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Chapter 1

Introduction

In the recent years, condensed matter systems which exhibit topologically non-trivial order re-

ceived a lot of attention. A family of materials known as topological insulators is among the most

prominent and well-established examples of those [1, 2, 3].

Topological insulators are novel semiconducting structures that behave as insulators in the bulk

and, at the same time, are characterized by the existence of highlymobile electronic states propagat-

ing along the sample boundary. The emergence of such states stems from the non-trivial topology

of the band structure which is induced in topological insulator materials by a strong spin-orbit in-

teraction. These boundary states, commonly referred to as edge states in two-dimensional (2D)

systems and surface states in three-dimensional (3D) systems, possess linear dispersion that spans

the band gap. Spin-orbit coupling enforces spin-momentum locking of edge and surface states: the

direction of their motion is rigidly tied with a spin degree of freedom.

Examples of 3D topological insulators include Bi2Te3, Bi2Te2Se, Sb2Te3, and many others [4].

The energy dispersion of surface states in thesematerials forms aDirac conewhich is spin-polarized

in a helical way (see Fig. 1.1). The presence of such Dirac cone in 3D topological insulators was

revealed experimentally via the angle-resolved photoemission spectroscopy measurements [5, 6].

In 2006, Bernevig, Hughes, and Zhang theoretically predicted [8] that 2D topological insulators

can be realized in CdTe/HgTe/CdTe quantum wells (for the sketch of a realistic setup see Fig. 1.2).

Figure 1.1: Surface states energy dispersion E(k) for a 3D topo-
logical insulator. E(k) forms a Dirac cone. For every k spin of the
surface state (depicted in red) is perpendicular to its momentum.
Consequently, the cone is spin-polarized helically. The image is
adapted from [3].
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It was shown that the topological state of a quantum well (QW) depends on the thickness d of the

intermediate HgTe layer. If d is smaller than the critical value dc ≃ 6.3 nm, then the QW is in a

trivial regime. As the thickness increases, the gap between spatially quantized electron and hole

bands of the heterostructure drops down and nullifies at d = dc. For d > dc the gap opens up again,

although the order of the bands gets inverted. As a result, the QW enters a topologically non-trivial

phase which manifests itself in a presence of the edge states. This prediction was soon confirmed

experimentally [9, 10]. Later, other examples of 2D topological insulators were discovered. Among

them are InAs/GaSb heterostructures [11], bismuth bilayers [12], and WTe2 monolayers [13].

The spectrum of the edge states of the 2D topological insulator consists of two linear branches

that cross at the Γ-point (see Fig. 1.3). The branches bear a helical character: counter-propagating

states have opposite spin projection on the direction perpendicular to the plane of the structure. This

peculiar spin polarization gives rise to the quantum spin Hall effect – an analog of the quantumHall

effect in which the quantized spin current is transferred along the edge of the sample.

Time-reversal symmetry prohibits the elastic backscattering of the edge states by the potential

(non-magnetic) disorder. Hence, even in the presence of the latter, the ideal ballistic current I0 =

G0V (G0 = e2/h) is expected to propagate along the edge of the topological insulator under the

applied voltage V .

Experiments conducted by the group of L.W.Molenkamp onCdTe/HgTe/CdTe quantumwells [9]

Figure 1.2: Sketch of a realistic experimental
setup. Quantum well is formed by a thin HgTe
layer surrounded by the layers of Hg0.3Cd0.7Te.
The image is adapted from [7].

Figure 1.3: Sketch of the energy dispersion
E(k) of a two-dimensional topological in-
sulator. The band gap is span by a pair
of counter-propagating helical edge states.
Electrons with a positive (negative) velocity
have spin pointing up (down). The image is
adapted from [3].
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demonstrated the anticipated quantization of the conductance in the relatively short clean samples.

Fig. 1.4 depicts the measured dependence of the resistivity on the gate voltage. Indeed, the con-

ductance G of the devices with the length l = 1 µm reaches the value of 2G0 when the chemical

potential is tuned to lie inside the band gap (factor 2 appears because there are two edges in the

Hall bar sample). However, the conductance of the longer samples (see curves I and II in Fig. 1.4,

l = 20 µm) turned out to be drastically lower.

Further studies revealed that the character of the helical edge transport in long samples is dif-

fusive rather than ballistic. For instance, the experiments performed by the group of Z.D. Kvon on

CdTe/HgTe/CdTe QWs with the length l ≥ 2nm [14] showed the resistance exceeding the quantum

R0 = 1/G0 by two orders of magnitude which scaled linearly with l (see Fig. 1.5). At the same

time, the non-local measurements indicated that the current flowed along the edge and not through

the bulk.

Remarkably, resistance obtained in [14] turned out to be almost temperature independent at low

temperatures (see Fig. 1.6). The experiments with other 2D topological insulators, e.g. InAs/GaSb

bilayers [11] and WTe2 [13] monolayers, also demonstrated the conductance lower than the quan-

tum in sufficiently long samples which exhibited weak temperature dependence.

The experimental observations triggered the intense theoretical research of the possible sources

for the reduction of the conductance from the ballistic value. The efforts were additionally fuelled

by the promises of technological applications of the topological insulators in spintronics. As a

result, several mechanisms that could account for the discrepancy with the initial expectation of

the quantized current were identified.

Local perturbations that violate time-reversal symmetry such as classical magnetic impurities

give rise to spin-flip processes of the edge electrons and result in backscattering [15]. The backscat-

tering mediated contribution to the current, hereinafter labeled by Ibs, is negative and, therefore,

drives the conductance down from the quantized value G0. Even if the time-reversal symmetry is

Figure 1.4: Resistivity as a function of gate
voltage in a Hall bar geometry. Curves I and
II correspond to the devices of the size (20 ×
13.3) µm2 (length×width). Curves III and IV
are plotted for the device sizes (1×1)µm2 and
(1 × 0.5) µm2 respectively. The plateaus in
themiddle correspond to the chemical potential
pinned to the band gap. The image is adapted
from [9].
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Figure 1.5: Resistance as a function of the
gate voltage for the samples of the length l =
2, 8, 32 µm (black, purple, and blue curves re-
spectively). Inset: resistance as the function
of the device length. The image is adapted
from [14].

Figure 1.6: Resistance as a function of the gate
voltage for the device of the length l = 8 µm
at different temperatures. T (K) = 62, 53, 40,
29, 19, 10, 4.2, 3.5, 3, 2.5, 1.5 for the curves
in the bottom-up order. The image is adapted
from [14].

not broken electron-electron interactionmay hinder the edge conductivity at finite temperature [16].

The deviations from the ballistic conductance may also arise due to the interaction of the helical

electrons with charge puddles located near the edge of the topological insulator [17, 18]. Charge

puddles are the metallic islands which are formed in semiconductor heterostructures with a narrow

band gap due to the presence of the disorder potential. Created by the fluctuations in dopant density,

this potential may locally push the Fermi level into the conduction or valence bands thereby forming

the conductive regions, i.e. the puddles of charge.

A charge puddle located close to the boundary of the topological insulator acts as a quantum dot

into which the helical electrons may tunnel. In the even valley regime of the Coulomb blockade,

this quantum dot causes inelastic backscattering of the edge electrons and reduces the current from

its ballistic value. However, the respective correction to the conductance strongly depends on

temperature and, hence, cannot fully explain the experimental results presented in [14] and [11, 13].

The charge puddle in the odd valley regime behaves as a spin-1/2 magnetic impurity coupled to

the edge electrons by almost isotropic exchange interaction. Such impurity is capable of flipping

spins of the helical electrons and, thus, suppress the edge conductivity. Notably, in the linear regime

the backscattering current Ibs is almost temperature independent provided that the temperature is

larger than the Kondo temperature TK.

The impurities with quantum dynamics may also be present in topological insulators due to

contamination by the magnetic ions. A particular example of the latter is manganese ion Mn2+
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which, embedded in CdTe or HgTe, has a spin S = 5/2. The helical edge transport in the presence

of a quantum magnetic impurity with S = 1/2 was studied in [19, 20, 21]. In these works, specific

restrictive assumptions about the structure of the exchange interaction were made which are not

generally justified.

The correction to the conductance mediated by the impurity with S ≥ 1/2 was investigated

recently in the work [22]. There, the backscattering current Ibs was evaluated in a wide region

of voltages in the presence of Rashba interaction. However, the local magnetic anisotropy was

fully disregarded. Such anisotropy inevitably exists in realistic systems for the impurities with spin

S > 1/2. It may substantially alter the character of backscattering at low energies and, hence,

cannot be always neglected.

In the present work, we investigate the transport properties of the edge of a 2D topological

insulator weakly coupled to a sole anisotropic magnetic impurity with arbitrary spin S. The cur-

rent flowing along the edge under the applied voltage V may be divided as I = I0 + Ibs, where

I0 = G0V is the ballistic current and Ibs is a relatively small negative correction to I0 related to the

impurity induced backscattering of helical electrons. Our goal in this thesis is to evaluate Ibs at any

voltage V . Contrary to the previous works, we do not make any limiting assumptions about the

matrix structure of the exchange interaction and develop a theory which is valid in the general case.

The outline of the thesis is as follows.

• In Chapter 2 we introduce themodel of a 2D topological insulator with amagnetic impurity in

it. There we focus on topological insulators based on CdTe/HgTe/CdTe quantum wells with

the width d > dc. First, we review the Bernevig-Hughes-Zhang Hamiltonian and describe

bulk and edge electronic states within its framework. Then we present the exchange interac-

tion Hamiltonian which governs the coupling between the electrons confined in the QW and

the impurity. Ultimately, we derive the low-energy Hamiltonian for the helical electrons. We

stress that the final formulation of the model (see Eq. (2.22)) is not limited to the topological

insulators based on CdTe/HgTe/CdTe QWs only. It may be equally well applied to describe

the edge transport in other 2D topological insulators, e.g. InAs/GaSb heterostructures and

WTe2 monolayers.

• In Chapter 3 we evaluate the backscattering current Ibs under the assumption of negligible

anisotropy. We show that the problem of computing Ibs may be reduced to the determination

of the stationary state of the magnetic impurity. To establish the latter we derive the master

equationwhich controls the evolution of the reduced density matrix ρS of the impurity. With
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its help, we describe the backscattering current at arbitrary voltage V . The results of this

chapter are published in [23].

• In Chapter 4 we investigate the influence of local magnetic anisotropy of the impurity on the

helical edge transport. The cases of uniaxial and non-uniaxial anisotropy are considered. In

addition to that, we establish the conditions under which the anisotropy may be disregarded.

• The conclusions are presented in Chapter 5.

Throughout the thesis we use the units in which kB, ~, |e| = 1.
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Chapter 2

The model

In this chapter, we present and discuss the model of a 2D topological insulator with a magnetic im-

purity nearby its edge. The emphasis is made on topological insulators based on CdTe/HgTe/CdTe

quantum wells albeit the resultant model is applicable to many other systems as well.

In section 2.1 we provide a low-energy description of the electronic structure of a 2D topological

insulator based on (001) CdTe/HgTe/CdTe quantum well. We consider both edge and bulk states.

In section 2.2 we discuss the way in which a localized magnetic moment embedded into the crystal

lattice may be taken into account. Finally, in section 2.3 we derive the effective model for the

edge states. The corresponding Hamiltonian describes the exchange interaction between the helical

electrons and the magnetic impurity. A generalized version of such Hamiltonian may be employed

to describe the helical edge transport in other physically relevant scenarios.

2.1 Bernevig-Hughes-Zhang Hamiltonian

In order to describe the low-energy physics of electron and hole states in a two-dimensional topo-

logical insulator based on (001) CdTe/HgTe/CdTe quantum well we employ the Bernevig-Hughes-

ZhangHamiltonian [8]. In the basis of spatially quantized states |E1,+⟩, |H1,+⟩, |E1,−⟩, |H1,−⟩1

it has the block-diagonal form

HBHZ(k) = C(k)I4×4 +

h(k) 0

0 hT (−k)

 , h(k) =

M(k) Ak+

Ak− −M(k)

 . (2.1)

1The basis states are characterized by the angular momentum projection jz on the direction z transversal to the
plane of the topological insulator, i.e. for |E1,±⟩ the projection equals jz = ±1/2 and for |H1,±⟩ jz = ±3/2. For
the explicit structure of the states see [8].
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Here I4×4 is a 4 × 4 identity matrix, T is the matrix transposition, k = (kx, ky)
T is a 2D wave

vector in the plane of the topological insulator, k =
√
k2x + k2y is its absolute value, k± = kx± iky,

and

C(k) = C −Dk2, M(k) =M −Bk2. (2.2)

The material parameters A, B, C,D, andM depend smoothly on the width d of the quantum well.

We note thatC describes the constant energy shift which can be absorbed in the energy redefinition.

Hence, in what follows we omit it. For further reference, we mention that for the quantum well

with the width d = 7.0 nm A = 0.37 eV · nm, B = −0.69 eV · nm2, D = −0.51 eV · nm2, and

M = −0.01 eV [2].

