track the non-Hermitian evolution of the system governed by equation (3.11). We will

use representation (3.10) for G(λ) throughout the thesis.

3.3 Generalized master equation

Although nowwe have compact equations (3.10) and (3.11) that determine the generating function,

using these equation to extract any physical results seems to be a formidable task. The problem

comes from the fact that the considered system has a macroscopically large number of degrees

of freedom. However, with the use of perturbation theory in electron-impurity coupling Jij it is

possible to reduce the problem to the (2S+1)-dimensional Hilbert space of the magnetic impurity.

The first step towards this goal is to rewrite

G(λ, t) = ln Trρλ(t) = ln TrSTreρλ(t) = ln TrSρλS(t). (3.12)

Therefore, to study the cumulant generating function, we need to derive the master equation for the

reduced density matrix ρλS(t) = Treρλ(t) of the magnetic impurity. As long as λ ̸= 0 we call this

master equation generalized.

3.3.1 Mean-field part of the electron-impurity interaction

We start the derivation of the generalized master equation for the magnetic impurity by referring to

the explicit form of Hamiltonian (2.24). A crucial thing to notice is that the electron-impurity in-

teraction HamiltonianHe−i = JijSiŝj(0)/ν has a non-zero expectation value over the unperturbed

density matrix (3.8). Indeed, for the average spin operator we get ⟨ŝj⟩0 = Tre (ρ(0)ŝj(0)) =

νV δjz/2, where V is the voltage applied to the leads. The appearance of a non-zero ⟨ŝz(0)⟩ is ex-

pected, because, as it was discussed, charge current along the edge of a 2D TI is always associated

with spin polarization of the edge. We conclude that the interaction Hamiltonian obtains a finite

expectation

Hmf
e−i = ⟨He−i⟩0 = JizV Si/2. (3.13)

It can be seen that the voltage bias effectively breaks time-reversal symmetry for the magnetic

impurity: finite V leads to Zeeman splitting of the impurity levels. In that case, it is clear that the

mean-field part of the electron-impurity interaction Hamiltonian should be treated separately. We
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denote the ”irreducible” part of the electron-impurity interaction as

V = He−i −Hmf
e−i =

1

ν
JijSiŝj −

1

ν
JijSi⟨ŝj⟩0 =

1

ν
JijSi : ŝj : . (3.14)

In this expression and onwards, we do not specify the position of the impurity: ŝj(0) → ŝj . This

makes derivations less bulky without causing any confusion as, by assumption, there is only one

impurity in the system. Note that we introduced an ”irreducible” spin density operator : ŝj :.

3.3.2 Perturbative approach to the generalized master equation

At the present stage, we have the following master equation:

dρλ(t)

dt
= −i[H0 +Hmf

e−i, ρ
λ(t)]− iVλρλ(t) + iρλ(t)V−λ, ei

λ
2
ΣzVe−iλ

2
Σz . (3.15)

To obtain (3.15) from (3.11) we used the fact that Σz commutes with H0 and with Hmf
e−i. As a next

step in the derivation of the generalized master equation, we go to the interaction picture with the

respect to the Hamiltonian H0 +Hmf
e−i:

dρλI (t)

dt
= −iVλ

I (t)ρ
λ
I (t) + iρλI (t)V−λ

I (t). (3.16)

The idea behind the following evaluation is to trace out the electronic degrees of freedom and to

get the equation for ρλS(t). However, straightforward application of Tre to equation (3.16) is not

meaningful unless there is a clear way to utilize the perturbation theory. In order to allow for the

perturbative treatment, we formally solve (3.16):

ρλI (t) = ρ(0)− i

∫ t

0

dt′
(
Vλ
I (t

′)ρλI (t
′)− ρλI (t

′)V−λ
I (t′)

)
. (3.17)

Then we substitute the result back into (3.16). This gives

dρλI (t)

dt
= −iVλ

I (t)ρ(0) + iρ(0)V−λ
I (t) +

∫ t

0

dt′
(
Vλ
I (t

′)ρλI (t
′)V−λ

I (t) + Vλ
I (t)ρ

λ
I (t

′)V−λ
I (t′)

)
−

−
∫ t

0

dt′
(
Vλ
I (t)Vλ

I (t
′)ρλI (t

′) + ρλI (t
′)V−λ

I (t′)V−λ
I (t)

)
. (3.18)

Expression (3.18) is more suitable than (3.16) for tracing out electrons. We apply Tre to the both

parts of equation (3.18). Immediately, we see that both averages Tre
(
Vλ
I (t)ρ(0)

)
and Tre

(
ρ(0)V−λ

I (t)
)
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nullify, because V contains only irreducible operators of the electron system. Therefore,

dρλS,I(t)

dt
= Tre

[∫ t

0

dt′
(
Vλ
I (t

′)ρλI (t
′)V−λ

I (t) + Vλ
I (t)ρ

λ
I (t

′)V−λ
I (t′)

)]
−

−Tre
[∫ t

0

dt′
(
Vλ
I (t)Vλ

I (t
′)ρλI (t

′) + ρλI (t
′)V−λ

I (t′)V−λ
I (t)

)]
. (3.19)

Throughout the thesis, we use the second order perturbation theory in Jij (renormalizations aside).

We note that the right hand side of equation (3.19) is already of the second order inJij . This allows

us to use Born approximation: ρλI (t) ≈ ρλS,I(t) ⊗ ρ0, where ρ0 = TrS (ρ(0)). The corrections to

Born approximation produce only higher-order terms in Jij [36]. Therefore, the trace in equation

(3.19) can be explicitly calculated. In order to outline the general calculation strategy, let us focus

on the first term in the right hand side of equation (3.19). We will refer to this terms as I1. Other

terms can be processed in the similar fashion. We begin with explicitly substituting the expression

for V:

I1 = Tre
[∫ t

0

dt′
(
Vλ
I (t

′)ρλI (t
′)V−λ

I (t)
)]

=
JikJjp

ν2

∫ t

0

dt′Si,I(t
′)ρλS,I(t

′)Sj,I(t)Cλ,−λ
kp (t− t′)

(3.20)

Here Cλ,−λ
kp (t− t′) stands for spin-spin correlation function of the helical edge electrons:

Cλ,−λ
kp (t− t′) = Tre

[
: ŝ−λ

p,I (t) :: ŝ
λ
k,I(t

′) : ρ0
]
. (3.21)

Interaction representation for spin operators is defined by

Si,I(t) = eiH
mf
e−itSie

−iHmf
e−it, : ŝλk,I(t) := eiH0tei

λ
2
Σz : ŝk : e

−iλ
2
Σze−iH0t. (3.22)

The order of the exponents does not matter in the latter expression because [Σz, H0] = 0. Straight-

forward calculation shows that

ŝλk = ei
λ
2
Σz ŝke

−iλ
2
Σz = Rλ

krŝr, Rλ =


cos λ

2
− sin λ

2
0

sin λ
2

cos λ
2

0

0 0 1

 . (3.23)

We conclude that

Cλ,−λ
kp (τ) = Rλ

krCrl(τ)R−λ
pl = Rλ

krCrl(τ)Rλ
lp, Crl(τ) = C0,0

rl (τ). (3.24)
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Correlation function Crl(τ) decays exponentially at large times. The energy scale of the decay is

controlled by either voltage or temperature, the only energy scales associated with the helical edge

electrons. At the same time, ρλS,I(t) changes at much larger times due to small JikJjp multiplier

in the master equation. We conclude that the memory effects are not important for the dynamics

of the magnetic impurity and Markov approximation ρS,I(t′) ≈ ρS,I(t) can be applied. Moreover,

at sufficiently large t, the lower integration limit in (3.19) can be prolonged to −∞. In that case,

expression (3.20) for I1 can be rewritten as

I1 =
JikJjp

ν2
Rλ

krR
−λ
pl

∫ ∞

0

dτSi,I(t− τ)ρλS,I(t)Sj,I(t)Crl(τ). (3.25)

Next we introduce the eigenbasis of themean-field HamiltonianHmf
e−i: |m⟩, wherem corresponds to

the projection of the impurity spin in the direction of the effective Zeeman field,m = +S, ...,−S.

We denote the corresponding energies as Em. Trivial calculation shows that

Em = m
√
J 2

xz + J 2
yz + J 2

zzV /2.

With that in mind we can rewrite

Si,I(t− τ) = eiH
mf
e−it

[∑
mn

eiωmnτSmn
i

]
e−iHmf

e−it, Smn
i = |m⟩Smn

i ⟨n|, ωmn = En − Em.

(3.26)

Therefore, I1 is brought to the following form:

I1 =
JikJjp

ν2
Rλ

krR
−λ
pl e

iHmf
e−it

[∑
mn

Crl(ωmn)Smn
i ρλS(t)Sj

]
e−iHmf

e−it, (3.27)

where Crl(ωmn) =
∫∞
0
dτeiωmnτCrl(τ). To proceed further, we decompose the correlation function

in the following way:

Crl(ωmn) =
1

2
γrl(ωmn) + iArl(ωmn), γ† = γ, A† = A. (3.28)

The anti-Hermitian part of the correlation function produces terms in the generalized master equa-

tion that, represented as integrals over energy, diverge in the ultraviolet limit. These divergent

contributions are known to renormalize the Hamiltonian of the system [37]. For now, we will ig-

nore them. We will systematically discuss the renormalizations in section 3.5. The Hermitian part
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is given by

γrl(ω) =
πν2

2

∑
σ1σ2

σσ1σ2
l σσ2σ1

r

∫
dξnF (ξ − σ1V /2) [1− nF (ξ + ω − σ2V /2)] , (3.29)

where nF (ϵ) = 1/(eβ(ϵ−µ) + 1) and σ1/2 = ±1. Straightforward evaluation of the integrals leads

to γ(ω) = ν2Π(ω) = ν2(Π+(ω) + Π−(ω)) with

Π±(ω) =
πT

2


f(ω ± V ) ∓if(ω ± V ) 0

±if(ω ± V ) f(ω ± V ) 0

0 0 f(ω)

 , f(ω) = βω/(1− e−βω). (3.30)

Let us denote1 the typical value of |Jij| as J . In that case, ω = ωmn ∼ J V . If V ≪ T , then

ωmn ≪ T and ωmn can be omitted in the correlation functions. If, on the contrary, V ≫ T , then

γ33(ωmn) can be neglected in comparison to the other elements of γ. At the same time, ωmn ≪ V

and f(ωmn ± V ) ≈ f(±V ). Therefore, with the required precision we can always neglect ωmn in

the correlation functions. This allows us to sum Smn
i in equation (3.27) into Si. We conclude that

I1 =
1

2
ηλ,−λ
ij eiH

mf
e−it
[
Siρ

λ
S(t)Sj

]
e−iHmf

e−it, ηλ,−λ
ij =

(
JRλΠ(0)RλJ T

)
ij

(3.31)

We note that Π(0) is given be the following simple matrix:

Π(0) = πT


V
2T

coth V
2T

−i V
2T

0

i V
2T

V
2T

coth V
2T

0

0 0 1

 . (3.32)

Expression (3.31) is the final form of I1, the first term in equation (3.19). All other terms can be

processed similarly. In order to write down the final result for the master equation, we go back

to Schrödinger picture. Moreover, we introduce η = η0,0. In that case, the generalized master

equation that determines the statistics of the backscattering current is given by

dρλS(t)

dt
= −i[Hmf

e−i, ρ
λ
S(t)] + ηij

(
Siρ

λ
S(t)Sj − {ρλS(t), SjSi}/2

)
+ (ηλ,−λ

ij − ηij)Siρ
λ
S(t)Sj. (3.33)

Equation (3.33) is the central result of the present chapter.
1J as a number will be used only in the numerical estimates. Therefore, we believe that this notation is not

confusing.
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3.3.3 Superoperator form of the generalized master equation

In order to determine the cumulant generating function of the backscattering current G(λ, t) we

note that equation (3.33) can be brought to the superoperator form:

d

dt

(
ρλS(t)

)
mn

= Lλ
mn,kp

(
ρλS(t)

)
kp
, m, n, k, p = S, ...,−S. (3.34)

Here the evolution superoperator Lλ does not depend on time. We order the eigenvalues of Lλ

from the one with the largest real part to the one with the lowest real part: ϵλ1 , ϵλ2 ,...,ϵλ(2S+1)2 . In that

case, it is clear that in the large time limit the cumulant generating function is given by

G(λ, t) = ln TrS
(
ρλS(t)

)
= tϵλ1 . (3.35)

In terms of superoperator algebra, usual trace operation TrS corresponds to scalar product of a given

vector with a vector δmn. Therefore, in (3.35) we implicitly assumed that the vector corresponding

to the eigenvalue ϵλ1 is not orthogonal to δmn. This is typically the case. Therefore, the final ap-

proach to the problem of calculation of the cumulants of the number of backscattered electrons is

the following:
⟨⟨∆Nk⟩⟩

t
=

(
−i ∂
∂λ

)k

ϵλ1 . (3.36)

Before using (3.36) to investigate the behaviour of the backscattering current, we discuss the master

equation at λ = 0 and the renormalizations that appear in the problem.

3.4 Dynamics of the magnetic impurity

In this section we consider the case λ = 0. When λ = 0 the master equation simply describes the

dynamics of the magnetic impurity mediated by its interaction with the surrounding helical edge

electrons. We find that the generalized master equation (3.33) is reduced to [20]

dρS(t)

dt
= −i[Hmf

e−i, ρS(t)] + ηij (SiρS(t)Sj − {ρS(t), SjSi}/2) . (3.37)

Equation (3.37) has a standard Lindbladian form [36, 37]. This guarantees the conservation of

probability in the course of time evolution. In terms of the superoperator language, there exists

a left eigenvector δmn of a superoperator Lλ=0
mn,kp corresponding to a zero eigenvalue. Existence

of a zero eigenvalue implies that equation (3.37) has a steady state solution (right eigenvector

corresponding to zero eigenvalue). Moreover, we conclude that ϵλ=0
1 = 0. Other eigenvalues ϵλ=0

i
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have a negative real part, they describe the process of relaxation of the magnetic impurity due

to its interaction with helical edge electrons. The corresponding real parts define the relaxation

rates. We note that in principle helical edge electrons might be not the only cause of spin relaxation

for magnetic impurities in real materials. For example, spin-lattice relaxation might take place.

Still, we neglect such effects focusing on the relaxation processes induced by electron-impurity

interaction.

As a next step, we discuss different terms in equation (3.37). The mean-field term in the master

equation (3.37) describes the unitary evolution of the state of the magnetic impurity. Physically, it

drives the precession of the magnetic impurity around the direction of Zeeman mean-field∝ JizV

(3.13). We remind that our considerations require2 J ≪ 1 so that the mean-field is much smaller

than the voltage whenever the discussed theory is applicable. The term in (3.37) proportional to

η is responsible for the relaxation of the state of the magnetic impurity. It can be estimated as

η ∼ J 2max (V, T ).

The appearance of two energy scales demonstrates that there are two distinct regimes for the

magnetic impurity. If V ≪ J T then the mean-field term in (3.37) is much smaller than the relax-

ation term. In that case, the mean-field is completely irrelevant and can be safely neglected. As

the voltage is increased the mean-field becomes more and more important for the dynamics of the

impurity. For V ≫ J T the mean-field term is dominant and the density matrix of the magnetic

impurity tends to be diagonal in the eigenbasis ofHmf
e−i. We note that the relaxation term cannot be

neglected even for very large voltages.

Finishing this subsection, we mention that equation (3.37) can be further simplified in the limit

V ≫ J T , i.e. when the relaxation term in (3.37) is much smaller than the mean-field term.

Physically, this limit corresponds to the case when the energy levels of the magnetic impurity are

smeared only weakly by the relaxation. This allows for the use of the rotating wave approximation

(RWA). First, we go back to the interaction picture:

dρS,I(t)

dt
= ηij (Si,I(t)ρS,I(t)Sj,I(t)− {ρS,I(t), Sj,I(t)Si,I(t)}/2) . (3.38)

Then we represent ρS,I =
∑

mn pmn|m⟩⟨n|, where |m⟩, |n⟩ are the eigenstates of Hmf
e−i. We find

dpcd
dt

=
∑
mn

ηij
(
ei(ωmc+ωdn)tScm

i pmnS
nd
j − eiωmct(SjSi)

cmpmnδnd/2− eiωdnt(SjSi)
ndpmnδmc/2

)
.

(3.39)

Using RWA means throwing away quickly oscillating terms in (3.39). This can be done whenever
2From now on we often refer to the typical value of Jij elements as J > 0.
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V ≫ J T . Moreover, we note that in general Scm
i is not zero only if c = m,m ± 1. Then we see

that the equation for the evolution of diagonal elements of pmn decouples from the equation for the

evolution of all other elements. We denote pc = pcc. In that case,

dpc
dt

=
∑
m

(
ηijS

cm
i Smc

j pm − ηijS
mc
i Scm

j pc
)
, (3.40)

while non-diagonal elements decay to zero. Equation (3.40) can be written as

dpc
dt

=
∑
m

(pmωm→c − pcωc→m) , ωm→c = ηijS
cm
i Smc

j . (3.41)

Therefore, equation (3.40) is a classical master equation that describes stochastic hopping of the

magnetic impurity between different energy levels. We stress that c = m,m±1 because otherwise

spin matrix elements nullify.

3.5 Renormalizations

The divergences that appear in the derivation of the generalizedmaster equation (3.33) are known to

be common for various systems [37]. According to the general statement, while the Hermitian part

of the matrix Crl(ω) contributes to the relaxation part of the master equation (3.33), the divergent

anti-Hermitian part contributes to the unitary evolution. Therefore, the discussed divergent terms

renormalize the Hamiltonian of the system. They can be classified into two categories.

Terms of the first kind diverge linearly at large energies and induce the anisotropy DijSiSj

for the magnetic impurity [38]. This kind of anisotropy appears as a result of strong spin-orbit

coupling in the structure. We find that Dij is a symmetric real matrix, elements of which can be

estimated as J 2Λ. Here Λ is the ultraviolet cut-off for the helical edge electrons, we estimate

its value as Λ ∼ |M |. For S = 1/2 the anisotropy reduces to a constant energy shift and is,

therefore, completely irrelevant. However, the dynamics of impurities with S > 1/2 is strongly

altered by the presence of finite Dij . The magnetic anisotropy becomes irrelevant only when its

energy is either much smaller than the relaxation rates of the magnetic impurity or much smaller

than the energy scale dictated by the mean-field Hamiltonian (3.13). In other words, the anisotropy

becomes irrelevant only when |Dij| ≪ max (J V,J 2T ). We note that in principle there might

be other sources of anisotropy for magnetic impurities with spin S > 1/2. For instance, just like

helical edge states, bulk states of the quantum well might contribute to the anisotropy [32].

Terms of the second kind diverge logarithmically at large energies and are responsible for
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Kondo renormalization of the coupling constants Jij [18]. In order to treat Kondo renormalization

correctly, one has to write down the one-loop renormalization group equation [18]

dJij

dl
=

1

2
ϵimkϵjnpJmnJkp, l = ln (Λ/E) . (3.42)

Here E is the running energy scale determined by E = max (V, T ). We note that equation (3.42)

is valid provided that J ≪ 1 and that max(V, T ) ≫ |Dij|. At J ∼ 1 the one-loop approxima-

tion fails. At energies smaller than |Dij| the renormalization group equation alters significantly

[39]. Equation (3.42) can be brought to a simple form by utilizing singular-value decomposition

of the coupling matrix: J = R<QR> [20]. In this expression matrices R>/< ∈ SO(3) and

Q = diag (q1, q2, q3). Diagonal elements q1, q2, q3 are called singular values of Jij . We find

dq1
dl

= q2q3,
dq2
dl

= q3q1,
dq3
dl

= q1q2, (3.43)

while rotation matrices R>/< do not flow. We find two independent integrals of motion: I1 =

q21 − q22 and I2 = q22 − q23 . If q1 = q2 = 0, q3 does not change. If q1 = q2 ̸= 0, q3 ≤ 0, and

|q1| ≤ |q3| then q1 goes to zero while q3 saturates at some finite value with the decrease of E.