The upper (lower) block of the Hamiltonian (2.1) describes the states with positive (negative)

projection jz of the angular momentum on the z-axis transversal to the plane of the topological

insulator. The two blocks are connected by the time-reversal symmetry and are not mixed. The

latter feature implies that all of the eigenstates of (2.1) may be divided into the two subsets: one

includes states originating from the upper block – to indicate the positive projection of angular

momentum we will denote such states by ↑ subscript – and the other consists of states coming from

the lower block (↓ subscript). Later, we will often refer to ↑ / ↓ index as pseudo-spin.

Under the assumption of the infinite sample, the Hamiltonian (2.1) may be readily diagonalized.

For the spectrum of the conduction band one obtainsE+
bulk,↑/↓(k) = C(k)+

√
M2(k) + A2k2. Note

the two-fold “spin” degeneracy with respect to ↑ / ↓ index. Similarly, the dispersion of the valence

band is given byE−bulk,↑/↓(k) = C(k)−
√
M2(k) + A2k2. The expressions forE±bulk,↑/↓ demonstrate

that the parameterM controls the gap in the energy spectrum.

The gap M is positive for the quantum wells with d < dc ≃ 6.3 nm and negative for the

quantum wells with d > dc [8]. Thus, at d = dc the band inversion takes place. For d > dc the

quantum well is in a topologically non-trivial regime and its Hamiltonian (2.1) cannot be matched

adiabatically to vacuum. This feature reveals itself in a pair of counter-propagating gapless states

localized near the edge of the sample.

In order to simplify the further discussion we note that the quadratic terms in the Hamiltonian

(2.1) are not substantial for the discussion of transport properties of the helical edge. Hence, in

the following we omit them and work with a linearized version of the Bernevig-Hughes-Zhang

13



Figure 2.1: Sketch of the topological insulator in the considered model. Band inversion is realized
at x = 0: M(x) is a negative constant inside the topological insulator (x < 0) andM(x) = +∞ in
the topologically trivial region x > 0. The edge is directed along y. Two helical modes depicted
with blue arrows propagate along it. The magnetic impurity with spin S is depicted in red. With
changes the image is adapted from [25].

Hamiltonian:

HBHZ(k) =


M Ak+ 0 0

Ak− −M 0 0

0 0 M −Ak−
0 0 −Ak+ −M

 . (2.3)

To account for the edge states in this model we adopt the approach of B.A. Volkov and D.A. Pankra-

tov [24]. We suppose that the gapM is spatially dependent so that the band inversion is realized

along the line x = 0. We takeM = M(x) as a negative constant inside the topological insulator

(x < 0) and assume thatM(x) = +∞ in the topologically trivial region x > 0 (see Fig. 2.1).

In the presence of the edge the wave vector in the x-direction is not a good quantum number.

Hence, in the Schrödinger equation kx should be replaced by −i∂x. Yet, ky is still a well-defined

quantity. Solving HBHZ(−i∂x, ky)ψ(r) = Eψ(r) we show that there exists a pair of edge states

connected by the time reversal symmetry of the following structure

ψedge,↑(r, ky) =


1

i

0

0


e−|x|/ξ√

ξ
eikyyθ(−x), ψedge,↓(r, ky) =


0

0

1

−i


e−|x|/ξ√

ξ
eikyyθ(−x). (2.4)

Here θ(x) is Heaviside step function, r = (x, y)T , and ξ = A/|M | is a typical width of the edge

states. For further estimates, we mention that for the quantumwell with d = 7.0nm the length scale

ξ ≃ 40 nm. The presence of the absolute value |x| in the exponents stresses that the topological

insulator spans x < 0 half-plane. The states ψedge,↑ and ψedge,↓ are related to the upper and lower
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blocks of the 4 × 4 Hamiltonian (2.3) respectively. Within the model (2.3) the dispersion of the

edge states is precisely linear, Eedge,↑/↓(ky) = ∓Aky. Notice that the parameter A plays the role of

the edge states velocity along the y-direction. We emphasize that the sign of the velocity differs for

the states with positive (↑ subscript) and negative (↓ subscript) pseudo-spin. This rigid connection

between the pseudo-spin and the direction of motion of the helical electrons is the essence of the

spin-momentum locking.

Next, we consider the bulk states in themodel (2.3). Wewill employ the their structure explicitly

while discussing the influence of the local magnetic anisotropy on the helical edge transport (see

Chapter 4). We note that the bulk states are characterized by the 2D wave vector k even in the

presence of the edge albeit in the this case kx is restricted to the positive values only. It is convenient

to introduce the following functions of k:

f±x (k) =
(Ak± ± i (E(k)∓ |M |)) eikxx + c.c

2
√

E(k) (E(k) + Aky)
θ(−x), (2.5)

where c.c. stands for the complex conjugate and E(k) =
√
M2 + A2k2. Then the wave functions

of the bulk states may be expressed as [25]

ψ±bulk,↑(r,k) =


±f±x (±k)

±if∓x (±k)

0

0


eikyy

2π
, ψ±bulk,↓(r,k) =


0

0

∓f±x (∓k)

±if∓x (∓k)


eikyy

2π
, (2.6)

The superscript± distinguish between the conduction band (”+” superscript) and the valence band

(”−” superscript). The energy spectrum is two-fold degenerate with respect to ↑ / ↓ index. It has

a massive relativistic form E±bulk,↑/↓ = ±E(k).

The dispersion of the bulk and edge states based on the Hamiltonian (2.3) is presented in Fig.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

kyξ

E
/|
M
|

Figure 2.2: The dispersion of bulk and edge states
in the model (2.3). The bulk states posses a rel-
ativistic massive spectrum E±bulk,↑/↓(k) which is
depicted in red for kx = 0 as a function of ky. The
edge states spectrum Eedge,↑/↓(ky) is gapless (de-
picted in blue). The branch with a positive (nega-
tive) dispersion corresponds to the negative (pos-
itive) z-projection of pseudo-spin.
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2.2. The bulk states spectrum asymptotically reaches the edge states branches without ever crossing

them. This feature is but a consequence of the simplified linear model (2.3). In a more refined

model (2.1) the edge states are defined in a finite interval of ky only [26].

2.2 Electron-impurity interaction

In this section we discuss the interaction between the electrons confined in the (001) quantum well

with a single spin-S magnetic impurity. As a possible physical realization of such impurity we

keep in mind a manganese ion with S = 5/2 which is embedded either in HgTe or in CdTe lattice.

We assume that the impurity is situated at some fixed point {x0, y0, z0} inside the quantum well

(see Fig. 2.1) and interacts with the surrounding electrons locally. Projection of microscopically

isotropic Heisenberg exchange interaction onto the states |E1,+⟩, |H1,+⟩, |E1,−⟩, |H1,−⟩ yields

the following 4× 4 electron-impurity Hamiltonian [22, 27]:

He−i =


J1Sz −iJ0S+ JmS− 0

iJ0S− J2Sz 0 0

JmS+ 0 −J1Sz −iJ0S−
0 0 iJ0S+ −J2Sz

 δ(x− x0)δ(y − y0). (2.7)

Here S is the impurity spin operator and S± = Sx ± iSy. The coupling constants J0, J1, J2, and

Jm are determined by the structure of the envelop functions of spatially quantized states |E1,±⟩,

|H1,±⟩ and depend on z0 only (for details, see [27]). Noticeably, for z0 = 0, i.e. when the impurity

is in the middle of HgTe layer, J0 = 0 and J1 = Jm.

2.3 Effective Hamiltonian of the helical edge

Nowwe obtain the effective 2×2 low-energy Hamiltonian for the edge states. To do that we project

the 4× 4 Hamiltonian (2.3) complemented by the electron-impurity interaction (2.7) onto the edge

states subspace (2.4). As a result, we find (the summation over i, j = x, y, z is assumed)

Hedge = He
edge +He−i

edge, He
edge = −vkyσz, He−i

edge =
1

2ν
JijSiσjδ(y − y0). (2.8)
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Here σx, σy, and σz are the Pauli matrices in the edge states pseudo-spin2 space ↑ / ↓. The presence

of σz in He
edge underscores the spin-momentum locking of the helical states. v = A is the edge

states velocity, ν = 1/(2πv) is the density of states per one edge mode, and Jij is a matrix of

dimensionless exchange coupling constants. The latter is given by [22, 23]

J =
2ν

ξ
e−2|x0|


Jm 0 2J0

0 Jm 0

0 0 Jz

 , (2.9)

where Jz = J1 + J2.

For the sake of clarity, we rewrite the effective electron-impurity interaction explicitly:

He−i
edge =

e−2|x0|

ξ

{
Jm
2

(S+σ− + S−σ+) + JzSzσz + J0(S+ + S−)σz

}
. (2.10)

Notice, that the first two terms in Eq. (2.10) – proportional to Jm and Jz – conserve the total

“angular momentum” z-projection Sz+σz/2. In the processes mediated by Jm (S+σ− + S−σ+) /2

term the impurity spin flips simultaneously with the spin of the incident electron. Due to the spin-

momentum locking the latter changes its direction of motion and gets backscattered as presented

in Fig. 2.3(a). JzSzσz contribution neither changes the impurity spin nor does it flip the edge

electron spin. Hence, it induces no backscattering along the helical edge. Strikingly, there is a

J0(S+ + S−)σz term in Eq. (2.10) which allows for the processes that do not conserve Sz + σz/2,

e.g. |Sz = S − 1, σz = 1⟩ → |Sz = S, σz = 1⟩. In such processes the z-projection of the

edge electron spin does not change while the impurity spin gets flipped (see Fig. 2.3(b)). At

the first glance, this feature might be somewhat surprising given the fact that the 4 × 4 electron-

impurity Hamiltonian (2.7) was derived from the isotropic Heisenberg model. However, it would

be too naïve to expect that the rotational invariance of the microscopic model was unaltered by the

presence of the edge – a structure that breaks the respective symmetry. A particular manifestation

of the rotational symmetry breaking is that the edge states ψedge,↑/↓ do not possess a well-defined

angular momentum, i.e. they are composed of the states with the angular momentum z-projection

jz = ±3/2 and the states with jz = ±1/2. In Chapter 3 we will show that the processes which do

not conserve Sz + σz/2 are of special importance for the evaluation of the backscattering current.

Later on, we will perform all of the calculations treating the dimensionless couplings as small

parameters3: J ≪ 1. This assumption is commonly well-justified. For instance, for manganese
2In what follows we will often omit ”pseudo” prefix although the edge states cannot be characterized by a well-

defined spin projection.
3By J featured is various inequalities we understand the typical value of the matrix element |Jij |.

17



(a) (b)

Figure 2.3: Two types of processes mediated by the exchange interaction between the edge states
and the magnetic impurity. (a) Interaction due to Jm (S+σ− + S−σ+) /2 term. Both the impurity
spin and the incident electron spin are flipped so that the z-projection of the total angularmomentum
Sz + σz/2 is conserved. (b) Interaction due to J0(S+ + S−)σz term. The impurity spin is flipped
while the edge electron spin remains intact. The z-projection of the total angular momentum Sz +
σz/2 is not conserved in the process.

impurities in the CdTe/HgTe/CdTe quantum well with the width d = 7.0 nm one estimates J ∼

10−4÷10−3 ≪ 1 [23, 25, 27]. Furthermore, throughout the thesis, we will suppose that the matrix

J has a general formwhich is not constricted to the simple structure (2.9). There are several reasons

for that.

• Firstly, in a realistic CdTe/HgTe/CdTe based topological insulator the J matrix might have

much more sophisticated structure than (2.9) due to the interface inversion asymmetry of the

sample.

• Secondly, at sufficiently low temperatures T and voltages V , the renormalization of cou-

pling constants alters the structure of the J matrix. Even if J has a simple form (2.9) at

max {T, V } ∼ |M | at smaller energies this might not be the case.

• Last but not least, the Hamiltonian (2.8) with the matrix J of the general form is applicable

to a broad spectrum of physical problems which goes far beyond magnetic impurities in

CdTe/HgTe/CdTe based 2D topological insulators.

In the subsequent sections, we consider these points in details.

2.3.1 Bulk and interface inversion asymmetries

Using the Hamiltonian (2.3) we implicitly assumed that the CdTe/HgTe/CdTe quantum well the

topological insulator is based on is symmetric with respect to inversion z → −z. However, in

realistic structures that is not the case. The tetrahedral symmetry group Td of CdTe and HgTe

does not include the inversion element (bulk inversion asymmetry). Furthermore, the upper and

lower CdTe/HgTe interfaces of the heterostructure are non-equivalent on the microscopic level. In
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Figure 2.4: The dispersion of bulk states
Ebulk(k) = ±

√
M2 + (Ak ±∆)2 for the Hamil-

tonianHBHZ+HIA. The spin degeneracy ofHBHZ
is lifted by the presence of bulk and interface in-
version asymmetries. The figure is plotted for
∆ = 0.3|M |.