The latter scenario includes the ferromagnetic case q1 = q2 = q3 < 0. Otherwise, a finite Kondo

energy scale EK exists at which qi diverge. As EK is approached, the coupling constants tend to

the manifold |q1| = |q2| = |q3| with q1q2q3 > 0. The renormalization group flow for q1 = q2 is

depicted in Figure 3.1.

To demonstrate how the coupling matrix can change under renormalization group flow, we

consider the specific case of the four component coupling matrix (2.18). We see that additionally

to Jxx, Jyy, Jzz, and Jxz elements of the coupling matrix, Jzx element appears when the energy

scale is changed:

J =


Jxx 0 Jxz

0 Jyy 0

0 0 Jzz

 → J (E) =


Jxx(E) 0 Jxz(E)

0 Jyy(E) 0

Jzx(E) 0 Jzz(E)

 . (3.44)

Here dJzx(E)/dl = −Jxz(E)Jyy(E). Therefore, generation of Jzx is a consequence of a joint

process due to Jyy and Jxz.

Throughout the main text of the thesis, we assume that the coupling constants are sufficiently

small so that their renormalization can be neglected at relevant energy scales. We don’t investigate

the physics of the problem at E . EK . For discussion of the latter case see [18]. Still, weak
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Figure 3.1: Renormalization group flow for singular values qi of the coupling matrix Jij in the
case q1 = q2. The flow is symmetric under q1 → −q1. If q3 ≤ 0 and |q1| ≤ |q3| then q1 → 0 while
q3 saturates at some finite value at small energies. Otherwise, q1/q3 → ±1, q3 → +∞ at small
energy scales.

Kondo renormalization can be easily included in the largest part of our results with the substitution

Jij → Jij(E).

Now we are in the position to apply equation (3.33) to determine the statistics of backscattering

current in different cases.
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Chapter 4

Statistics of the backscattering current

In this chapter, we start to investigate cumulants of the backscattering current induced by the mag-

netic impurity located near the helical edge of 2D TI. Using the generalized master equation (3.33),

we derived:

• The general formula that relates average backscattering current to spin averages in the steady

state. This general formula is valid for impurities with arbitrary spin S.

• The steady state density matrix of the impurity with arbitrary S in the case V ≫ J T . It can

be utilized, for example, to calculate the average current.

Moreover, we obtained several results that are specific for magnetic impurities with spin S = 1/2.

We derived:

• Exact expressions for the average backscattering current and for its dispersion. These ex-

pressions are valid at arbitrary voltage.

• Explicit formula for the generating function of the number of backscattered electrons in the

case V ≫ J T .

4.1 Magnetic impurity with arbitrary spin: average backscat-

tering current

In this section, we discuss the average backscattering current ∆I for the magnetic impurity with

arbitrary spin. To derive the corresponding equations, we investigate the eigenvalue ϵλ1 of the

superoperator Lλ
mn,kp. Then, the average number of backscattered electrons is determined by the

first order term in the expansion of ϵλ1 over λ, as indicated by (3.36). We apply the first-order
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perturbation theory in λ to determine the required coefficient. As the unperturbed superoperator

we take L0
mn,kp and then we consider ∆Lλ

mn,kp = Lλ
mn,kp − L0

mn,kp as a perturbation.

For the unperturbed superoperatorL0
mn,kp the eigenvalue ϵ01 = 0. Let lmn be the left eigenvector

of L0
mn,kp corresponding to this eigenvalue and rkp - the right eigenvector. Then, to get the first

order correction due to the perturbation, one has to multiply ∆Lλ
mn,kp by the lmn from the left and

by rkp from the right. Moreover, ∆Lλ
mn,kp should be expanded up to the first order in λ. As it was

discussed in chapter 3, the left eigenvector lmn = δmn, while the right eigenvector rkp is given by

the steady state density matrix of the master equation (3.37), which we denote as ρ(st)S . Therefore,

∆I = ⟨∆N⟩/t = lmn

∂∆Lλ
mn,kp

∂(iλ)
rkp =

∂∆Lλ
mm,kp

∂(iλ)
ρ
(st)
S,kp, λ = 0. (4.1)

Using the generalized master equation (3.33), we find

∆I = −
(
JQJ T

)
ij
⟨SjSi⟩, ⟨SjSi⟩ = TrS

[
SjSiρ

(st)
S

]
,

Qxx = Qyy = πT
V

2T
, Qxy = −Qyx = −iπT V

2T
coth

V

2T
, Qiz = Qzi = 0. (4.2)

Note that the matrix
(
JQJ T

)
ij
is positive definite so that the correction to the backscattering

current is always negative. This is in accordance with common sense. Explicit calculation shows

∆I =
π

4
V

(
χr⟨Sr⟩ coth

V

2T
− 2

∑
k=x,y

JikJjk⟨SiSj⟩

)
, χr = 2ϵrijJixJjy. (4.3)

If we introduce the conductance quantumG0 = 1/2π (e = −1 and ~ = 1), then the backscattering

correction to the conductance reads

∆G =
∆I

V
=
π2

2
G0

(
χr⟨Sr⟩ coth

V

2T
− 2

∑
k=x,y

JikJjk⟨SiSj⟩

)
. (4.4)

At the first glance, the presence of cothV /2T may seem surprising due to its divergence at small

voltages. However, ⟨Sr⟩ ∝ V at small voltage V ≪ T , and backscattering conductance ∆G is

finite. We mention that ∆G is of the second order in Jij which is consistent with Fermi’s golden

rule.

4.1.1 Small voltage regime

Equations (4.3) and (4.4) relate the backscattering current to the steady state density matrix of

the magnetic impurity. However, in the limit V ≪ T one can compute the average ∆I without
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calculating the full density matrix. The main idea is that at small voltages we can change

⟨SiSj⟩ ≈
S(S + 1)

3
δij. (4.5)

Therefore, only spin averages ⟨Sr⟩ in the steady state are required to calculate the backscattering

current. For V ≪ T it is possible to obtain a closed equation for these spin averages. We start from

the equation for the density matrix in the steady state. According to (3.37), it reads

−i[Hmf
e−i, ρ

(st)] + ηij
(
Siρ

(st)Sj − {ρ(st), SjSi}/2
)
= 0 (4.6)

Multiplying (4.6) by Sk, taking trace, and applying (4.5) for all terms already proportional to volt-

age, we obtain

⟨Sr⟩ =
V

T

S(S + 1)

3
Γ−1
rk χk, Γkr =

1

πT

(
Tr (η) δkr −

ηkr + ηrk
2

+ V Jizϵikr

)
. (4.7)

The latter term in the expression for Γkr appears due to the mean-field term in (4.6). We note that

in the considered limit V ≪ T the formula for Γkr simplifies to

Γkr = Tr
(
JJ T

)
δkr −

(
JJ T

)
kr
+

V

πT
Jizϵikr. (4.8)

Substituting the expression for ⟨Sr⟩ from (4.7) into (4.4) we obtain

∆G = −S(S + 1)

3
π2G0

(
g − χrΓ

−1
rk χk

)
, g = Kxx +Kyy, K = J TJ . (4.9)

Note that in the limit V ≪ T the only spin dependence in the answer comes from the the multiplier

S(S + 1). We mention that Γkr changes its form radically at V ∼ J T , i.e. when all terms in (4.8)

are of the same order. This leads to the crossover behaviour in the conductance at V ∼ J T . We

underline that the result (4.9) respects the aforementioned SO(3) symmetry J → RTJ .

In the intermediate voltage regime J T ≪ V ≪ T it is possible to further simplify expression

(4.9). To this end, we utilize the fact that in the expression (4.8) for Γkr the dominant term is

the noninvertible mean-field contribution ∝ J V /T . Therefore, the general task we face is the

inversion of the matrix of the following kind:

ckr = akr + biϵikr, |bi| ≫ |akr|. (4.10)
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One can easily check that in the leading order in a/b the inverse matrix is given by

c−1
rk ≈ brbk

biaijbj
. (4.11)

Another thing to note is that χrJrz = 2detJ . Therefore, we conclude that for J T ≪ V ≪ T

∆G = −S(S + 1)

3
π2G0

(
g − 4detK

gKzz −K2
zx −K2

zy

)
. (4.12)

Finally, we note that for S = 1/2 expression (4.12) is valid at any voltage V ≫ J T , i.e. there

is no restriction from above at V ∼ T . That happens because for S = 1/2 the anticommutator

{Si, Sj} ∝ δij . However, for higher S it is impossible to simplify double-spin averages and (4.12)

fails at V ∼ T . For this reason, the backscattering current for S > 1/2 has two crossovers: the

first one at V ∼ J T and the second one at V ∼ T .

We once again stress out that the backscattering current nullifies, whenever the electron-impurity

interaction preserves z-projection of the total spin of the system. This can be seen in the formulas

(4.9) and (4.12). Let us suppose that the coupling matrix Jij is diagonal. Then for V ≪ T we get

∆G = −S(S + 1)

3
π2G0

(
J 2

xx − J 2
yy

)2
J 2

xx + J 2
yy

. (4.13)

Electron-impurity interaction conserves z-projection of the angular momentum if Jxx = Jyy. We

see that in that case ∆I indeed nullifies. Another interesting aspect of (4.13) is the absence of a

crossover at V ∼ J T . The crossover appears if, for example, we addJxz component to the matrix.

4.1.2 Steady state density matrix and high voltage regime

For arbitrary value of the impurity spin it is impossible to represent the backscattering current in a

compact form (4.9) at high voltages V & T . However, it is possible to derive a simple expression

for the steady state density matrix of the magnetic impurity valid for V ≫ J T . After that, obtained

ρ
(st)
S can substituted into (4.4) in order to calculate the backscattering current in the regime V & T .

The resultant expression for the current is bulky for arbitrary S and casts no transparent physical

meaning. For this reason, we do not present the final formula in the thesis. Still, it is enlightening

to follow the derivation of the steady state density matrix for V ≫ J T . Results of this subsection

have a huge significance for the remainder of the text.

First of all, we note that at V ≫ J T the steady state density matrix is diagonal in the eigen-

basis of the mean-field Hamiltonian (3.13). Therefore, to simplify the calculations, we can rotate

40



the basis to align the mean-field with z-direction. This is automatically achieved if we bring the

electron-impurity coupling matrix to lower-triangular form. We introduce

S = RS′, J = RTJ ′, J ′ =


J ′

xx 0 0

J ′
yx J ′

yy 0

J ′
zx J ′

zy J ′
zz

 . (4.14)

Then, the mean-field term in the Hamiltonian reads

Hmf
e−i =

V

2
J ′

zzS
′
z. (4.15)

The eigenstates of this Hamiltonian are |m⟩ = |S ′
z = m⟩,m = +S, ...,−S. The steady state density

matrix is diagonal in |m⟩ basis: ρ(st)S =
∑

m p
(st)
m |m⟩⟨m|. In order to determine the occupation

probabilities p(st)m in the steady state we rewrite equation (3.40) as

dpc
dt

=
∑
m

(
η′ijS

′
i
cm
S ′
j
mc
pm − η′ijS

′
i
mc
S ′
j
cm
pc
)
= 0, η′ = RTηR = J ′Π(0)J ′T . (4.16)

In the matrix form this equation reads

dpc
dt

=
∑
m

L0
capm. (4.17)

In a single hop process for the magnetic impurity S ′
z can change only by unity. Therefore, the

matrix L0 is tridiagonal. Its exact form is

L0
cm =


η′+(S(S + 1)−m(m+ 1))/4, c = m+ 1

η′−(S(S + 1)−m(m− 1))/4, c = m− 1

−L0
m+1,m − L0

m−1,m, c = m

, η′± = (η′xx ± iη′xy)∓ i(η′yx ± iη′yy).

(4.18)

The latter case (c = m) represents the probability conservation
∑

c pc = 1 (we assume that L0
S+1,S

and L0
−S−1,−S nullify). We proceed with task of finding the steady state density matrix. The direct

check shows that

p(st)m =
ϑm

Z
, Z =

S∑
m=−S

ϑm, ϑ =
η′+
η′−
. (4.19)

We note that the steady state is of the Gibbsian form. Equation (4.19) allows us to write down the

41



final expression for the density matrix:

ρ
(st)
S =

1

Z
exp (S ′

z lnϑ) =
1

Z
exp

(
RT

zkSk lnϑ
)
. (4.20)

Gibbsian parameter ϑ can simplified to

ϑ =

[
(J ′

xx)
2 + (J ′

yy)
2 + (J ′

yx)
2
]
cothV /2T + 2J ′

xxJ ′
yy[

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2
]
cothV /2T − 2J ′

xxJ ′
yy

. (4.21)

We note that the under the proper choice of the rotation matrix R the product J ′
xxJ ′

yy might be

assumed to be positive. This implies that the state with S ′
z = +S is the most populated in the

steady state. Whenever referring to the lower triangular form of the coupling matrix J we will

assume that this is the case. We parametrize ϑ as

ϑ =
cothV /2T +

√
B

cothV /2T −
√
B

≥ 1, B =
4(J ′

xx)
2(J ′

yy)
2[

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2
]2 , 0 ≤ B ≤ 1. (4.22)

We note that at B = 0 the Gibbsian parameter ϑ = 1 and all states are equally populated at any

voltage. At the same time, in the case B = 1 the impurity becomes fully polarized for V ≫ T .

Therefore, parameter B controls the polarization of the impurity at high voltage V ≫ T . This

parameter will be of uttermost importance in the subsequent sections of the thesis. We mention

that if the electron-impurity coupling matrix preserves angular momentum in the z-direction (in

that case z-direction is not altered by the rotation R), the parameter B = 1. It is possible to check

that B can be written in the rotationally invariant form:

B =
4KzzdetK

(gKzz −K2
zx −K2

zy)
2
. (4.23)

Here K = J TJ is the same matrix that appeared in (4.9) and (4.12). Formula (4.23) is indeed

invariant under left rotations R ∈ SO(3) of the coupling matrix: if J → RTJ , then K → K.

Note that combination similar to B also enters the expression (4.12) for the conductance in the

intermediate regime J T ≪ V ≪ T . This is not a coincidence, as it will be shown later.
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4.2 Statistics of the backscattering current for spin-1/2 mag-

netic impurity

In this section, we consider only the case S = 1/2. We obtain the general expression for the

dispersion of the number of electrons ⟨⟨∆N2⟩⟩ backscattered by the magnetic impurity during time

interval t. This quantity is equivalent to the zero-frequency noise of the backscattering current∆I .

Moreover, we derive the cumulant generating function G(λ) in the case V ≫ J T .

The main idea of the section is that the density matrix for S = 1/2 can be decomposed into the

impurity spin operators:

ρλS(t) = βk(t)Sk, k = 0, 1, 2, 3. (4.24)

Note that TrSρλS(t) = 2β0(t). We mention that decomposition (4.24) cannot be applied to magnetic

impurities with S > 1/2. The generalized master equation (3.33) can be written in the following

form:
d

dt
βk = Mλ

kpβp. (4.25)

Here matrixMλ can be represented as

Mλ =

Mλ
00 Mλ

0n

Mλ
m0 Mλ

mn

 =

W λ Uλ
n

V λ
m Zλ

mn

 , m, n = 1, 2, 3. (4.26)

Before writing down the explicit form ofW λ, Uλ
n , V λ

m, and Zλ
mn we introduce two functions:

T λ
1 = 2 cos

λ

2

(
coth

V

2T
cos

λ

2
− i sin

λ

2

)
, T λ

2 = 2 sin
λ

2

(
coth

V

2T
sin

λ

2
+ i cos

λ

2

)
.

(4.27)

Then the explicit calculation shows that

Uλ
n = i

πV

16
χnT

λ
1 tan

λ

2
, V λ

m = −iπV
4
χmT

λ
2 cot

λ

2
,

W λ = −πV
8
gT λ

2 , Zλ
mn = −πT

2
Γmn −

πV

4
QmnT

λ
2 . (4.28)

We remind that Γ is given by equation (4.7), g = Kxx + Kyy, K = J TJ . Moreover, we used a

new notation:

Qmn = JmxJnx + JmyJny −
g

2
δmn. (4.29)

Note thatW λ=0 = 0 and Uλ=0
n = 0 which guarantees trace preservation for λ = 0. Our goal is to

find the eigenvalue ϵλ1 of Mλ with the largest real part. In order to do that, we need to solve the
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secular equation

det
(
Mλ − ϵλI4×4

)
= 0. (4.30)

This equation is equivalent to

(
W λ − ϵλ − Uλ

n

(
Zλ − ϵλI3×3

)−1

nm
V λ
n

)
det
(
Zλ − ϵλI3×3

)
= 0. (4.31)

We know that ϵλ=0
1 = 0 so the overall determinant should be zero at λ = 0. However, detZλ=0 ̸= 0.

Therefore, the equation we investigate further is

W λ − ϵλ − Uλ
n

(
Zλ − ϵλI3×3

)−1

nm
V λ
n = 0. (4.32)

In fact, this equation contains the information about all four eigenvalues of the matrixMλ.

4.2.1 Zero-frequency noise

We substitute tϵλ1 ≈ iλ⟨∆N⟩ − λ2⟨⟨∆N2⟩⟩/2 into equation (4.32). Expanding the overall expres-

sion up to the second order in λ we find ⟨∆N⟩ and ⟨⟨∆N2⟩⟩. The first cumulant is given by

∆I =
⟨∆N⟩
t

= −πV
8

(
g − V

2T
coth

V

2T
χrΓ

−1
rk χk

)
. (4.33)

Equation (4.33) coincides with (4.9) taken at S = 1/2. Presence of cothV /2T must not disturb

the reader: for V ≫ J T it cancels with cothV /2T coming from Γ−1
rk . To verify this one needs to

use (4.11). Therefore, (V /2T ) cothV /2T multiplier can be safely omitted at all voltages. More

crucially, we get the expression for the zero-frequency noise of the backscattering current:

⟨⟨∆N2⟩⟩
t

=
πT

4

(
V

2T
coth

V

2T
g − V 2

4T 2

(
1 + coth2

V

2T

)
χrΓ

−1
rk χk−

− V 3

8T 3
coth

V

2T
χrΓ

−1
rk

(
2Qkp + δkp

V

2T
coth

V

2T
χiΓ

−1
ij χj − δkpg

)
Γ−1
pl χl

)
(4.34)

It is especially important to consider limit V ≪ T . In that case the third term in the brackets can

be neglected and (4.34) reduces to

⟨⟨∆N2⟩⟩
t

=
πT

4

(
g − χrΓ

−1
rk χk

)
= −2T∆G, ∆G = ∆I/V (4.35)

This equation is the manifestation of the fluctuation-dissipation theorem. Note that the result (4.35)

is non-trivial, because the correction to conductance∆G depends on voltage even at small voltages
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V ≪ T , showing a crossover behaviour at V ∼ J T .

If we are interested in the limit V ≫ J T , than we can simplify equations (4.33) and (4.34) by

using (4.11) as it was done when obtaining (4.12) from (4.9). We use parameter B, defined earlier

in equations (4.22) and (4.23). Moreover, we introduce a new parameter C which is defined as

C = 1−
K2

zx +K2
zy

gKzz

. (4.36)

In terms of the lower-triangular form J ′ of the coupling matrix (4.14) parameter C can be written

as

C =
(J ′

xx)
2 + (J ′

yy)
2 + (J ′

yx)
2

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2 + (J ′
zx)

2 + (J ′
zy)

2
. (4.37)

Note that both B and C lay from 0 to 1. If the electron-impurity interaction preserves z-projection

of the total angular momentum of the system, then both B and C are equal to unity. We note that

the backscattering current in the limit V ≫ J T is given by

∆I =
⟨∆N⟩
t

= −πgV
8

(1−BC). (4.38)

The correction to the current indeed nullifies for B = C = 1. Zero-frequency noise can be ex-

pressed as
⟨⟨∆N2⟩⟩

t
=
πgV

8
tanh

V

2T

(
1−B2C +

1−BC

sinh2 V /2T

)
. (4.39)

Crucially, zero-frequency noise has a crossover from ⟨⟨∆N2⟩⟩ ∝ T to ⟨⟨∆N2⟩⟩ ∝ V at V ∼ T .