(001) quantum well they are rotated by 90◦ with respect to each other (interface inversion asymme-

try). Bulk and interface inversion asymmetries manifest themselves in the mixing between |E1,±⟩

and |H1,∓⟩ states which lifts the two-fold degeneracy of the energy bands (see Fig. 2.4). The

splitting of the valence band in the CdTe/HgTe/CdTe quantum well was recently revealed experi-

mentally [28].

To take the inversion asymmetry of the structure into account the Hamiltonian (2.3) should be

supplemented by the following term [29, 30]

HIA =


0 0 0 e2iθ∆

0 0 −e2iθ∆ 0

0 −e−2iθ∆ 0 0

e−2iθ∆ 0 0 0

 , (2.11)

where θ is the angle between the edge of the sample and [010] crystallographic direction. The

atomistic calculations [29] imply that∆may be as large as the band gap |M |. For instance, for the

Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te quantum well with the width d = 7.0 nm the inversion asymme-

try parameter ∆ ≃ 5meV whereas |M | ≃ 10meV.

Under the rotation of the system around the z-axis on δθ degrees∆ in the upper 2× 2 block of

(2.11) transforms as ∆ → e2iδθ∆ and in the lower block – as ∆ → e−2iδθ∆. The factors e±2iδθ in

the transformation laws highlight the reduction of the in-plane rotational symmetry of the quantum

well due to the inversion asymmetry.

Naturally, HIA is time-reversal invariant. Hence, a pair of gapless edge states persists even in

the presence of (2.11). Yet, the structure of these states is more sophisticated than (2.4):

ψedge,↑(r, ky) =
{
ψ̂+e

−i|x|/ξ∆ − ψ̂−e
i|x|/ξ∆−iϕ∆

} e−|x|/ξ√
ξ
eikyy−iθθ(−x), (2.12)

19



ψedge,↓(r, ky) =
{
ψ̂+e

−i|x|/ξ∆+iϕ∆ + ψ̂−e
i|x|/ξ∆

} e−|x|/ξ√
ξ
eikyy+iθθ(−x) (2.13)

where ϕ∆ = arctan∆/|M |, ξ∆ = A/∆, and the spinors ψ̂± are defined by

ψ̂+ =
1

2

(
eiθ, ieiθ, e−iθ, −ie−iθ

)T
, ψ̂− =

1

2

(
−eiθ, −ieiθ, e−iθ, −ie−iθ

)T
. (2.14)

The effective 2× 2 Hamiltonian describing the states (2.12) and (2.13) reads

He
edge = −vkyσz, v =

A√
1 + (∆/M)2

. (2.15)

It is similar to He
edge in the absence of inversion asymmetry although the edge states velocity

differs by the factor of
√
1 + (∆/M)2. The electron-impurity interaction (2.7) may be read-

ily projected onto the edge states subspace. This yields an exchange Hamiltonian of the form

He−i
edge = JijSiσj/2ν where neither of the dimensionless couplings Jij (i, j = x, y, z) equal zero in

the general case. Thus, the helical edge and the magnetic impurity nearby may still be described

by the Hamiltonian (2.8) albeit the matrix J does not have a simple form (2.9).

2.3.2 Kondo renormalization

When the typical energies of interest – defined by the maximum between the temperature T and the

voltage V for the transport problems – are sufficiently low the Kondo-type renormalization of the

coupling constants may become important by altering the structure of the matrix J significantly.

One-loop renormalization group (RG) equations for the dimensionless coupling constants are given

by [31]
dJjk

dζ
=

1

2
εjnmεkpsJnpJms. (2.16)

Here ζ = ln |M |/E is the running RG logarithmic scale. Eqs. (2.16) are valid for the exchange ma-

trix with arbitrary structure as long as J ≪ 1. To properly account for the renormalizations while

determining the transport properties of the helical edge the RG system (2.16) has to be integrated

from the energies of the order of the band gap,E ∼ |M |, to the relevant energiesE ∼ max {T, V }.

In this section, we present the general solution of this problem for any initial coupling matrix

J (ζ = 0).

To begin with, we note that arbitrary matrix – even a non-diagonalizable one – may be subjected
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to singular-value decomposition. Thus, at ζ = 0 it is possible to represent4

J (ζ = 0) = R<LR>, L = diag {λ1, λ2, λ3} , R</> ∈ SO(3). (2.17)

Next, we treat the matricesR</> as ζ independent and, with the help of Eq. (2.16), derive the RG

equations for the matrix L. We find that in the course of the RG flow L preserves the diagonal

form with the components satisfying

dλ1
dζ

= λ2λ3,
dλ2
dζ

= λ1λ3,
dλ3
dζ

= λ1λ2. (2.18)

In what follows we assume that at ζ = 0 |λ1| ≥ |λ2| ≥ |λ3| and λ1,2 ≥ 0. The fulfilment of these

conditions may be always achieved with a proper redefinition of R</> matrices. Notice that the

system of Eqs. (2.18) conserves λ21 − λ22 = A1 and λ22 − λ23 = A2. With the help of these integrals

we examine the solutions of (2.18) in all possible cases.

• If at ζ = 0 at least two out of three λis nullify then λ1,2,3 does not change with the RG scale

ζ . In the following, we assume that this is not the case and at least two of λis are non-zero

initially.

• If at ζ = 0 λ1 ≥ λ2 ≥ λ3 ≥ 0 then the RG dynamics is trivial: λ1, λ2, and λ3 flow to the

manifold λ1 = λ2 = λ3 > 0 blowing up to infinity at finite ζ = ζK. The RG scale ζK defines

the Kondo temperature TK = |M |e−ζK . In the described regime the explicit expression for

ζK is

ζK =

∫ +∞

λ2(ζ=0)

dλ2√
λ22 + A1

√
λ22 − A2

. (2.19)

• If at ζ = 0 λ3 < 0, λ1 ≥ λ2 > 0, and λ2 > −λ3 then in the course of RG flow λ1 and λ2 at

first decrease while λ3 increases. At some ζ λ3 reaches 0. When this happens, λ2 =
√
A2 and

λ1 =
√
A1 + A2. After that the previously considered case reproduces: λ1,2,3 grow tending

to λ1 = λ2 = λ3 > 0 manifold and diverging at

ζK =

∫ +∞

λ3(ζ=0)

dλ3√
λ23 + A2

√
λ23 + A1 + A2

. (2.20)

• The least trivial dynamics takes place when at ζ = 0 λ3 < 0, λ1 ≥ λ2 > 0, and λ2 = −λ3 =

λ. In this scenario the relation λ2 = −λ3 is preserved in the course of the RG flow. The
4In the regular definition of singular-value decomposition R</> ∈ O(3) and λ1,2,3 > 0. We take a different

definition. We assume that some of λ1,2,3 may be negative while fixing detR</> = 1.

21



absolute value |λ2,3| monotonously drops to zero as ζ changes from 0 to +∞. At the same

time, λ1 decreases reaching
√
A1 asymptotically. If initially λ1 = λ2 then all λis fall to zero

synchronously. This is a ferromagnetic Kondo effect. To reach it, a fine tuning of parameters

is required.

To conclude this section, we mention that the the four-component form of the J matrix (2.9) is

not preserved by the RG flow. At finite ζ J takes the five component form with Jzx ̸= 0 and

Jxx ̸= Jyy.

2.3.3 Other systems

The Hamiltonian (2.8) is, in principle, applicable to a wide range of problems. In particular, it is ca-

pable of describing magnetic impurities in other types of 2D topological insulators, e.g. InAs/GaSb

heterostructures or WTe2 monolayers. While the exchange matrix might have a form that differs

from (2.9) the general structure of the helical edge Hamiltonian is the same as (2.8). Another

prominent example which may be analysed with the help of (2.8) is a charge puddle in the topolog-

ical insulator. Charge puddles are the conducting islands in the semiconducting heterostructures

which are inherently present in 2D topological insulators due to the interplay between the potential

disorder and small band gap. As it was shown in [18] the behavior of such islands in the odd val-

ley regime of the Coulomb blockade is similar to those of spin-1/2 quantum magnetic impurities.

Hence, the backscattering of the edge electrons by them may be described by the Hamiltonian (2.8)

albeit the exchange matrix J is substantially different from (2.9). According to [18], it is almost

isotropic:

Jij = J0δij +∆Jij, |∆Jij| ≪ J0. (2.21)

Despite being small, the anisotropic admixture is very important: if it was not for∆Jij there would

be no backscattering in the steady state regime.

Notice, that up until this point we have only been discussing the edge states, their exchange

interaction with the magnetic impurity, and the respective contributions to the total Hamiltonian of

the helical edge. At the same time, the impurity might have a non-trivial Hamiltonian Himp of its

own. In particular, if a spin of the impurity is larger than 1/2 then the local magnetic anisotropy

described by Himp = DqpSqSp (Dqp is a real symmetric matrix) is present. This anisotropy might

have a profound influence on the quantum dynamics of the impurity and, consequently, on the

transport properties of the edge of the topological insulator. We consider such effect in details

in Chapter 4. However, at first we develop a theory of helical edge conductance in the case of
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negligible anisotropy, Himp = 0, and present it in Chapter 3. The range of applicability of this

approximation is thoroughly discussed in Chapter 4.

To conclude the present chapter, we note that in the following, it will be convenient to work

with a second-quantized version of the effective Hamiltonian (2.8). It is given by

Hedge = He
edge +He−i

edge, (2.22)

He
edge = iv

∫
dyΨ†(y)σz∂yΨ(y), He−i

edge =
1

ν
JijSisj(y0),

where Ψ(y) = (Ψ↑(y), Ψ↓(y))
T is an annihilation operator of the edge electrons, Ψ†(y) is its

hermitian conjugate, and the edge electrons (pseudo-)spin density sj(y) equals

sj(y) =
1

2
Ψ†(y)σjΨ(y). (2.23)
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Chapter 3

Backscattering current mediated by the

presence of a magnetic impurity

In this chapter we describe the transport along the helical edge in the presence of a magnetic impu-

rity assuming that the local anisotropy is negligible. Formally, it means that in the total Hamiltonian

Htot = Hedge +Himp, (3.1)

where Hedge is given by (2.22), we take the impurity Hamiltonian Himp to be zero.

In section 3.1 we discuss the way in which a finite voltage V applied to the edge of the topolog-

ical insulator may be taken into account within the framework of the model (2.22). In section 3.2

we reduce the problem of determining the backscattering current Ibs to the evaluation of certain im-

purity averages. To calculate these averages we derive the master equation for the impurity density

matrix ρS . Next, in section 3.3 we employ the resultant equations to describe the correction to the

linear conductance. Section 3.4 is devoted to the limit of sufficiently large voltages V ≫ J T . In

section 3.5 we find the exact expression for the backscattering current due to a spin-1/2 magnetic

impurity. Finally, in section 3.6 we present the numeric results for the correction to the conductance

due to the impurities with S ≥ 1/2.

The chapter is largely based on the recent article [23] prepared by the author of this thesis in

collaboration with Pavel Kurilovich, Igor Burmistrov, and Moshe Goldstein.

3.1 Introduction

We suppose that a finite voltage V > 0 is applied to the edge of a two-dimensional topological

insulator. We do not make any limiting assumptions about the relative magnitude of V and tem-
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perature T : our goal is to describe the behavior of the backscattering mediated contribution to the

current Ibs in the whole range of voltages covering both V . T and V & T .

To account for the applied voltage within the model (2.22) we assume that two leads (reservoirs)

are attached to the edge of the topological insulator at y = ±L as depicted in Fig. 3.1. The chemical

potential of the lead at y = +L is shifted by V with respect to the chemical potential of the lead at

y = −L. This property translates on the distribution functions of the edge electrons escaping from

the respective reservoirs. Therefore, if it was not for the magnetic impurity the system would stay

in a stationary non-equilibrium state with uneven populations of two helical branches described by

the density matrix

ρ0e =
exp

(
−
(
He

edge − V Σz − µN
)
/T
)

tre
{
exp

(
−
(
He

edge − V Σz − µN
)
/T
)} . (3.2)

In this expression the trace tre {...} is taken over the edge states degrees of freedom, the Hamiltonian

He
edge is defined in Eq. (2.22), N =

∫
dy
(
Ψ†↑(y)Ψ↑(y) + Ψ†↓(y)Ψ↓(y)

)
is the number operator of

the edge electrons, µ is the chemical potential, and

Σz =

∫
dysz(y) =

1

2

∫
dy
(
Ψ†↑(y)Ψ↑(y)−Ψ†↓(y)Ψ↓(y)

)
(3.3)

is the edge electrons overall spin z-projection. Notice, that, up to the factor 1/2, Σz equals the

difference between the number of electrons with spin up (and, hence, propagating in the direction

opposite to y-axis) and spin down (propagating along y-axis). The density matrix (3.2) describes

the ballistic current I0 = G0V flowing along the helical edge (G0 = e2/h = (2π)−1 in the units

kB, ~, |e| = 1). The magnetic impurity located at y = 0 scatters some of the incident electrons back

thus reducing the magnitude of the current from its ballistic value I0 to I0 + Ibs (Ibs is negative).