We will investigate this equation in more details in Chapter 5. Nowwe proceed with the calculation

of the cumulant generating function of the backscattering current for V ≫ J T .

4.3 The full counting statistics

In the general case, when the ratio between voltage and temperature is arbitrary, it is impossible

to evaluate the full counting statistics of the backscattering current. Still, if the mean-field term

in the master equation (3.37) is much larger than the relaxation term, i.e. V ≫ J T , it possible

to determine the whole cumulant generating function G(λ) or, at least, its behavior at moderately

small λ. In the present section, we discuss the respective derivation and highlight the criteria of the

validity for the obtained answers. The central equation for this subsection is (4.32).

The main problem we face is inversion of the matrix Zλ − ϵλI3×3 in equation (4.32). If we

were to explicitly invert this matrix, we would get a fourth order equation for ϵλ that cannot be
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straightforwardly solved. However, the simplification comes from the fact that we are interested

in the root ϵλ1 for which ϵλ=0
1 = 0. In that case, the mean-field term ∝ J V in Γ dominates in the

expression for Zλ at V ≫ J T (see equation (4.28) for details). This allows us to use the matrix

inversion trick (4.11) and get a quadratic equation for ϵλ. The corresponding roots are given by

ϵλ = −πgV
8

coth
V

2T

(
(1− C)Pλ + C

[
1∓

√
1 + (B − 1)

(
P2λ −

sin2 λ
cosh2(V /2T )

)])
.

(4.40)

In this expression we introduced

Pλ = 1− cosλ+ i tanh
V

2T
sinλ. (4.41)

One can see that the root nullifying at λ = 0 corresponds to minus sign in expression (4.40). At

the moment, we know two solutions of (4.28), they are both∝ J 2max(V, T ). Two other solutions

are non-zero at λ = 0 and have a large imaginary part ∝ J V that corresponds to quick rotation in

the mean-field. We will briefly describe these roots for V ≫ T later.

In any case, we get the expression for the cumulant generating function, that is valid at least for

small λ:

ϵλ1 = −πgV
8

coth
V

2T

(
(1− C)Pλ + C

[
1−

√
1 + (B − 1)

(
P2λ −

sin2 λ
cosh2(V /2T )

)])
.

(4.42)

This equation can be utilized to find all finite cumulants ⟨⟨∆Nn⟩⟩/t: they can be calculated ac-

cording to (3.36). For example, expanding the generating function (4.42) up to the second order

in λ, we immediately get equation (4.33) for average backscattering current and equation (4.39)

for zero-frequency noise. We note that each sine and cosine function entering expression (4.42)

can be decomposed into exponents e−iλ and eiλ. In that case, terms ∝ e−iλ correspond to regular

backscattering processes that reduce the current flowing along the helical edge. At the same time,

terms ∝ eiλ correspond to scattering processes that induce a positive contribution to the current.

The latter processes are induced by thermal fluctuations. Indeed, all terms ∝ eiλ in the cumulant

generating function (4.42) disappear in the limit V ≫ T .

When investigating the backscattering processes it is generally a good idea to get rid of thermal

fluctuations by applying large voltage V . Therefore, in the remainder of the text we focus on the

regime V ≫ T .
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4.3.1 Cumulant generating function in the high voltage regime

We start the discussion by simplifying the cumulant generating function (4.42) for V ≫ T . First

of all, we note that in the considered limit Pλ = 1− e−iλ. In other words, Pλ is proportional to the

cumulant generating function of an ideal Poisson backscattering process. Overall, we obtain

ϵλ1 = −πgV
8

(
(1− C)(1− e−iλ) + C

[
1−

√
1− (1−B)(1− e−2iλ)

])
. (4.43)

In order to elucidate the physical meaning of the generating function (4.43) we switch to the lower

triangular form J ′ of the electron-impurity coupling matrix J (4.14). We remind that in this case

B =
4(J ′

xx)
2(J ′

yy)
2[

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2
]2 , C =

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2

(J ′
xx)

2 + (J ′
yy)

2 + (J ′
yx)

2 + (J ′
zx)

2 + (J ′
zy)

2
.

Both parameters B and C lay from zero to unity. As it was mentioned, B describes polarization

of the magnetic impurity in the steady state for V ≫ T (see (4.22) for details). If B = 0, then

the impurity is not polarized, it occupies all of its states with equal probability. At the same time,

B = 1 corresponds to the full polarization of the impurity along z-direction (in the rotated basis).

Parameter C describes the relative weight of different processes of electron-impurity interac-

tion. Processes, associated with J ′
xx, J ′

yy, and J ′
yx are responsible for processes in which impurity

spin-flips are accompanied with electron spin-flips. Therefore, each time spin of the impurity flips

due to these processes, a single electron is backscattered (at V ≫ T ). On the contrary, coupling

constants J ′
zx and J ′

zy induce backscattering processes, that are not accompanied with impurity

spin-flips. In this processes the magnetic impurity is effectively frozen, i.e. it behaves in a classi-

cal way. From these considerations, we conclude that backscattering processes with no impurity

spin-flips are prohibited (J ′
zx = J ′

zy = 0) if parameter C = 1. At the same time, if C = 0, then

J ′
xx = J ′

yy = J ′
yx = 0 and the impurity is fully classical, i.e. no backscattering processes lead to

the flipping of the impurity spin.

To clarify the physical meaning of (4.43) we stick to the limit 1−B ≪ 1. In that case we can

expand the square root and obtain

ϵλ1 = −πgV
8

(
(1− C)(1− e−iλ) +

1

2
C(1−B)(1− e−2iλ)

)
. (4.44)

Equation (4.44) implies that if the magnetic impurity is almost fully polarized, then the resultant

backscattering process is a sum of independent single-particle Poisson backscattering and pairwise

Poisson backscattering. Backscattering in pairs can be easily explained qualitatively, as it was done
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in [29]. The main idea is that the pairing of electrons happens due to processes of simultaneous

electron and impurity spin-flips. First of all, the magnetic impurity backscatters a single electron,

hopping from |S ′
z = 1/2⟩ to |S ′

z = −1/2⟩. However, when the impurity is almost fully polarized

(1 − B ≪ 1), the occupation of the latter state is very improbable and the impurity immediately

hops back. This leads to reflection of another electron. Overall, a pair is reflected. The discussed

contribution to the cumulant generating function indeed nullifies when J ′
xx = J ′

yy = J ′
yx = 0, i.e.

C = 0.

Single-electron Poisson backscattering happens due to processes associated with J ′
zx and J ′

zy

coupling constants. As we discussed, these processes lead to classical backscattering of electrons

that is not accompanied with impurity spin-flips. Therefore, single-electron Poisson nature of the

backscattering is not surprising. Importantly, rate of scattering due to processes induced byJ ′
zx and

J ′
zy is ∝ S ′

z
2, as indicated by Fermi’s golden rule (the corresponding terms in the Hamiltonian are

J ′
zxS

′
z ŝx and J ′

zyS
′
z ŝy). Therefore, the rate is constant for magnetic impurities with S = 1/2. Later

we will demonstrate that the dependence of scattering rate on Sz will lead to a crucial difference

in statistics of backscattering for magnetic impurities with S > 1/2. Finally, we note that single-

electron contribution nullifies when J ′
zx = J ′

zy = 0, i.e. C = 1.

At smaller B . 1 the cumulant generating function (4.43) for the backscattering current still

can be decomposed into the single-electron part and two-electron part. While single-particle part

describes a Poisson process for arbitraryB, statistics of two-electron reflections becomes less trivial

due to long-time correlations.

4.3.2 Additional roots of the secular equation

Finishing the present chapter, we discuss additional roots of equation (4.32) for V ≫ T . As it

was mentioned previously, (4.43) works well provided we are interested in sufficiently small λ.

However, at larger λ solution for the generating function might alter. First of all, we note that for

B < 1/2 the square root in (4.43) becomes ambiguous at points λ = π/2 and λ = 3π/2. Therefore,

one has to be careful when choosing the branch of the square root. A more subtle issue comes from

two additional roots of equation (4.32). It is possible to check that these roots are given by

ϵλ = ±iV
2

√
Kzz −

πgV

8

[
2− C − (1− C)(1− e−iλ)

]
. (4.45)

Note that the imaginary part for these two roots is always parametrically larger than the real part.

The large imaginary part appears due to the mean-field term in the generalized master equation

(3.33). One can verify that additional roots are important only when C < 2/3. Moreover, the real
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part of these roots is larger than the real part of (4.43) only in the regime |λ − π| ≤ λC , where

0 ≤ λC ≤ π/2.

To sum up, for C > 2/3 and B > 1/2 the cumulant generating function for any λ is given

by (4.43). Otherwise, equation (4.43) gives G(λ) for λ < π/2, while for λ > π/2 one has to be

more careful when calculating the cumulant generating function. However, the respective analysis

is beyond the scope of the present thesis.
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Chapter 5

Fano factor of the backscattering current

In this chapter, we continue to study the statistics of the backscattering current, induced by the

magnetic impurity at the edge of a 2D TI.We stick to the limit V ≫ T in which thermal fluctuations

of the backscattering current can be omitted. One of the principal goals of the chapter is to analyse

magnetic impurities with arbitrary spin S. Keeping this in mind, we restrict our analysis to the first

two cumulants of the number of backscattered electrons∆N . The main results we obtained are the

following:

• We calculated the Fano factor of the backscattering current forS = 1/2 for arbitrary structure

of the electron-impurity coupling matrix Jij . We proved that the Fano factor lies strictly

between 1 and 2, generalizing the result of [29].

• We demonstrated that for any S the Fano factor can be expressed as a function of two di-

mensionless parameters B and C.

• We analyzed the Fano factor for arbitrary S in the limit 1− B ≪ 1, i.e. when the magnetic

impurity is almost fully polarized.

• We analyzed the Fano factor for arbitrary S in the limit B ≪ 1, i.e. when the magnetic

impurity is completely smeared over all of its levels.

• Based on the limiting cases, we qualitatively described the behavior of the Fano factor for

arbitrary S, C, and B.
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5.1 General remarks

In our problem, we define the Fano factor of the backscattering current as the following ratio:

F = −⟨⟨∆N2⟩⟩
⟨∆N⟩

, V ≫ T. (5.1)

Both cumulants ⟨∆N⟩ and ⟨⟨∆N2⟩⟩ of the backscattering current scale linearly with time. This

implies that the Fano factor is a constant number. We underline that the Fano factor is defined for

the backscattering current ∆I and not for the total current.