In the next section, we develop a formalism capable of describing the backscattering current Ibs at

Figure 3.1: Sketch of the topological insulator with the voltage V applied to its helical edge. The
voltage shifts the chemical potential of the leads: at y = −L the chemical potential equals µ−V /2
while at y = +L the chemical potential is µ+ V /2. The magnetic impurity is located at y = 0.
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arbitrary voltage.

3.2 Backscattering current and master equation

In this section we establish the expression for the backscattering current Ibs induced by the presence

of a magnetic impurity near the helical edge. To this end, we note that, due to the spin-momentum

locking, each backscattering event is associated with a change of the total z-projection of the edge

electrons spin Σz by unity. Therefore, one determines

Ibs =

⟨
dΣz

dt

⟩
=

1

ν
εzplJmp⟨Smsl(0)⟩, (3.4)

The averaging ⟨...⟩ = tr {...ρ} is carried out with respect to the overall density matrix ρ incorpo-

rating both the degrees of freedom of the magnetic impurity and of the edge electrons. Since the

considered problem involves one impurity only in the following we suppress the spatial argument

of the edge electrons spin density and use sl instead of sl(0).

Unfortunately, the expression (3.4) by itself is not very handy to work with as it contains the

operators related to the impurity and the operators related to the edge electrons simultaneously.

However, there is a way to overcome this shortage and express the backscattering current Ibs in

terms of the impurity spin averages (such as ⟨Sk⟩ and ⟨{Sm, Sn}⟩, k,m, n = x, y, z) only with

the help of the perturbation theory in J ≪ 1. Since we are interested in the correction to the

dc conductance these averages are to be evaluated over reduced density matrix of the magnetic

impurity, ρS = treρ, in the steady state regime. Below, we first derive the equation for the evolution

of ρS which allows one to find the steady state density matrix ρ(st)S and then establish the explicit

relation between Ibs and the impurity averages.

3.2.1 Master equation

Webegin by deriving themaster equationwhich governs the evolution of the reduced densitymatrix

of the magnetic impurity ρS = treρ. To this end, we follow the standard approach developed in a

theory of open quantum systems (for a review, see [32]). First, we consider the full density matrix

ρ describing both the edge electrons and the magnetic impurity. In the absence of Himp its time

dependence is determined by the Liouville equation dρ/dt = −i
[
He

edge +He−i
edge, ρ

]
. A key feature

of this equation is that at finite voltage V the electron-impurity interaction He−i
edge = JijSisj/ν

acquires a non-vanishing mean-field expectation He−i
mf [18, 20]. Indeed, averaging He−i

edge over the
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density matrix (3.2) one finds

He−i
mf = tre

{
He−i

edgeρ
0
e

}
= JizSi

V

2
. (3.5)

Herewe used the fact that at non-zero voltage the helical edge is spin-polarized along the z direction,

i.e. ⟨sj⟩0 = tre {sjρ0e} = δjzνV /2. Thus, for the evolution of ρ we obtain

dρ

dt
= −i

[
He−i

mf , ρ
]
− i
[
He

edge+ : He−i
edge :, ρ

]
, (3.6)

where we defined

: He−i
edge :=

1

ν
JijSi : sj :, : sj := sj − ⟨sj⟩0. (3.7)

Remarkably, the mean-field interaction He−i
mf operates as an effective magnetic field acting on the

impurity spin. Hence, even though we have started with Himp = 0, the finite voltage results in a

Zeeman-type splitting of the impurity levels.

In the equation (3.6) it is convenient to switch to the interaction representation. To do that, we

introduce

ρI(t) = exp
{
−i
(
He−i

mf +He
edge
)
t
}
ρ(t) exp

{
i
(
He−i

mf +He
edge
)
t
}
, (3.8)

: He−i,I
edge (t) : = exp

{
i
(
He−i

mf +He
edge
)
t
}
: He−i

edge : exp
{
−i
(
He−i

mf +He
edge
)
t
}
. (3.9)

Next, we solve (3.6) recursively by substituting its formal solution back into itself. As a result, we

get
dρI(t)

dt
= −

∫ t

−∞
dt′
[
: He−i,I

edge (t) :
[
: He−i,I

edge (t′) :, ρI(t′)
]]
. (3.10)

Deriving Eq. (3.10) we assumed that the exchange interaction between the edge electrons and the

impurity adiabatically switches on at t = −∞ and, hence, ρ(−∞) = ρI(−∞) = ρe0 ⊗ ρ
(eq)
S ,

where ρe0 is defined in Eq. (3.2), ⊗ sign denotes the tensor product of the operators acting in

the edge electrons subspace and in the impurity subspace, ρ(eq)S = I(2S+1)×(2S+1)/(2S + 1), and

I(2S+1)×(2S+1) is a unity matrix of size 2S + 1. We notice that the right hand side of Eq. (3.10) is

already of the second order in J . Therefore, the Born approximationmay be employed to simplify

it [32]: one can replace ρI(t′) with ρe0 ⊗ ρIS(t
′), where ρIS = treρI is a reduced density matrix of

the magnetic impurity in the interaction representation. The corrections to this approximation are

of the higher orders in the dimensionless coupling constants Jij and, hence, may be disregarded.

With that in mind, we take the partial trace of Eq. (3.10) over the edge electrons degrees of freedom
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and obtain

dρIS(t)

dt
= JmiJnj

∫ t

−∞
dt′
{[
SI
m(t
′)ρIS(t

′), SI
n(t)

]
Kij

V (t− t′) + h.c.
}
, (3.11)

where h.c. denotes the hermitian conjugate, SI
x,y,z(t) = exp

{
iHe−i

mf t
}
Sx,y,z exp

{
−iHe−i

mf t
}
, and

the irreducible spin-spin correlation functionKij
V is defined by

Kij
V (τ) =

1

ν2
tre
{
: sIj (τ) :: s

I
i (0) : ρ

e
0

}
. (3.12)

The lower subscript V in the correlator Kij
V (τ) underscores that the latter is evaluated at finite

voltage V . We note that the matrix elements of KV (τ) decay on a time-scale controlled either by

the inverse voltage or the inverse temperature. At the same time, Eq. (3.11) implies that ρIS(t)

typically changes on a much larger time-scale which has additional greatness of J −2. Thus, ρIS(t′)

in the right hand side of Eq. (3.11) may be safely transformed into ρIS(t). As a result of such

transformation, Eq. (3.11) acquires the Markovian form in which the evolution of the impurity

density matrix at any given time t is independent of the previous history and is defined by the

present value of ρIS(t) only:

dρIS(t)

dt
= JmiJnj

∫ t

−∞
dt′
{[
SI
m(t
′)ρIS(t), S

I
n(t)

]
Kij

V (t− t′) + h.c.
}
. (3.13)

In this expression it is convenient to represent the impurity spin operators as

Sx,y,z =
∑
αβ

Sαβ
x,y,z, Sαβ

x,y,z = |ψα
S⟩Sαβ

x,y,z⟨ψ
β
S|, Sαβ

x,y,z = ⟨ψα
S |Sx,y,z|ψβ

S⟩, (3.14)

where |ψα
S⟩ is the α-th eigenstate of the magnetic impurity Hamiltonian He−i

mf corresponding to

the energy Eα
S . Since He−i

mf = JizSiV /2 has a form of a Zeeman field, its eigenstates may

be characterized by the projection α = S, S − 1, ...,−S of the impurity spin on the direction

n = (Jxz, Jyz, Jzz) /
√
(J TJ )zz: |ψα

S⟩ = |Sn = α⟩ and has energy Eα
S = α

√
(J TJ )zzV /2.

Substituting Eq. (3.14) into Eq. (3.13) and then integrating the latter over t′ we obtain the Bloch-

Redfield master equation for the reduced density matrix of the magnetic impurity:

dρIS(t)

dt
= JmiJnj

∑
αβγδ

{[(
Sαβ
m

)I
(t)ρIS(t),

(
Sγδ
n

)I
(t)
]
Kij

V (ωαβ) + h.c.
}
, (3.15)

where ωαβ = Eβ
S − Eα

S and Kij
V (ω) =

∫ +∞
0

dτei(ω+i0)τKij
V (τ). Next, we divide the spin-spin

correlator into a Hermitian and an antihermitian parts, Kij
V = Kij

V /2 + iκijV , where the Hermitian
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matrices KV and κV are given by

Kij
V (ω) =

π

2

∑
σ1σ2

∫
dξσσ1σ2

j σσ2σ1
i nF (ξ − σ1V /2)(1− nF (ξ + ω − σ2V /2)), (3.16)

κijV (ω) =
1

4

∑
σ1σ2

v.p.
∫
dξ1dξ2σ

σ1σ2
j σσ2σ1

i

nF (ξ1 − σ1V /2)(1− nF (ξ2 − σ2V /2))

ω + ξ1 − ξ2
. (3.17)

Here σ1, σ2 = ±1, nF (ξ) = (exp {(ξ − µ)/T}+ 1)−1 is the Fermi distribution function, and

v.p. denotes the principal value of the integral.

Notice that the integrals over energy featured in the matrix elements of κV diverge in the ultravi-

olet limit. These divergences are due to the renormalizations of the magnetic impurity Hamiltonian

and, therefore, describe the Lamb shift of the impurity energy levels [32]. For now, we disregard

this effect and discuss it in details in section 3.2.2.

The integrals for Kij
V (ω) may be readily evaluated:

KV (ω) = K+
V (ω) +K−V (ω), K±V (ω) =

π

2


f(ω ± V ) ∓if(ω ± V ) 0

±if(ω ± V ) f(ω ± V ) 0

0 0 f(ω)

 , (3.18)

where f(ω) = ω/(1 − exp {−ω/T}). We notice that typical frequencies ωαβ at which the spin-

spin correlatorKV is evaluated in the master equation are of the order of the impurity level spacing

J V ≪ V . Thus, it is possible to replace KV (ωαβ) in Eq. (3.15) by K0
V ≡ KV (0). The accuracy

of such approximation is controlled by a small parameter J ≪ 1. As a result, we find

dρS
dt

= −i [JkzSkV /2, ρS] + ηmn

(
SmρSSn −

1

2
{ρS, SnSm}

)
, η = JK0

VJ T . (3.19)

To derive Eq. (3.19) we switched back from the interaction representation to the Schrödiner repre-

sentation in Eq. (3.15) and carried out the summation over the eigenstates explicitly. We mention

that

K0
V = πT


V
2T

coth V
2T

−i V
2T

0

i V
2T

V
2T

coth V
2T

0

0 0 1

 . (3.20)

The first term in Eq. (3.19) describes the Liouvillian dynamics of the density matrix ρS which

is associated with the rotation of the magnetic impurity spin in the effective Zeeman field He−i
mf .

The second term describes the Korringa-type relaxation [21, 33] and decoherence of ρS . It has the

Lindblad form [32]. Therefore, the normalization trSρS = 1 (trS {...} is a partial trace over the
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impurity degrees of freedom) and the positive semidefiniteness of ρS are automatically ensured in

the evolution described by Eq. (3.19), as it should be.

3.2.2 Renormalizations

While deriving Eq. (3.19) we encountered a group of divergent terms that originate from the anti-

hermitian part κV of the the spin-spin correlation functionKV . In this section we discuss the origin

of these divergences. To begin with, we notice that some elements of κV equal zero identically due

to the structure of the spin summations in Eq. (3.17): κxz/zxV = κ
zy/yz
V = 0. Next, we find that the

integral over energies diverge linearly for the diagonal elements of κV :

κxxV = κyyV = κzzV ∼ −
∫
dξ = −|M |. (3.21)

Here we have taken into the account the fact that the edge states are defined only in a finite interval

of energies of the order of the band gap |M | and introduced a corresponding ultraviolet cut-off in

the ξ-integral. These diagonal components produce the correction to the master equation (3.19) of

a Liouvillian form: −i
[
Hedge

anis , ρS

]
, where

Hedge
anis = −Λedge|M |

(
JJ T

)
qp
SqSp, Λedge ∼ 1. (3.22)

Together withHe−i
mf the contributionHedge

anis plays the role of a total Hamiltonian of the impurity. By

its structure, Hedge
anis is nothing but a local magnetic anisotropy. Chapter 4 is solely devoted to the

discussion of the influence of the anisotropy alike that on the helical edge transport whereas in the

remainder of this Chapter we disregard its effects. A particular scenario in which such a neglect

is well-justified is when the voltage is sufficiently large, V ≫ J 2|M |, so that the mean-field

interaction He−i
mf dominates over Hedge

anis in the Liouvillian part of the master equation.

We note that the interaction with the edge states is not the only source of the local anisotropy.

For instance, a similar contributionHbulk
anis arises due to the interaction between the impurity and the

bulk states in the topological insulator. We will show in Chapter 4 that typically Hbulk
anis ≫ Hedge

anis .

Therefore, Hedge
anis acts as a renormalization of Hbulk

anis .