Generally speaking, the Fano factor gives the information about the correlations in the process

of electron backscattering. It has a transparent physical meaning: F estimates the number of sub-

sequent electrons that backscatter in a correlated way. For example, if the backscattering of helical

edge electrons is a single-electron Poisson process, then F = 1. If electrons backscatter in pairs

and reflection of pairs is a Poisson process, then F = 2. For three-electron Poisson backscattering

F = 3 and so on. Throughout this chapter we will stick to the lower triangular form J ′ of the

coupling matrix J . For this reason, in the remainder of the thesis we omit all primes. Instead of

using J ′, we simply assume that

J =


Jxx 0 0

Jyx Jyy 0

Jzx Jzy Jzz

 . (5.2)

This will not cause any confusion, because all of the results for the Fano factor will be expressed

through rotationally invariant dimensionless quantitiesB and C. Rotationally invariant definitions

of these parameters are presented in (4.23) and (4.36) respectively. Alternative expressions for B

andC in terms of the lower triangular form of the couplingmatrix are presented in (4.22) and (4.37).

We remind the reader of the physical meaning of B and C. Parameter B satisfies 0 ≤ B ≤ 1 and

describes the polarization of the magnetic impurity at V ≫ T . Indeed, according to (4.22), the

Gibbs parameter ϑ can be expressed through B in the following way:

ϑ =
1 +

√
B

1−
√
B
, V ≫ T. (5.3)

Therefore, B = 0 means that the impurity is equally distributed among its states, while B = 1

corresponds to a fully polarized magnetic impurity. Parameter C also satisfies 0 ≤ C ≤ 1. It

describes the importance of electron scattering processes, that occur without the impurity spin-flips.
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For C = 0 each electron backscattering process leads to the impurity spin-flip, while at C = 1 the

impurity spin does not flip at all. Finally, we mention that if the electron-impurity coupling is of

the lower triangular form (5.2), then the effective Zeeman mean-field ∝ J V is aligned with the

z-axis.

5.2 Fano factor for spin-1/2 magnetic impurity

According to equations (4.38) and (4.39), the Fano factor for the backscattering current in the spin-

1/2 case is given by

F =
1−B2C

1−BC
. (5.4)

One can easily see that for 0 ≤ B,C ≤ 1, the Fano factor satisfies

1 ≤ F ≤ 2. (5.5)

As we will see later, presence of the upper bound constitutes one of the unique features of the

case S = 1/2. Equation (5.4) generalizes the result of [29] to the arbitrary form of the electron-

impurity coupling matrix. Now we consider several particular cases. First of all, forB = 1 and for

arbitraryC the Fano factor is strictly unity. This corresponds to a single-electron Poisson reflection

of electrons from the magnetic impurity, described in subsection 4.3.1. F = 1 is a well expected

result: indeed, according to (5.3), at B = 1 the dynamics of the impurity is frozen so that the

impurity is effectively classical. If, on the contrary, C equals to unity, then F = 1+B. Fano factor

is larger than 1 because when C = 1 all backscattering processes are accompanied with impurity

spin-flips. This leads to correlations in the reflection of subsequent electrons. If, moreover,B → 1,

then F → 2. That means that particles reflect in independent pairs, i.e. the reflection of pairs is

a Poisson process. This conclusion is consistent with (4.44). Interestingly, we can see that the

precise value of the Fano factor in the pointB = C = 1 is indeterminate because F depends on the

direction in which the point is approached. Let us assume that 1−C = ρ cosϕ and 1−B = ρ sinϕ,

where ρ≪ 1. In that case, the dependence of the Fano factor on the direction ϕ is described by the

following simple relation:

F = 2− 1

tanϕ+ 1
. (5.6)

The sensitivity ofF to the direction ϕ is explained by the fact that the average backscattering current

nullifies at B = C = 1, as well as all other cumulants of the number of backscattered electrons.

Therefore, B = C = 1 is an exceptional point for F . We plot the behaviour of the Fano factor
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(5.4) for different values of C and B in Figure 5.1.

5.3 Rotating wave approximation for the generalized master

equation

In order to investigate the Fano factor of the backscattering current for arbitrary S we can utilize

V ≫ J T and work with a simpler classical version of the generalized master equation. Just as it

was done with the master equation (3.37) at λ = 0, we use the rotating wave approximation (RWA)

to simplify the problem at λ ̸= 0. The resultant generalized master equation for the diagonal

elements of the density matrix is

dpc
dt

=
∑
m

Lλ
cmpm, c,m = +S, ...,−S. (5.7)

Here matrix Lλ = L0 + ∆Lλ. Matrix L0 is given by (4.18) with omitted primes. In the limit

V ≫ T , ∆Lλ reduces to

∆Lλ = (e−iλ − 1)R, Rcm =

L
0
cm c ̸= m

ηzzc
2 c = m

. (5.8)
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Figure 5.1: F for different values of parameters C andB in the case S = 1/2. Notice that the Fano
factor is bounded from below and from above 1 ≤ F ≤ 2.
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In that case, just as it was done before, the cumulant generating function can be extracted as the

eigenvalue ϵλ1 of the matrixLλ
cm with the largest real part. For the sake of convenience, we introduce

another dimensionless quantity

κ =
ηzz
η−

=
1

1−
√
B

1− C

C
. (5.9)

Note that κ = 0 for C = 1 and κ→ +∞ for C → 0 as well as for B → 1 at any given C.

5.3.1 Spin-1/2 case within RWA framework

It is elucidating to revisit S = 1/2 case, considered in the previous chapter, using RWA to obtain

the cumulant generating function. The generalized master equation (5.7) reads

d

dt

p+1/2

p−1/2

 =
η−
4

−1 + κ(e−iλ − 1) ϑe−iλ

e−iλ −ϑ+ κ(e−iλ − 1)

p+1/2

p−1/2

 . (5.10)

Equation (5.10) has a transparent physical meaning. First of all, we note that for V ≫ T each

impurity spin-flip leads to the backscattering of a single electron. Therefore, all impurity spin-flips

should be counted when investigating the backscattering current. And that is indeed the case, as it

is indicated by the presence of multiplicative counting factors e−iλ near the terms responsible for

the impurity spin-flips in equation (5.10). Secondly, we see that there are terms κ(e−iλ − 1) on

the diagonal. These contributions demonstrate that even when the impurity stays in the same state,

electrons can be backscattered by processes associated with the coupling constants Jzx and Jzy.

Using master equation (5.10) we extract the cumulant generating function.

ϵλ1 = −η−
4

(
κ(1− e−iλ) +

1 + ϑ

2
− 1 + ϑ

2

√
1− 4ϑ

(1 + ϑ)2
(1− e−2iλ)

)
. (5.11)

Substitution of (5.3) and (5.9) into this expression demonstrates that this result is in the full agree-

ment with the exact generating function (4.43).

5.4 Perturbation theory for the generalized master equation

From now on we focus on magnetic impurities with large spin, i.e. we assume that S > 1/2. In

this subsection, we find the explicit expression for the Fano factor with the help of the perturbation

theory in λ.
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To begin with, let us briefly recap the perturbation theory for non-Hermitian matrices and derive

a general expression for the Fano factor. To this end, we consider the equation for the eigenvalue

ϵλ1 of Lλ = L0 +∆Lλ:

Lλ|0λ⟩⟩ = ϵλ1 |0λ⟩⟩. (5.12)

Here we introduced the ket-notation |0λ⟩⟩ for the right eigenvector of the matrix Lλ. Additionally,

we introduce the shortened notation for the stationary state density matrix: |0⟩⟩ = |0λ=0⟩⟩. We

remind that

|0⟩⟩ = 1

Z
(
ϑS, ϑS−1, ..., ϑ−S

)T
, ϵλ=0

1 = 0. (5.13)

The left eigenvector of L0 corresponding to ϵλ=0
1 = 0 is

⟨⟨0̃| = (1, 1, ..., 1). (5.14)

Having discussed the notations, we seek for the perturbative expansion for |0λ⟩⟩ and ϵλ1 . We fix the

normalization of |0λ⟩⟩ as ⟨⟨0̃|0λ⟩⟩ = 1. In that case, we obtain the exact expression

ϵλ1 = ⟨⟨0̃|∆Lλ|0λ⟩⟩. (5.15)

In order to exploit this equation further, we need to find |0λ⟩⟩. Trivial algebra yields

L0|0λ⟩⟩ = (ϵλ1 −∆Lλ)|0λ⟩⟩. (5.16)

The matrix L0 is not invertible since it has a zero eigenvalue. However, it may be inverted in the

subspace in which the zero mode is excluded. In other words, there exists operator G such that

GL0 = 1− |0⟩⟩⟨⟨0̃|. (5.17)

For a moment, let us assume that we know G and proceed further. We will construct it explicitly

later. Multiplying (5.16) by G from the left we get

|0λ⟩⟩ = |0⟩⟩+ G(ϵλ1 −∆Lλ)|0λ⟩⟩. (5.18)

Using Eqs. (5.15) and (5.18) the perturbation theory may be constructed in an algorithmic way. To

do that, we expand

∆Lλ = L1λ+ L2λ
2 + ..., ϵλ1 = ϵ1,1λ+ ϵ1,2λ

2 + ... (5.19)

55



and obtain

ϵ1,1 = ⟨⟨0̃|L1|0⟩⟩, ϵ1,2 = ⟨⟨0̃|L2|0⟩⟩ − ⟨⟨0̃|L1GL1|0⟩⟩. (5.20)

Then we obtain the following expression for the Fano factor:

F = 2i

(
⟨⟨0̃|L2|0⟩⟩
⟨⟨0̃|L1|0⟩⟩

− ⟨⟨0̃|L1GL1|0⟩⟩
⟨⟨0̃|L1|0⟩⟩

)
. (5.21)

We refer to the explicit structure of∆Lλ in the limit of large voltages. According to equation (5.8)

for V ≫ T we have L1 = −iR, L2 = −R/2. Hence, we find

F = 1− 2
⟨⟨0̃|RGR|0⟩⟩
⟨⟨0̃|R|0⟩⟩

. (5.22)