Next, we consider the off-diagonal elements κxyV and κyxV which diverge logarithmically. They

can be estimated as

κxyV = −κyxV = iV ln (|M |/max {T, V }) /2. (3.23)

Here as an infrared cut-off we used the typical energy of the edge electrons, i.e. max {T, V }, and
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as an ultraviolet cut-off – the band gap |M |. The contributions corresponding to κxyV , κ
yx
V produce

the correction to the master equation of the form −i
[
δHe−i

mf , ρS
]
, where

δHe−i
mf = V εkmnJmxJnx ln (|M |/max {T, V }) /2. (3.24)

Remarkably, the structure of δHe−i
mf is similar to those of the mean-field interaction He−i

mf . Hence,

δHe−i
mf may be treated as a renormalization of the latter,

He−i
mf + δHe−i

mf =
V

2
Sk (Jkz + εkmnJmxJnx ln (|M |/max {T, V })) . (3.25)

From this expression, we establish that δHe−i
mf emerges due to the Kondo renormalization of the

coupling constants Jkz (see Eq. (2.16)). In what follows, we assume that max {T, V } ≫ TK and,

hence, do not discuss the Kondo corrections to the results presented below in details.

Having considered the renormalizations which arise due to the antihermitian part κV of the spin-

spin correlator we now return to the master equation (3.19) and employ it to derive the equation for

the evolution of the impurity spin.

3.2.3 Bloch equation

A particularly useful consequence of Eq. (3.19) is a Bloch-type equation for the evolution of the

average impurity spin ⟨S⟩:

d⟨Sl⟩
dt

=
πT

2

(
V

2T
εzpqεlkmJkpJnq ⟨{Sm, Sn}⟩ − Γlk⟨Sk⟩

)
, (3.26)

where we introduced the matrix

Γlk =
1

πT

(
δlktrη −

ηlk + ηkl
2

+ V εlkjJjz

)
. (3.27)

Notice that the system of equations (3.26) for the vector ⟨S⟩ is not closed in a sense that the evo-

lution of ⟨S⟩ is determined not only by ⟨S⟩ but also by the higher order expectations ⟨{Sm, Sn}⟩

(m,n = x, y, z). In the general case, the latter averages cannot be expressed in terms of the compo-

nents of ⟨S⟩ and, therefore, the knowledge of the impurity density matrix ρS is required to find ⟨S⟩.

Despite that, Eq. (3.26) will be very helpful in the analysis of the case V ≪ T for S > 1/2 and

also at any voltage for the investigation of S = 1/2.
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3.2.4 Backscattering current

Now, we employ the machinery similar to those we used to derive the master equation in order to

obtain the expression for the backscattering current Ibs in terms of the steady state impurity spin

averages. First, we rewrite the expression (3.4) in the interaction representation as

Ibs = − i

ν2
εzplJmpJnq

∫ t

−∞
dt′tr

{
SI
m(t) : s

I
l (t) :

[
SI
n(t
′) : sIq(t

′) :, ρI(t′)
]}
, (3.28)

where t is a givenmoment in time at which the impurity densitymatrix already reached its stationary

state ρ(st)S . Then we perform the Markov-Born approximation by changing ρI(t′) in the right hand

side of Eq. (3.28) to ρe0 ⊗ ρ
(st)
S,I(t), where ρ

(st)
S,I(t) is the stationary density matrix in the interaction

representation1. After that, we carry out integration over t′ and find

Ibs =
1

2
εzplJmpJnq

(
−i⟨SmSn⟩

(
K0

V

)
ql
+ c.c

)
. (3.29)

The averages in this expression are evaluatedwith respect to ρ(st)S : ⟨...⟩ = trS
{
...ρ

(st)
S

}
. Substituting

into this equation the explicit form of K0
V we finally obtain

Ibs =
π2

2

(
Xk⟨Sk⟩ coth

V

2T
−
∑
q=x,y

JmqJnq ⟨{Sm, Sn}⟩

)
G0V. (3.30)

Here we introduced the vector Xk = 2εkmnJmxJny.

A pair of Eqs. (3.30) and (3.19) in principle allows us to determine the backscattering current

for any given parameters of the problem as long as the condition J ≪ 1 is fulfilled. However, the

analytic solution which would be valid for arbitrary impurity spin S, voltage V , and temperature

T is hindered. For this reason, in the following, we consider the limiting cases in which it possible

to derive the closed-form expressions for Ibs.

To begin with, we notice that the Lindblad term in the master equation (3.19) is associated

with a rate τ−1K ∼ J 2max {T, V }, where τK is a Korringa-type relaxation time. The Liovillian

term which originates from the mean-field interaction He−i
mf is of the order of J V . Hence, for

V ≪ J T the energy levels of the magnetic impurity are strongly broadened by the relaxation and

−i
[
He−i

mf , ρS
]
may be completely disregarded in Eq. (3.19). If, on the contrary, V ≫ J T then the

smearing of the energy levels ∼ τ−1K is much smaller than the level spacing ∼ J V .

The behavior of the backscattering current in the low voltage limit V ≪ J T differs drastically

from those in the limit of well-separated energy levels V ≫ J T . Thus, in the next sections we
1Notice, that the stationary density matrix may still depend on time in the interaction representation .
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separately describe the regimes V ≪ J T (section 3.3) and V ≫ J T (section 3.4).

3.3 Transport at low voltages

The goal of this section is to analyse the behavior of the backscattering current in the regime of

low voltages V ≪ J T . We note that the inequality V ≪ J T immediately implies V ≪ T

because the dimensionless couplings Jij are assumed to be small. The fulfilment of V ≪ T

guarantees that the densitymatrix of themagnetic impurity is close to equipartitioning, ρS ≃ ρ
(eq)
S =

I(2S+1)×(2S+1)/(2S + 1). Therefore, with the required accuracy the anticommutators ⟨{Sm, Sn}⟩

entering Eqs. (3.30) and (3.26)may be safely substituted by 2δmnS(S+1)/3. As a result, Eq. (3.26)

for the dynamics of the average spin becomes closed, i.e. in the considered limit the evolution of

⟨S⟩ is determined by ⟨S⟩ only. Furthermore, the condition V ≪ J T allows one to disregard the

mean-field term V εlkjJjz in the matrix Γ (see Eq. (3.27)) and evaluate the latter at zero voltage.

Under such approximations Eq. (3.26) may be trivially solved for the steady state value ⟨Sk⟩:

⟨Sk⟩ =
S(S + 1)

3

V

T

(
Γ−10

)
kl
Xl, (3.31)

where Γ0 = Γ|V=0 = tr
(
JJ T

)
− JJ T . Substituting this result into Eq. (3.30) we establish

Ibs =
π2S(S + 1)

3

(
X TΓ−10 X − g

)
G0V, (3.32)

where g =
∑

q=x,y JmqJmq =
(
J TJ

)
xx

+
(
J TJ

)
yy

and X TΓ−10 X ≡ Xk

(
Γ−10

)
kl
Xl. Inter-

estingly, the correction to the ballistic conductance based on Eq. (3.32), ∆G = Ibs/V , does not

depend on voltage. Thus, the limit V ≪ J T corresponds to the linear backscattering regime.

The expression (3.32) illustrates several features of the model (3.1) with Himp = 0 which are

valid at any voltage V .

• First of all, Eq. (3.32) is invariant under the left rotations of the exchange coupling matrix,

i.e. J → UJ with arbitrary U ∈ SO(3). This property is a consequence of a symmetry

of the model (3.1) with respect to redefinitions of the impurity spin operators Si → SkUki

which is present when Himp = 0.

• Next, the backscattering current vanishes for the interaction matrix of the form J (iso) =

diag {J⊥, J⊥, Jz}. The reason behind this nullification is that the respective exchange

Hamiltonian

He−i
edge =

1

ν

(
J⊥
2
(S+s− + S−s+) + JzSzsz

)
(3.33)
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conserves the z-projection of total angular momentum Sz + Σz. Indeed, using the facts that

⟨Sz⟩ is constant when the system is in the steady state and that Ibs = ⟨dΣz/dt⟩ one concludes

Ibs =

⟨
dΣz

dt

⟩
=

⟨
d

dt
(Sz + Σz)

⟩
= 0.

A symmetry with respect to left rotations of J implies that the backscattering is also absent

in the stationary state for any exchange matrix of the form UJ (iso), where U is an arbitrary

SO(3) matrix.

We stress that in the general case the local anisotropy Himp = DqpSqSp breaks both of these prop-

erties.

For illustrative purposes, we mention that for the four-component J -matrix (2.9) the backscat-

tering current reads

Ibs = −4S(S + 1)

3M2ξ4
e−4|x0|/ξ J2

mJ
2
0

J2
m + J2

z + 2J2
0

G0V. (3.34)

Notice that both the angular momentum conserving processes (controlled by Jm) and the angu-

lar momentum non-conserving processes (controlled by J0) are required to guarantee a non-zero

backscattering. Indeed, in the absence of J0 the matrix (2.9) has the form J (iso) which implies

Ibs = 0. At the same time, J0-related processes do not flip the edge electrons spin and, hence,

are incapable of reflecting the electrons back by themselves. Thus, Ibs = 0 if Jm = 0 as well. A

qualitative time-resolved picture of the backscattering process for the matrix J of the form (2.9)

is presented in Fig. 3.2. It emphasizes that a simultaneous presence of Jm and J0 is required to

guarantee Ibs ̸= 0.

(1) (2) (3)

Figure 3.2: Qualitative picture of the backscattering current in the steady state. (1) The impurity is
in the stationary state (depicted as spin up). There are electrons incident on the impurity. (2) One
electron interacted with the impurity by a J0-related process: it flipped the impurity spin but did
not change its own. (3) Another electron interacted with the impurity by a Jm-related process. The
total angular momentum z-projection Sz + Σz was conserved. As a result of the cycle (1) → (2)
→ (3) one electron was backscattered while the impurity returned to its initial state. The repetition
of such cycle allows for the non-zero Ibs in the stationary state.

34



Wemention that for the weakly anisotropic exchange matrix Jij = J0δij+∆Jij , |∆Jij| ≪ J0

the formula (3.32) reproduces the result presented in [18].

According to section 2.3 for manganese impurities in the topological insulator based on the

CdTe/HgTe/CdTe quantum well J ∼ 10−4 ÷ 10−3. Hence, the relative backscattering correction

to the ballistic conductance due to a single magnetic impurity may be estimated as |∆G/G0| ∼

10−6 ÷ 10−4 ≪ 1.

Eq. (3.32) may be equivalently represented in terms of the parameters λ1,2,3 and the matrixR>

(see section 2.3.2) as

Ibs = −π
2S(S + 1)

3

[
R−1> IR>

]
zz
G0V, (3.35)

I = diag
{
(λ22 − λ23)

2

λ22 + λ23
,
(λ23 − λ21)

2

λ23 + λ21
,
(λ21 − λ22)

2

λ21 + λ22

}
.

The structure of the expression (3.35) is quite remarkable.

• Firstly, all of the entries of the I matrix are non-negative. Thus, the backscattering correction

to the linear conductance (3.35) is always non-positive.

• Secondly, the expressions in the numerators of I, i.e. (λ22 − λ23)
2, (λ23 − λ21)

2, and (λ21 − λ22)
2,

are invariant under the one-loop RG flow (2.16). At the same time, the denominators λ22+λ23,

λ23 + λ21, and λ21 + λ22 diverge as T approaches the Kondo temperature TK. Therefore, the

correction to the linear conductance due to the backscattering vanishes at T = TK.

To conclude this section, we mention that the correction to the linear conductance, i.e. ∆G =

(Ibs/V )|V≪J T , depends on temperature due to the renormalization of the coupling constants only

(see 2.3.2). Thus, ∆G is almost temperature independent for T ≫ TK and J ≪ 1. As was

discussed in Chapter 1 a weak dependence of the linear conductance on temperature is a required

element for a successful theory of the helical edge transport.