This is a central expression for the consequent sections. Yet, in order to employ (5.22) we need to

know the explicit structure of the matrix G. To determine it, we construct the orthogonal comple-

ment to the vectors |0⟩⟩ and ⟨⟨0̃|. By that we mean two sets of 2S linearly independent vectors,

|α⟩⟩ and ⟨⟨α̃| which satisfy

⟨⟨α̃|0⟩⟩ = ⟨⟨0̃|α⟩⟩ = 0, α = 1, 2, ...2S. (5.23)

Projecting equation (5.17) onto states ⟨⟨α̃| and |β⟩⟩ we obtain

Gαγg
−1
γδ L

0
δβ = gαβ. (5.24)

Here gαβ = ⟨⟨α̃|β⟩⟩ is a Gramian matrix for the described vector sets. To derive equation (5.24)

we resolved unity as

1̂ = |0⟩⟩⟨⟨0̃|+
2S∑

α,β=1

|α̃⟩⟩g−1
αβ⟨⟨β|. (5.25)

In contrast to the full evolution operator, the 2S × 2S matrix L0
δβ is invertible. Hence, we find

Gαβ = gαδ
(
L0
)−1

δγ
gγβ. (5.26)

Substitution of two unity resolutions (5.25) into equation (5.22) yields

F = 1− 2
⟨⟨0̃|R|α⟩⟩ (L0)

−1
αβ ⟨⟨β̃|R|0⟩⟩

⟨⟨0̃|R|0⟩⟩
. (5.27)

At this stage, we need to make a convenient choice of the orthogonal complements ⟨⟨α̃| and |α⟩⟩
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(α = 1, 2, ..., 2S). We found sets of vectors for which L0
αβ is diagonal. The left eigenvector

corresponding to ϵλ=0
1 = 0 is ⟨⟨0̃| = (1, 1, 1, ..., 1). The orthogonal complement to ⟨⟨0̃| is given by

|1⟩⟩ = (1, 0, 0, ..., 0, 0)T − 1

Z
(
ϑS, ϑS−1, ϑS−2, ..., ϑ−S

)T
,

|2⟩⟩ = (1, 1, 0, ..., 0, 0)T − 2

Z
(
ϑS, ϑS−1, ϑS−2, ..., ϑ−S

)T
,

...

|2S⟩⟩ = (1, 1, 1, ..., 1, 0)T − 2S

Z
(
ϑS, ϑS−1, ϑS−2, ..., ϑ−S

)T
. (5.28)

Here, once again, Z =
∑S

m=−S ϑ
m. The orthogonal complement of the right eigenvector |0⟩⟩ is

⟨⟨1̃| = Z
(
ϑ−S, 0, 0, ..., 0, 0

)
− (1, 1, 1, ..., 1),

⟨⟨2̃| = Z
(
ϑ−S, ϑ−S+1, 0, ..., 0, 0

)
− 2(1, 1, 1, ..., 1),

...

⟨⟨2̃S| = Z
(
ϑ−S, ϑ−S+1, ϑ−S+2, ..., ϑS−1, 0

)
− 2S(1, 1, 1, ..., 1). (5.29)

Using expressions (5.28) and (5.29) for L0
αβ = ⟨⟨α̃|L0|β⟩⟩ we find

L0
αβ = −η−

S(S + 1)− (S − α + 1)(S − α)

4

ϑ−S+α−1

Z
δαβ, α, β = 1, 2, ..., 2S, (5.30)

so that L0
αβ is indeed diagonal. Next, we obtain

⟨⟨0̃|R|α⟩⟩ = η−

S∑
m=S−α+1

{
κm2 +

1

4
(S(S + 1)−m(m+ 1))ϑ+

1

4
(S(S + 1)−m(m− 1))

}
−

−η−
α

Z

S∑
m=−S

{
κm2 +

1

4
(S(S + 1)−m(m+ 1))ϑ+

1

4
(S(S + 1)−m(m− 1))

}
ϑm = ⟨⟨α̃|R|0⟩⟩

(5.31)

and, finally,

⟨⟨0̃|R|0⟩⟩ = η−
Z

S∑
m=−S

{
κm2 +

1

4
(S(S + 1)−m(m+ 1))ϑ+

1

4
(S(S + 1)−m(m− 1))

}
ϑm.

(5.32)

Note that according to equations (5.27), (5.30), (5.31), and (5.32), the Fano factor is always larger

than unity. Moreover, we expressed the Fano factor through ϑ and κ only. In turn, this implies that

the Fano factor is a function of C and B only for any S.
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The discussed equations deliver a straightforward method for the evaluation of Fano factor for

any given impurity spin S: all of the aforementioned sums except one can be easily evaluated.

Therefore, in principle we can write down the expression for the Fano factor that has a single

summation. While the obtained result is in general rather bulky and not very practical, it allows

for an elegant description of the case B ≪ 1, in which the stationary state density matrix of the

magnetic impurity is proportional to the identity matrix.

5.4.1 Fano factor for a non-polarized magnetic impurity

In the limit B ≪ 1 the Gibbs factor is close to unity, ϑ = (1 +
√
B)(1−

√
B) ≈ 1, and the steady

state density matrix is approximately

|0⟩⟩ = 1

2S + 1
(1, 1, 1, ..., 1)T . (5.33)

Therefore, the magnetic impurity occupies all of its 2S + 1 states with equal probability. In that

case it is possible to analytically perform of the summations in equations (5.27), (5.30), (5.31), and

(5.32). We find

⟨⟨0̃|R|0⟩⟩ = η−
1

3
S(S + 1)(2S + 1)2(1 + κ),

⟨⟨0̃|R|α⟩⟩ = η−
2S + 1

12
α(2S + 1− α)(2S + 1− 2α)(1− 2κ). (5.34)

As a result, we conclude

F = 1 +
(2S − 1)(2S + 3)

45

(1− 2κ)2

1 + κ
= 1 +

(2S − 1)(2S + 3)

45

(3C − 2)2

C
. (5.35)

This expression is remarkable for several reasons:

• For S = 1/2 the Fano factor of the backscattering current is unity in the considered limit.

• The Fano factor for B ≪ 1might be larger than 2, in the contrast to the case S = 1/2. If we

consider C = 1, we find that F < 2 for the magnetic impurity with S < 3, F = 2 for the

impurity with S = 3, and F > 2 for S > 3.

• F = 1 for C = 2/3. For any fixed C ̸= 2/3 the Fano factor scales as S2 in the limit S ≫ 1.

• The Fano factor diverges atC = 0. This peculiaritymight seem surprising at first, but wewill

demonstrate that it is common for any 0 ≤ B < 1. Physical reasoning for this divergence

will be also provided later.
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5.5 Fano factor for a polarized magnetic impurity

In this section we consider the limit 1−B ≪ 1. This regime corresponds to the large Gibbs factor

ϑ ≃ 4/(1−B) ≫ 1, i.e. to the almost fully polarized state of the magnetic impurity.

In terms of the magnetic impurity dynamics, the impurity spin almost always stays in the state

with Sz = S and rarely jumps to the Sz = S − 1 state. Therefore, in the leading non-trivial

approximation only two levels with the largest occupations may be considered for the evaluation

of the Fano factor. Projecting the generalized master equation (5.7) onto the subspace Sz = S, S−1

we see that to required order in λ the generating function of the backscattering current is given by

the solution of the secular equation

det

S2
(
e−iλ − 1

)
ηzz − Sη−/2− ϵλ Sη+e

−iλ/2

Sη−e
−iλ/2 (S − 1)2

(
e−iλ − 1

)
ηzz − Sη+/2− ϵλ

 = 0 (5.36)

with the largest real part. We use this expression to analyze various limiting cases. First, we assume

that 1− C ≫ 1−B. Then we find

F = 1 +
1−B

1− C

(2S − 1− C(3S − 1))2

2CS3
. (5.37)

The Fano factor at B = 1 is strictly unity. At finite fixed 1 − B expression (5.37) contains diver-

gence at small C, just as it was in the case B ≪ 1 (see (5.35) for details). Note that if we fix the

ratio of small C and small 1 − B constant and then reduce C, the Fano factor saturates at a finite

value. Let us assume C = ρ cosϕ, 1−B = ρ sinϕ, and ρ→ 0. Then

F = 1 + tanϕ
(2S − 1)2

2S3
. (5.38)

For S > 1/2 the Fano factor changes from 1 to∞ as ϕ is changed from 0 to π/2. It is important to

underline that for S ≫ 1 the difference F − 1 goes to zero as 1/S.

As a next step, we consider the exceptional point B = C = 1 with ⟨⟨∆Nn⟩⟩ = 0. Near this

point the Fano factor also depends explicitly on the direction in which we approach the exceptional

point. Once again, we fix some direction ϕ: 1 − C = ρ cosϕ, 1 − B = ρ sinϕ and then reduce ρ

to zero. In that case, the limiting expression for the Fano factor is

F = 2− 2S

tanϕ+ 2S
. (5.39)

Notice, that in the this regime the Fano factor changes from 1 to 2 smoothly as ϕ changes from 0
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(B = 1) to π/2 (C = 1). For S = 1/2 equation (5.39) coincides with equation (5.6). In the next

subsection we show that for C = 1 the Fano factor may exceed 2 in the regime 1 − B ≪ 1. To

capture that it is necessary to take into account transitions between three levels with the highest

occupation probabilities.

5.5.1 Three-level regime

In a three-level model for the case C = 1 the generating function of the backscattering current is

given as solution of the secular equation

det


−η− S

2
− ϵλ η+

S
2
e−iλ 0

η−
S
2
e−iλ −η+ S

2
− η−

2S−1
2

− ϵλ η+
2S−1

2
e−iλ

0 η−
2S−1

2
e−iλ −η+ 2S−1

2
− ϵλ

 = 0 (5.40)

with the largest real part. To the first order in 1−B we find

F ≃ 2 +
S − 1

S
(1−B). (5.41)

Therefore, for the magnetic impurity with spin S > 1 the correction to F = 2 of the first order in

1 − B is positive. At the same time, for S = 1 it nullifies and for S = 1/2 it is negative which is

consistent with equation (5.4) that limits the Fano factor to the interval 1 ≤ F ≤ 2. Note that our

three-level scheme gives the correct result for the spin-1/2 (two-level) case.