3.4 Limit of well-separated energy levels of the impurity

In the present section we discuss the transport along the helical edge assuming that the broadening

of the energy levels of the magnetic impurity∼ J 2max {T, V } is greatly exceeded by the Zeeman

splitting ∼ J V , i.e. V ≫ J T . In this regime the master equation (3.19) may be significantly
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simplified. To see that, we first switch to the interaction representation in Eq. (3.19):

dρIS(t)

dt
= ηmn

(∑
αβγδ

e−i(ωαβ+ωγδ)tSαβ
m ρISSγδ

n − 1

2

∑
αβγ

e−iωαγt
{
ρIS,Sαβ

n Sβγ
m

})
. (3.36)

We remind that Sαβ
x,y,z =

∑
αβ |ψα

S⟩Sαβ
x,y,z⟨ψ

β
S|, where Sαβ

x,y,z = ⟨ψα
S |Sx,y,z|ψβ

S⟩, and |ψα
S⟩ is the α-th

eigenstate of the impurity HamiltonianHe−i
mf which correspondsEα

S . The transition frequencies are

defined as ωαβ = Eβ
S −Eα

S . Next, we apply the rotating wave approximation [32, 34]. To this end,

we average Eq. (3.36) over the time interval ∆t which satisfies ∆t ≪ τK ∼ (J 2max {T, V })−1

on the one hand and ∆t ≫ (minα ̸=β |ωαβ|)−1 ∼ (J V )−1 on the other hand. The fulfilment of the

condition V ≫ J T guarantees the scale separation required to perform such a procedure. Then,

to the leading order in a small parameter J max {T, V } /V we find

dρIS
dt

= ηmn

(∑
αβγδ

Sαβ
m ρISSγδ

n δωαβ ,ωδγ
− 1

2

∑
αβ

{
ρIS,Sαβ

n Sβα
m

})
. (3.37)

Deriving (3.37) we explicitly employed the non-degenerate character of the HamiltonianHe−i
mf . At

this step, it is convenient to divide the density matrix into its diagonal and off-diagonal parts:

ρIS(t) =
∑
α

pα(t)|ψα
S⟩⟨ψα

S |+
∑
α ̸=β

παβ(t)|ψα
S⟩⟨ψ

β
S|. (3.38)

A remarkable feature of Eq. (3.37) is that the evolution of the diagonal components pα is fully

decoupled from the evolution of the off-diagonal components παβ . For pα we obtain

dpα
dt

=
∑
β

Wαβpβ, Wαβ = wα←β − δαβ
∑
β′

wβ′←α, wα←β = ηmnS
αβ
m Sβα

n (3.39)

This is a classical Markov equation for the populations of the energy levels in which the transition

rates are given by wα←β . Noticeably, in the considered regime V ≫ J T the off-diagonal compo-

nents of the density matrix decay to zero at the time scale τK . Thus, the steady state density matrix

of the magnetic impurity has the form

ρ
(st)
S =

∑
α

p(st)α |ψα
S⟩⟨ψα

S |, (3.40)

where p(st)α is a stationary solution of Eq. (3.39). We note that ρ(st)S commutes with the impurity

Hamiltonian He−i
mf and, hence, there is no difference between ρ(st)S,I and ρ

(st)
S in this case.

In order to obtain an explicit expression for p(st)α it is convenient to rotate the impurity spin
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operator Si = S̃kUki, U ∈ SO(3), so that the transformed exchange matrix J̃ = UJ has no J̃xz

and J̃yz components while J̃zz > 0. After the transformation, the effective Zeeman field is directed

along the z-axis, i.e. He−i
mf = J̃zzS̃zV /2. Therefore, the eigenstates of He−i

mf may be characterized

by the value of S̃z: |ψα
S⟩ = |S̃z = α⟩, α = S, S − 1, ...,−S.

Next, we evaluate the transition rates wα←β and find that in the basis2 |S⟩, |S − 1⟩,..., | − S⟩

the matrixWαβ has a tridiagonal structure with the matrix elements given by

Wα,α∓1 = η̃± (S(S + 1)− α(α∓ 1)) /4, (3.41)

Wα,α = −Wα−1,α −Wα+1,α. (3.42)

Here η̃± = (η̃xx ± iη̃xy) ∓ i (η̃yx ± iη̃yy), η̃mn = πT
(
J̃ K0

V J̃ T
)
mn

. From Eqs. (3.41) and (3.42)

one readily finds

p(st)α =
1

Z

(
η̃+
η̃−

)α

, α = S, S − 1, ...,−S, (3.43)

where the partition function Z =
∑S

α=−S(η̃+/η̃−)
α ensures that trSρ(st)S = 1. Intriguingly, the

steady state density matrix ρ(st)S has a Gibbs structure. It may be equivalently rewritten in a basis

independent form as

ρ
(st)
S =

1

Z
exp

{
−He−i

mf /Teff
}
, (3.44)

where the effective temperature Teff is defined by

Teff = −V
4
J̃zz

arccoth
J̃zz

(
Γ̃0

)
zz

2 (detJ )
coth

V

2T

−1 . (3.45)

Here Γ̃0 = trJ̃ J̃ T −J̃ J̃ T . The determinant detJ does not feature a tilde sign due to its invariance

under J → UJ . The effective temperature (3.45) may be alternatively expressed in terms of the

initial exchange matrix J = UT J̃ as

Teff = −V
4

√
(J TJ )zz

[
arccoth

(
J TΓ0J

)
zz
coth V

2T

2 (detJ )
√
(J TJ )zz

]−1
. (3.46)

The representation (3.46) is invariant with respect to the left rotations of the J matrix. It is worth

mentioning that Teff is not a sign-fixed quantity. It is either positive or negative depending on

the structure of the matrix J . This feature is a consequence of the non-equilibrium character of

the considered problem. Interestingly, for V ≫ T both the mean-field interaction He−i
mf and the

2Hereinafter, we use a shorthand notation |α⟩ ≡ |Sn = α⟩ for the states once the quantization axis n is specified.
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effective temperature are proportional to voltage. As a result, the Gibbs factor p(st)α+1/p
(st)
α (α =

S − 1, S − 2, ...,−S) tends to a finite value in the limit V ≫ T . Therefore, the impurity is never

fully polarized in case the matrix J has a general form. A particular exception from this rule is the

isotropic J -matrix, J (iso) = diag {J⊥, J⊥, Jz}, for which (we assume Jz > 0)

ρ
(st)
S =

1

Z
exp

{
V

T
Sz

}
. (3.47)

In the limit V ≫ T only the state with Sz = S is occupied.

At arbitrary voltage V ≫ J T the steady state density matrix (3.44) allows one to evaluate the

averages ⟨Sk⟩ and ⟨{Sm, Sn}⟩ entering Eq. (3.30) and thus find the backscattering current. It is

enlightening to follow this procedure in order to consider the helical edge transport in the regime

J T ≪ V ≪ T . Expanding the expression for ρ(st)S to the first order in V /T we find

⟨Sk⟩ ≃
2S(S + 1)

3

V

T

Jkz detJ
(J TΓ0J )zz

. (3.48)

To the zero order in V /T the density matrix ρ(st)S ≃ ρ
(eq)
S = I(2S+1)×(2S+1)/(2S + 1). Therefore,

⟨{Sm, Sn}⟩ ≃ 2δmnS(S + 1)/3. Then, with the help of Eq. (3.30) for the backscattering current

we establish

Ibs =
π2S(S + 1)

3

(
4 (detJ )2

(J TΓ0J )zz
− g

)
G0V. (3.49)

Here we used the relation JkzXk = 2 detJ . We recall that g =
(
J TJ

)
xx

+
(
J TJ

)
yy
.

Interestingly, the correction to the conductance, ∆G = Ibs/V in the regime J T ≪ V ≪ T

is substantially different from ∆G in the linear regime (see Eq. (3.32)). For instance, for the

four-component matrix (2.9) Ibs based on Eq. (3.49) acquires the form

Ibs = −4S(S + 1)

3M2ξ4
e−4|x0|/ξ J2

mJ
2
0

J2
z + 2J2

0

G0V. (3.50)

which lacks J2
m in the denominator as compared to the corresponding linear result (3.34). Thus, as

a function of voltage ∆G exhibits a crossover at V ∼ J T between the expression (3.49) valid for

J T ≪ V ≪ T and the expression (3.32) applicable in the linear regime V ≪ J T . For V ≪ T

the interpolation between the two limits may be described by

Ibs =
π2S(S + 1)

3

(
X TΓ−1X − g

)
G0V, Γlk ≃ (Γ0)lk +

V

πT
εlkjJjz. (3.51)

This formula follows from Eqs. (3.26), (3.30), and the fact that for V ≪ T the density matrix
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is close to equipartitioning. We mention that the impurity spin S enters the expression for the

backscattering current (3.51) as a factor S(S + 1) only. This is not the case for V & T .

Given the expression (3.46) for the effective temperature onemay expect that after the crossover

at V ∼ J T the correction to the conductance ∆G gradually changes and saturates at V ∼ T . In-

triguingly, while this is indeed the case for the impurities with S > 1/2, for the spin-1/2 impurity

the saturation happens much earlier: already at V ∼ J T . We discuss this peculiarity in the fol-

lowing section.

3.5 Backscattering current due to a spin-1/2 impurity

For a spin-1/2 magnetic impurity it is possible to establish an analytic expression for the backscat-

tering current valid at arbitrary voltages. A simplification in comparisonwith higher spin impurities

comes from the exact relation {Sm, Sn} = δmn/2 specific to S = 1/2. With its help from Eqs.

(3.26) and (3.30) we find

Ibs =
π2

4

(
X TΓ−1X V

2T
coth

V

2T
− g

)
G0V. (3.52)

We mention that in the limit V ≫ J T the inverse Γ-matrix may be evaluated explicitly as

(
Γ−1
)
kl
=

JkzJlz

(J TΓ0J )zz

(
V

2T
coth

V

2T

)−1
. (3.53)

Hence, for V ≫ J T the backscattering current is given by

Ibs =
π2

4

(
4 (detJ )2

(J TΓ0J )zz
− g

)
G0V. (3.54)

Remarkably, this expression is voltage independent. Thus, for S = 1/2 the saturation of ∆G

happens at V ∼ J T and not at V ∼ T . This is not the case for higher spins. If S > 1/2 ∆G is

constant only as long as V & T .

3.6 Numeric solution

In the previous sections of this Chapter we studied the correction to the ballistic conductance due

to the magnetic impurity in the regimes V ≪ J T and V ≫ J T analytically. Concluding this

chapter we compare the corresponding asymptotic expressions with the exact results obtained with
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Figure 3.3: The correction to the ballistic conductance∆G = Ibs/V as a function of V /2T for the
magnetic impurities with different spins. ∆G(V ) is measured in units of −∆G(V = 0). The non-
zero dimensionless couplings areJxx = Jyy = 10−2, Jxz = 0.8Jxx, Jzx = 0.3Jxx, Jzz = 0.9Jxx.
Black solid fading lines depict approximate (V ≫ J T ) conductance curves based on Eqs. (3.30)
and (3.44). The inset presents the effective temperature Teff as a function of V /2T . With slight
changes, the image is adapted from [23].

the help of numeric methods.

In Fig. 3.3 we present the correction to the conductance∆G(V ), which is based on the numeric

solutions of Eqs. (3.19) and (3.30), for the impurities with S = 1/2, 1, 3/2, 2, and 5/2. The choice

of the exchange matrix J is specified in the caption. For each impurity spin ∆G(V ) is measured

in the units of −∆G(V = 0). Thus, all of the curves presented in Fig. 3.3 depart from −1.

All of the main features discussed in the present Chapter are vividly illustrated in Fig. 3.3. To

begin with, there is a sharp crossover at V ∼ J T which is connected with the transition between

the linear regime V ≪ J T (see Eq. (3.32)) and the regime J T ≪ V ≪ T (see Eq. (3.49)). Next,

the curves for the impurities with different spins coincide when V ≪ T . The reason behind this

feature is that for V ≪ T the impurity spin S enters the expression for the backscattering current

as a multiplier S(S + 1) only (see Eq. (3.51)). Black fading curves depict the correction to the

conductance calculated with the help of the Gibbs density matrix (3.44). These curves match with

the numeric results as soon as the condition V ≫ J T is fulfilled. In agreement with section 3.5,

the correction to the conductance saturates at V ∼ J T for S = 1/2. For S > 1/2 the saturation

happens at V ∼ T .
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Chapter 4

Influence of local magnetic anisotropy of the

impurity on the helical edge transport

In the previous chapter, we have considered the transport along the helical edge assuming that

the impurity Hamiltonian Himp = 0. At the same time, already on the level of the master equa-

tion we have seen that the interaction between the edge electrons in the topological insulator

and the impurity induces the local magnetic anisotropy of the latter (see section 3.2.2): Hedge
anis =

−Λedge|M |
(
JJ T

)
qp
SqSp,Λedge ∼ 1. Therefore, it is important to i) identify other possible sources

of local anisotropy, ii) determine the conditions under which the local anisotropy may be neglected,

iii) understand what is the influence of the anisotropy on the transport properties of the edge of the

topological insulator once it cannot be disregarded. In the present chapter we address these ques-

tions in details.

In section 4.1 we consider in details the local anisotropy generated by the indirect exchange

interaction of the magnetic impurity with itself. Here we focus on the topological insulators based

on the CdTe/HgTe/CdTe quantum wells although qualitatively the obtained results are applicable

to other structures as well. In section 4.2 we derive the master equation and the equation for the

backscattering current taking the anisotropy into account. Section 4.3 is devoted to the helical edge

transport in the presence of the impurity with uniaxial anisotropy. Finally, in section 4.4 the case

of non-uniaxial anisotropy is discussed.

4.1 Local magnetic anisotropy

The local anisotropy of a spin S magnetic impurity embedded into the topological insulator origi-

nates from a number of sources. In section 3.2.2 we already identified one of them: the anisotropy
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is generated by the exchange interaction between the impurity and the edge electrons. The ex-

change between the magnetic impurity and the bulk electrons results in a contribution to the local

anisotropy in the same way [27]. In addition to that, the crystalline field induces the quadrupolar

splitting of the impurity energy levels [35]. Furthermore, strains in the heterostructure might pro-

duce the anisotropy as well although we do not discuss this mechanism in details in the present

thesis.

To account for these effects, in the following sections we use a phenomenological impurity

HamiltonianHimp = DqpSqSp without referring to any specific origin of the anisotropy emergence.

However, in order to understand whether the presented considerations are relevant in realistic ex-

perimental conditions as well as to reveal possible matrix structure ofDqp we first discuss different

sources of the local anisotropy in a more detail. Below, we assume that the considered topological

insulator is based on the CdTe/HgTe/CdTe quantum well. Yet, on a qualitative level, the results

presented in this section are valid for the other 2D topological insulators as well.

Let us first consider the local anisotropy generated by the interaction between the magnetic

impurity and the electrons in the quantum well. This contribution to the total anisotropy may be

viewed as the one produced by the indirect exchange interaction of the impurity with itself (see

[27]). In order to evaluate it, we represent the exchange Hamiltonian (2.7) as a sum over the

impurity spin components: He−i = J̌qSqδ(r − r0). Here J̌x,y,z are 4 × 4 matrices operating in

the basis of spatially quantized states |E1,+⟩, |H1,+⟩, |E1,−⟩, |H1,−⟩ and r0 = (x0, y0)
T is an

in-plane radius vector of the impurity. Then, with the help of Matsubara diagram technique to the

second order in J̌ we find

Himp = DqpSqSp, Dqp =
1

2

∫
dϵ

2π
trqw

{
G(iϵ, r0, r0)J̌qG(iϵ, r0, r0)J̌p

}
, (4.1)

where trqw {...} is a trace over the matrix indexes in |E1,±⟩, |H1,±⟩ space and G(iϵ, r1, r2) is the

Matsubara Green’s function. For the estimate, we assumed that T = 0. In the expression (4.1), it

is convenient to represent each Green’s function as a sum over the edge and bulk states. To do that,

we use the identity

G = Gedge + Gbulk, Gedge(iϵ, r1, r2) =
∑
s=↑/↓

∑
ky

ψedge,s(r1, ky)ψ
†
edge,s(r2, ky)

iϵ− Eedge,s(ky) + µ
, (4.2)

Gbulk(iϵ, r1, r2) =
∑
b=±

∑
s=↑/↓

∑
k

ψb
bulk,s(r1,k)ψ

b,†
bulk,s(r2,k)

iϵ− Eb
bulk,s(k) + µ

.

Thewave functions of the edge and bulk states within themodel (2.3) are presented in Eqs. (2.4) and
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(2.6) correspondingly. We recall that Eedge,↑/↓(ky) = ∓Aky and E±bulk,↑(k) = E±bulk,↓(k) = ±E(k),

where E(k) =
√
M2 + A2k2. The representation (4.2) hints that it is possible to divide the impurity

Hamiltonian Himp into three terms of different origin:

Himp = Hedge
anis +Hbulk

anis +H int
anis, H

edge (bulk, int)
anis = Dedge (bulk, int)

qp SqSp, (4.3)

where

Dedge (bulk)
qp =

1

2

∫
dϵ

2π
trqw

{
Gedge (bulk)(iϵ, r0, r0)J̌qGedge (bulk)(iϵ, r0, r0)J̌p

}
, (4.4)

Dint
qp =

1

2

∫
dϵ

2π
trqw

{
Gbulk(iϵ, r0, r0)J̌qGedge(iϵ, r0, r0)J̌p

}
+ (q ↔ p). (4.5)

Here Hedge (bulk)
anis describes the local anisotropy generated by the interaction between the magnetic

impurity and the edge (bulk) electrons. Interestingly, the last term in Eq. (4.3),H int
anis, is determined

by the edge and bulk states simultaneously. Hence, it is mediated by the interference between the

two types of states.

Now, we discuss these contributions to the anisotropy in various scenarios. To begin with, we

consider the case in which the magnetic impurity is located far away from the helical edge, |x0| ≫

ξ = A/|M |. In this regime, the edge and the interference terms in Eq. (4.3) are exponentially

suppressed as compared with the bulk term Hbulk
anis = Dbulk

qp SqSp. The latter may be estimated as

(see [27])

Dbulk
qp = −Λ∞bulk|M |3trqw

{
J̌qJ̌p

}
/A4,

Λ∞bulk ∼
A4

|M |3

∫
dϵ

2π

d2k1

(2π)2
d2k2

(2π)2
ϵ2

(ϵ2 + E(k1)2) (ϵ2 + E(k2)2)
. (4.6)

The integral for the dimensionless multiplier Λ∞bulk diverges in the ultraviolet limit. The divergence

emerges as a consequence of the approximation that the electron-impurity interactionHe−i bears a

local character. Realistically, the impurity potential has a finite range limp of the order of several lat-

tice constants. For instance, for a Mn2+ impurity in CdTe we estimate limp = aBεCdTemCdTe/2me ≃

3 nm, where εCdTe ≃ 10 is the dielectric constant of CdTe,mCdTe ≃ 0.1me is the electron band ef-

fective mass,me is the bare electron mass, and aB is the Bohr radius1. The integral (4.6) should be

regularized at high momenta kmax ∼ l−1imp. As a result, we find

Λ∞bulk ∼
(

ξ

limp

)3

. (4.7)

1For the reference, the lattice constant of CdTe is aCdTe ≃ 0.6 nm.
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Wemention that for the CdTe/HgTe/CdTe quantum well with the width d = 7.0nm the length scale

ξ ≃ 40 nm ≫ limp ∼ 1 nm. Hence, in this realistic setting the ratio ξ/limp is large and Λ∞bulk ≫ 1.

Next, we discuss the case of the impurity located very close to the edge, |x0| ≪ ξ. In this

regime, bulk and edge states which are characterized by the same index ↑ / ↓ have the same spinor

structure (see Eqs. (2.4) and (2.6)). Therefore, the matrix form ofDedge
qp ,Dbulk

qp , andDint
qp is the same:

Dbulk
qp = −Λ0

edge|M |3trqw
{
P J̌qP J̌p

}
/A4, Dbulk

qp = −Λ0
edge|M |3trqw

{
P J̌qP J̌p

}
/A4

Dint
qp = −Λ0

int|M |3trqw
{
P J̌qP J̌p

}
/A4, (4.8)

where the matrix P is defined by

P =


1 −i 0 0

i 1 0 0

0 0 1 i

0 0 −i 1

 . (4.9)

At the same time, the numeric factors Λ0
edge, Λ0

bulk, and Λ0
int are parametrically different. Using the

explicit structure of the bulk and edge states in the CdTe/HgTe/CdTe heterostructure we determine

Λ0
edge ∼

A2

|M |

∫
dϵ

2π

dky,1
2π

dky,2
2π

ϵ2(
ϵ2 + A2k2y,1

) (
ϵ2 + A2k2y,2

) ∼ 1

|M |

∫
dϵ ∼ 1, (4.10)

Λ0
int ∼

A3

M2

∫
dϵ

2π

d2k1

(2π)2
dky,2
2π

ϵ2

(ϵ2 + E(k1)2) (ϵ2 + A2ky,2)

A2k2x,1
E(k1)(E(k1) + Aky,1)

∼

∼ 1

|M |

∫
dϵ ∼ 1, (4.11)

Λ0
bulk ∼

A4

|M |3

∫
dϵ

2π

d2k1

(2π)2
d2k2

(2π)2
ϵ2

(ϵ2 + E(k1)2) (ϵ2 + E(k2)2)
1

E(k1)E(k2)
×

×
A4k2x,1k

2
x,2

(E(k1) + Aky,1)(E(k2) + Aky,2)
∼
(

ξ

limp

)3

. (4.12)

Deriving the estimates for Λ0
edge and Λ0

int we introduced an ultraviolet cut-off ϵmax ∼ |M | in the

integrals over energies. It accounts for the fact that the edge states are defined in a finite interval of

energies of the order of the band gap only. Remarkably, the expressions (4.8) may be equivalently

rewritten in terms of the dimensionless exchange coupling matrix J as

Dbulk (edge, int)
qp = −2π2Λ

bulk (edge, int)
0 |M |

(
JJ T

)
qp
. (4.13)

Comparing the resultant expression (4.13) with Eq. (3.22) we conclude the linearly divergent terms
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which we encountered in the derivation of the master equation for the density matrix ρS precisely

describe the anisotropy due to the interaction between the impurity and the edge electrons.

Notice that the bulk contribution Hbulk
anis to the anisotropy has the same order of magnitude in

cases |x0| ≪ ξ and |x0| ≫ ξ. Hence, as the impurity gets displaced from the edge of the sample

into the bulk the value ofDbulk
qp is roughly preserved, whereas its matrix structure smoothly changes

from trqw
{
P J̌qP J̌p

}
to trqw

{
J̌qJ̌p

}
on a length scale of ξ.

Interestingly, Hbulk
anis typically transcends the contributions due to the interaction with the edge

electrons or due to the interference: Hedge
anis and H int

anis respectively.

We mention that the anisotropyHbulk
anis in the model (2.7) is uniaxial for the impurity located far

away from the edge,

Hbulk
anis = −2Λ∞bulk|M |3

{
J2
1 + J2

2 − J2
m − 2J2

0

}
S2
z/A

4. (4.14)

Here we omitted the constant energy shift. On the contrary, for the impurity located near the edge

the bulk contribution to the anisotropy is non-uniaxial,

Hbulk
anis = −2Λ0

bulk|M |3
{
((J1 + J2)

2 − J2
m)S

2
z + 4J0(J1 + J2)SxSz + 4J2

0S
2
x

}
/A4. (4.15)

Using the approximate values of J0,1,2,m (see [27]) we establish that in the CdTe/HgTe/CdTe

quantum well with the width d = 7.0 nm the bulk contribution to the anisotropy may be estimated

as |Dbulk
qp | ∼ 0.1 K for the manganese impurity. Another possible source of the local anisotropy

– the quadrupolar splitting – is of the order of ∼ 10−3 K [35] and, hence, may be disregarded in

comparison withHbulk
anis . Thus, while in the following we will consider the effects of the anisotropy

in a phenomenological model Himp = DqpSqSp, we will keep in mind that Dqp mainly originates

due to the interaction of the impurity with the bulk electrons.

To conclude this section, we note that the time-reversal symmetry which is present in the consid-

ered system implies that the Hermitian matrixD is real and, therefore, symmetric. The expressions

(4.6) and (4.8) illustrate this observation. Importantly, the symmetry of the matrixD entails that for

a spin-1/2 magnetic impurity the expression DqpSqSp always reduces to a mere constant. Hence,

the anisotropy is never relevant for the impurities with S = 1/2.
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4.2 Master equation and backscattering current

In the presence of the anisotropic impurity with Himp = DqpSqSp the total Hamiltonian Htot of the

edge of the topological insulator has the form

Htot = DqpSqSp + JkzSk
V

2
+

1

ν
JijSi : sj : +iv

∫
dyΨ†(y)σz∂yΨ(y)dy. (4.16)

Here we divided the electron-impurity interaction He−i
edge = JijSisj/ν into its mean-field part

He−i
mf = JkzSkV /2 and the fluctuations around it, : He−i

edge := JijSi : sj : /ν. We recall that

the spin density fluctuation operator, which enters the expression for : He−i
edge :, is defined by : sj :=

sj−⟨sj⟩0, where ⟨sj⟩0 = δjzνV /2. The last term in Eq. (4.16),He
edge = iv

∫
dyΨ†(y)σz∂yΨ(y)dy,

describes the kinematics of the edge electrons.

Notice that under the redefinition of the impurity spin operatorsSi → SkUki, whereU ∈ SO(3),

the anisotropy matrix D and the exchange interaction matrix J transform as

D → UDUT , J → UJ . (4.17)

SinceD is a symmetric matrix it is always possible to choose a proper U so that UDUT is diagonal

and the transformed anisotropy Hamiltonian has the formHimp = DxxS
2
x +DyyS

2
y +DzzS

2
z . Up to

the constant energy shift the latter expression equals

Himp = DxS
2
x +DzS

2
z , (4.18)

where we defined Dx = Dxx −Dyy and Dz = Dzz −Dyy. Hence, throughout the Chapter we will

use the Hamiltonian (4.18) with |Dz| ≥ |Dx| instead of Himp = DqpSqSp. As long as we assume

that the exchange matrix J has an arbitrary form such substitution does not diminish the generality

of our considerations.

Next, we notice that the first two terms in Eq. (4.16) describe the degrees of freedom related to

the impurity only. Therefore, it reasonable to combine them in a total Hamiltonian of the magnetic

impurity

H tot
imp = Himp +He−i

mf = DxS
2
x +DzS

2
z + JkzSk

V

2
. (4.19)

We denote the eigenstates ofH tot
imp and the corresponding energies as |ψα

S⟩ andEα
S respectively. The

index α can have 2S + 1 distinct values.