5.6 Qualitative discussion

5.6.1 Polarized impurity

First of all, forB = 1we findF = 1. This result is expected and physically justified becauseB = 1

corresponds to the classical magnetic impurity that always stays in the state Sz = S. Therefore, the

only allowed backscattering processes happen due to Jzx and Jzy terms in the impurity-electron

coupling. These terms are responsible for the scattering of helical edge electrons not accompanied

with impurity spin-flips. This means that the impurity does not keep memory about backscattered

electrons leading to Poisson single-electron reflection process with F = 1. Realistic graph of the

backscattering current as a function of time is shown in Figure 5.2.

For finite but small difference 1 − B rare correlated two-particle reflections enter the picture

described above. These two-particle processes happen because at some moments of time the im-
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purity spin flips to the state Sz = S− 1, lives there for a very short time, and then flips back. Each

flipping leads to a single backscattered electron resulting in an overall two-particle scattering. This

results in F − 1 ∝ 1−B. The backscattering current as a function of time is plotted in Figure 5.3.

For S = 1/2 and 1−B ≪ 1 we have shown explicitly that the backscattering is a superposition of

independent Poisson single-particle and two-particle processes (see equation (4.43) for details).

5.6.2 Exceptional point

Although for 1 − B ≪ 1 and for generic C . 1 the physical picture described above is valid,

some care is needed near the point B = C = 1. This point corresponds to the absence of the

backscattering current because B = C = 1 implies Jzx = Jzy = Jyx = 0 and Jxx = Jyy. For

this reason, the value of the Fano factor becomes sensitive to the direction at which we approach

the exceptional point, as indicated by formula (5.39). For B = 1, C → 1 Fano factor is exactly

unity because the only backscattering is due to Jzx and Jzy. For C = 1, B → 1 Fano factor is

close to two as Jzx = Jzy = 0 and the only backscattering happens in pairs due to the double-flip

mechanism (see Figure 5.4).

5.6.3 Divergence of the Fano factor

As it was shown, the Fano factor for the impurity with a large spin diverges as 1/C at small C if

1 − B ≪ 1 (see equation (5.37)) and if B ≪ 1 (see Eq. (5.35)). We find that for S > 1/2 this

behavior is generic, i.e. the divergence at small C happens for any fixedB. This can be easily seen

from equation (5.27). Indeed, when C → 0, parameter κ becomes large and R operator can be

estimated asR ∝ κη−. At the same time, G ∝ 1/η−. Therefore, the resulting expression scales as

F ∝ η−κ ∝ 1/C. Note that for S = 1/2 the additional cancellation happens and the Fano factor

remains finite at small C in accordance with (5.4).

Now we physically interpret the divergence at small C for S > 1/2. For the sake of simplicity,

t, time

|d
Δ
N
/d
t|

Figure 5.2: Sketch of the backscattering
current as a function of time in the case
B = 1. Backscattering is a single-particle
Poisson process.
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t, time

|d
Δ
N
/d
t|

Figure 5.3: Sketch of the backscattering
current as a function of time in the case
B ≈ 1. Rare pairwise reflections (or-
ange) appear.

let us initially assume that S = 1. Then, according to the definition of C, coupling constants

Jzx and Jzy are very large in comparison to Jxx, Jyy, and Jyx provided C is small. Therefore,

the reflection happens mainly due to processes which do not require impurity flips. However,

according to the Fermi Golden rule, the intensity of such processes is proportional to S2
z , because

they enter the Hamiltonian either as JzxSzsx or JzySzsy. This makes the backscattering current

very sensitive to the spin projection of the impurity: for Sz = 1 the backscattering is frequent,

while for Sz = 0 it is suppressed. Then, despite processes associated with Jxx, Jyy, and Jyx terms

in the Hamiltonian are incapable of producing significant backscattering current, they can move the

impurity from one state to another switching efficient backscattering on and off. For this reason,

the backscattering current as a function of time looks like a series of long pulses, each containing

a large number of backscattered electrons (sketched in Figure 5.5). The smaller C is the larger is

the number of electrons in each pulse. Therefore, Fano factor diverges as parameter C is reduced

towards zero.

For spin not equal to unity (e.g. S = 3/2) the pulses look differently because the intensity

might drop less radically between the pulses (not to zero). Still, many-electron correlations are

present and the Fano factor gets large at small C. Interestingly, if we consider some fixed B so

that 1−B ≪ 1 and small C, the Fano factor reduces as spin is increased as indicated by equation

(5.37). That is because in the considered case only states with Sz = S and Sz = S−1 are relevant.

t, time

|d
Δ
N
/d
t|

Figure 5.4: Sketch of the backscattering
current as a function of time in the case
C = 1, 1 − B ≪ 1. Backscattering is a
two-particle Poisson process.
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Therefore, the relative drop of the intensity of the backscattering current between the pulses is

∝ (1− 1/S)2 → 1 as S → +∞. This means that the correlations are smeared for S ≫ 1.

5.6.4 Non-polarized magnetic impurity

In this subsection, we discuss the behavior of the system when B → 0. Small B implies that

the Gibbs factor ϑ ≈ 1 so that the impurity occupies all its levels with approximately the same

probability. Formula (5.35) demonstrates that for large S the Fano factor scales as S2. This can be

easily explained. First of all, we note that temporal dynamics of the impurity is diffusive. Therefore,

if the magnetic impurity starts its motion in some state |Sz⟩, on average ∼ S2 hops happen before

the spin projection returns to its initial value. Therefore, aroundS2 of subsequentmagnetic impurity

flips are correlated. These correlations in the dynamics of the impurity aremimicked by correlations

in the electron backscattering and S2 scaling is reproduced in the Fano factor.

5.6.5 Qualitative description of the intermediate cases

IfC = 1, then each impurity flip leads to a single backscattering event. AsB is increased the system

comes from the diffusive scattering regime to the regime in which electrons are backscattered in

pairs. The Fano factor approaches 2 from below for S = 1/2 and from above for S ≥ 3/2 as it

was shown in (5.41). Interestingly, together with (5.35) this means that the Fano factor changes in

a non-monotonous fashion along the line C = 1 at least for S = 3/2, 2, 5/2, 3.

If both C and B are just some numbers, then typically the Fano factor is close to unity for

S ≫ 1. Interestingly, F seems to be especially close to unity at the lineC = 2/3. For example, the

trace of this fact can be seen in (5.35). Moreover, at any given B so that 1−B ≪ 1 the difference

F −1 is minimal at C = (2S−1)/(3S−1) ≈ 2/3 as indicated by (5.37). Overall, the dependence

of the Fano factor on B and C is summarized in Figure 5.6.

t, time

|d
Δ
N
/d
t|

Figure 5.5: Sketch of the backscattering
current as a function of time in the case
C ≪ 1, S = 1. Backscattering happens
in long pulses.
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Figure 5.6: Different regimes for S >
1/2. For B ≪ 1 (yellow) the impurity
occupies all energy levels with the same
probability, F ∝ S2 for large S. For
1−B ≪ 1 (red) the impurity is almost
fully polarized and only two levels are
relevant, F − 1 ∝ 1 − B. For C ≪
1 (blue) backscattering happens in long
pulses and F ∝ 1/C. In the vicinity of
the point (1, 1) (green) F changes from
1 to 2 depending on the direction. In the
vicinity of (0, 1) (green) the Fano factor
changes from 1 to ∞ depending on the
direction.

Features, indicated in Figure 5.6 and described above, can be identified in Figure 5.7 which

presents the exact map of the Fano factor for the spin-1 impurity. It can be seen that the Fano

factor strongly depends on the direction of approach for points B = 1, C = 0 and B = 1, C = 1.

Moreover, the Fano factor for B < 1 diverges at C ≪ 1 as F ∝ 1/C.
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~
1
/
C

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C

B

1.0

1.5

2.0

2.5

3.0

Figure 5.7: F for different B and C in the case S = 1. The divergence F ∼ 1/C for C ≪ 1 is a
general feature of S > 1/2. Near C = B = 1 Fano factor changes from 1 to 2.
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Chapter 6

Conclusion

In the present thesis we considered the electrical current flowing along the edge of a two-dimensional

topological insulator. We assumed that a single magnetic impurity with spin S is located near the

edge. The goal of the work was to investigate the statistics of backscattering current ∆I induced

by the impurity when finite voltage V is applied to the edge. Main results of the thesis are the

following:

• We derived the generalized master equation for the density matrix of the magnetic impu-

rity (3.33). This equation can be used to calculate the cumulant generating function of the

backscattering current.

• We studied the stationary state of the magnetic impurity. For V ≫ J T its the steady state

density matrix is given by (4.19).

• We obtained the general expression (4.3) that links the backscattering current to impurity

spin averages ⟨Si⟩ and ⟨SiSj⟩ calculated in the steady state.

• Using (4.3) we evaluated the average backscattering current for arbitrary S for V ≪ T . The

result is given by the equation (4.9). The backscattering conductance∆G has a crossover at

V ∼ J T . For S = 1/2 the backscattering conductance saturates just after the crossover at

V ∼ J T . For S > 1/2 the backscattering conductance saturates at V ∼ T .

• ForS = 1/2we obtained expression (4.34) for the zero-frequency noise of the backscattering

current that is valid at arbitrary voltage.

• In the case S = 1/2 and V ≫ J T we derived the full cumulant generating function (4.42).

We found that for certain parameters of the system.
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• We realized that for any S the Fano factor of the backscattering current can be expressed as a

function of two dimensionless parameters of the electron-impurity coupling matrix. The first

parameter is called B, it satisfies 0 ≤ B ≤ 1 and is given by (4.22). The second parameter

C is also from zero to unity, it is given by (4.36).

• We calculated the Fano factor for 1 − B ≪ 1 - see equation (5.37). Moreover, we derived

the expression for the Fano factor in the limit B ≪ 1 - see equation (5.35).

• Finally, we discussed the behavior of the Fano factor for arbitrary S, C and B.

In the future research, we will try to understand how electron-electron interactions alter the picture

of the helical edge transport described above.
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