To evaluate the backscattering current at arbitrary voltage and temperaturewe follow themethod-

ology developed in Chapter 3. First, we derive the master equation for the reduced density matrix
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of the magnetic impurity ρS . To this end, in the Liouville equation dρ/dt = −i [Htot, ρ] we switch

to the interaction representation by introducing

ρI(t) = exp
{
−i(H tot

imp +He
edge)t

}
ρ(t) exp

{
i(H tot

imp +He
edge)t

}
. (4.20)

Then we take the partial trace over the edge electrons. As a result, we reproduce the Bloch-Redfield

master equation (3.15):

dρIS(t)

dt
= JmiJnj

∑
αβγδ

{[(
Sαβ
m

)I
(t)ρIS(t),

(
Sγδ
n

)I
(t)
]
Kij

V (ωαβ) + h.c.
}
. (4.21)

Here Sαβ
x,y,z = |ψα

S⟩Sαβ
x,y,z⟨ψ

β
S|, Sαβ

x,y,z = ⟨ψα
S |Sx,y,z|ψβ

S⟩, and ωαβ = Eβ
S − Eα

S . The spin-spin

correlator function Kij
V (ωαβ) is defined in Eq. (3.18). While Eq. (4.21) is formally similar to Eq.

(3.15), there is a major difference between the former and the latter: in contrast to Eq. (3.15), the

structure of the eigenstates |ψα
S⟩ and the respective energies Eα

S in Eq. (4.21) are both affected by

the local anisotropy. Below, we will show that in many cases this feature has a dramatic influence

on the character of the impurity dynamics and on the backscattering current.

Alternatively, Eq. (4.21) may be rewritten as

dρS(t)

dt
= −i

[
DzS

2
z +DxS

2
x + JkzSk

V

2
, ρS(t)

]
+ (4.22)

+JmiJnj

∑
αβγδ

{[
Sαβ
m ρS(t),Sγδ

n

]
Kij

V (ωαβ) + h.c.
}
/2.

Here we omitted the antihermitian part of the correlatorKV which accounts for the renormalization

of the impurity Hamiltonian. Complemented by the equation for the backscattering current

Ibs =
1

2
εzplJmpJnq

∑
αβγδ

(
−i⟨Sαβ

m Sγδ
n ⟩Kql

V (ωγδ) + c.c
)
. (4.23)

Eq. (4.22) allows us to determine the correction to the ballistic conductance mediated by the mag-

netic impurity. The prescription is similar to those considered in Chapter 3. First, we solve Eq.

(4.22) for the steady state density matrix ρ(st)S and then perform the averaging in Eq. (4.23) over

ρ
(st)
S . While the procedure is conceptually simple, it is a very complicated task to find ρ(st)S and Ibs in

the general case, i.e. for arbitrary relations between temperature T , voltage V , and the anisotropy

coefficients Dz and Dx. Yet, a lot of progress can be made in various limiting cases. To identify

different regimes of interest, let us compare the terms in Eq. (4.22). For the estimates, we de-

note the typical value of the anisotropy as D. Given the fact that Dz ≥ Dx, by definition we take
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D ≡ Dz.

First of all, we note that the frequency dependence of the spin-spin correlator is substantiation

for determination of the backscattering current only in the low-energy regime max {T, V } . D.

If, on the contrary, max {T, V } ≫ D, then one can safely substituteKV (ωαβ) byK0
V in Eqs. (4.22)

and (4.23). As a result, Eq. (4.22) simplifies to

dρS
dt

= −i
[
DzS

2
z +DxS

2
x + JkzSk

V

2
, ρS

]
+ ηmn

(
SmρSSn −

1

2
{ρS, SnSm}

)
(4.24)

with η = JK0
VJ T , whereas the expression for Ibs (4.23) reduces to the one considered in the

previous Chapter (see Eq. (3.30)). Intriguingly, in contrast to the naïve expectations, the anisotropy

cannot be fully disregarded even in the case max {T, V } ≫ D. Indeed, while the relaxation term

in the master equation is independent of D in this limit, the anisotropy may still have a profound

influence on the impurity dynamics through the Liouvillian term −i [DzS
2
z +DxS

2
x, ρS]. There

are two cases in which this term may be completely neglected: i) when the mean-field interaction

He−i
mf = JkzSkV /2 plays dominant role in determining the level structure of the magnetic impurity

as compared to anisotropy, i.e. V ≫ D/J , ii) when the relaxation term ∼ J 2max {T, V } in Eq.

(4.24) greatly surpasses the typical value of anisotropy D. Combining these two conditions we

establish that the anisotropy may be disregarded if the inequality

max
{
J 2T,J V

}
≫ D. (4.25)

is fulfilled. The condition (4.25) determines the range of applicability of the results presented in

Chapter 3. Notice, that for the anisotropy produced by the interaction between the impurity and

the bulk electrons (see Eqs. (4.8) and (4.12)) the temperature scale T ∼ D/J 2 is of the order of

|M | (ξ/limp)
3 which largely exceeds the band gap |M |. Therefore, the results for the correction

to the linear conductance presented in Eqs. (3.32) and (3.35) are to be treated with care for the

impurities with S > 1/2: they are relevant for temperatures at which the conductivity of the sample

is primarily determined by its bulk. and not by the edge.

The three regions in the (V, T ) plane with the different behavior of the backscattering current

are presented in Fig. 4.1. The region I corresponds to the regime of low energies max {T, V } ≪

D. The region II, i.e. max {J 2T,J V } ≪ D ≪ max {T, V }, describes the limit in which the

relaxation is independent of the anisotropy whereas the Liouvillian dynamics is strongly influenced

by the presence of non-zero D. Finally, the region III is defined by max {J 2T,J V } ≫ D. Here

the effects of the anisotropy are fully negligible and all of the results of Chapter 3 are reproduced.
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Figure 4.1: Three regions in the (V, T )
plane. Region I: low energies, both the
relaxation and the Liovillian dynamics
are strongly affected by the anisotropy;
region II: the relaxation rates are inde-
pendent of the anisotropy; region III:
the anisotropy is negligible. Dashed
lines correspond to V ∼ T and V ∼
J T .

In the next sections, we consider the transport along the helical edge in regions I and II in details.

For illustrative purposes, we focus on the cases of uniaxial anisotropy (Dx = 0) and almost uniaxial

anisotropy (|Dx| ≪ |Dz|) only. We note that the pair of equations (4.22) and (4.23) in principle

allows one to evaluate the backscattering current for the arbitrary ratio of anisotropy components

Dx and Dz numerically.

4.3 Uniaxial anisotropy

In this section we develop a theory of the helical edge transport in the presence of the mag-

netic impurity with uniaxial anisotropy Himp = DzS
2
z . First, in subsection 4.3.1 we discuss the

level structure of the total impurity Hamiltonian H tot
imp. Then, in subsection 4.3.2 we focus on the

regime of low energies max {T, V } ≪ |Dz| (region I in Fig. 4.1). The results differ for the

impurities with integer and half-integer spin and, hence, are divided between two subsections.

After that, in subsection 4.3.3 we discuss the regime of intermediate temperatures and voltages,

max {J 2T,J V } ≪ |Dz| ≪ max {T, V } (region II in Fig. 4.1), separately considering the cases

of the impurity with integer and half-integer spin. We note that the consideration of the high-energy

limit max {J 2T,J V } ≫ |Dz| (region III in Fig. 4.1) is omitted in this section: the results in this

regime coincide with the ones presented in Chapter 3.

4.3.1 Level structure

To begin with, we consider the level structure of the total Hamiltonian of the impurity

H tot
imp = Himp +He−i

mf , Himp = DzS
2
z , He−i

mf = JkzSk
V

2
. (4.26)
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At zero voltage, the mean-field electron-impurity interaction vanishes and
(
H tot

imp
)∣∣

V=0
≡ Himp.

Hence, in this regime the energy levels are characterized by the well-defined z-projection of the

impurity spin, i.e.
(
H tot

imp
)∣∣

V=0
|α⟩ = Dzα

2|α⟩, where |α⟩ ≡ |Sz = α⟩. The states |±α⟩with α > 0

form doublets. Notice, that the state |0⟩ of the impurity with integer spin does not have a degenerate

partner. On the contrary, all of the states of the half-integer spin impurity are double-degenerate:

this is a manifestation of Kramers theorem for a simple Hamiltonian
(
H tot

imp
)∣∣

V=0
.

A finite voltage applied along the edge induces the non-zero mean-field interaction He−i
mf . It

splits all of the doublets {|+ α⟩, | − α⟩} with α > 0. A secular Hamilotnian Hα
sec which governs

the splitting of the pair {|+ α⟩, | − α⟩} is always diagonal for the impurity with integer S:

Hα
sec =

Dzα
2 + JzzαV /2 0

0 Dzα
2 − JzzαV /2

 . (4.27)

Here Hα
sec is presented in the basis | + α⟩, | − α⟩ for α = 1, 2, ..., S. It implies that the doublet

{|+ α⟩, | − α⟩} with the energy Dzα
2 splits into the states |ψ±αS ⟩ = | ± α⟩ with the respective en-

ergiesE±αS = Dzα
2±JzzαV /2. This feature also holds true for the doublets {|+ α⟩, | − α⟩}with

α ≥ 3/2 for the half-integer spin impurity. However, in the latter case the pair {|+ 1/2⟩, | − 1/2⟩}

gets split byHe−i
mf non-trivially. Indeed, the corresponding secular HamiltonianH1/2

sec is not diagonal

in the basis |+ 1/2⟩, | − 1/2⟩:

H1/2
sec =

1

4

 Dz + JzzV (S + 1/2)(Jxz − iJyz)

(S + 1/2)(Jxz + iJyz) Dz − JzzV

 . (4.28)

Therefore, the pair {|+ 1/2⟩, | − 1/2⟩} with the energy Dz/4 breaks into

∣∣∣ψ+1/2
S

⟩
= cos

(
θ1/2
2

)
|+ 1/2⟩+ sin

(
θ1/2
2

)
eiϕ1/2| − 1/2⟩, (4.29)∣∣∣ψ−1/2S

⟩
= cos

(
θ1/2
2

)
| − 1/2⟩ − sin

(
θ1/2
2

)
e−iϕ1/2|+ 1/2⟩ (4.30)

with E±1/2S =
(
Dz ±

√
J 2

zz + (S + 1/2)2(J 2
xz + J 2

yz)
)
/4 and

tan θ1/2 = (S + 1/2)

√
J 2

xz + J 2
yz

Jzz

, tanϕ1/2 =
Jyz

Jxz

. (4.31)

As we will see later, the peculiar structure of the eigenstates
∣∣∣ψ±1/2S

⟩
is of the large importance in

the parameter region II, i.e. for max {J 2T,J V } ≪ |Dz| ≪ max {T, V }.
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4.3.2 Transport at low energies

In this subsection we determine the backscattering current in the parameter region I, i.e. when

max {T, V } ≪ |Dz|. We mention that the results in this limit strongly depend on the parity of 2S

and on the sign of the anisotropy. Therefore, below we consider all possible cases: transport in

the presence of the impurity i) with the integer spin and easy-axis anisotropy (Dz < 0), ii) with

the integer spin and easy-plane anisotropy (Dz > 0), iii) with the half-integer spin and easy-axis

anisotropy , and, finally, iv) with the half-integer spin and easy-plane anisotropy.

Integer impurity spin

First of all, we discuss the case of the easy-axis anisotropy for the integer spin impurity. The

inequalitiesDz < 0 and max {T, V } ≪ |Dz| guarantee that the impurity is restrained to occupy the

doublet {|+ S⟩, | − S⟩} only. Thus, to describe the correction to the backscattering conductance

it is possible to project the total Hamiltonian of the helical edge (4.16) onto the subspace formed

by |+ S⟩ and | − S⟩. Under the projection, the Hamiltonian (4.16) turns into

Heff
tot = DzS

2 +
1

ν
ĴijŜisj + iv

∫
dyΨ†(y)σz∂yΨ(y), Ŝi = σ̂i/2, (4.32)

where σ̂x,y,z are the Pauli matrices in the basis |+ S⟩, | − S⟩ and

Ĵ =


0 0 0

0 0 0

2SJzx 2SJzy 2SJzz

 . (4.33)

The transformation is justified with high accuracy controlled by a large parameter |Dz|/T . From

Eq. (4.32) we conclude that the problem of determining the backscattering current Ibs in the pres-

ence of the anisotropic spin S impurity was effectively mapped to those of a spin-1/2 impurity with

a simple exchange matrix (4.33). Thus, the results of Chapter 3 may be employed to find Ibs. We

note that X̂k = 2εkmnĴmxĴny = 0. Thus, from Eq. (3.30) we find

Ibs = −π
2

4

(
Ĵ 2

zx + Ĵ 2
zy

)
G0V = −π2S2

(
J 2

zx + J 2
zy

)
G0V. (4.34)

Remarkably, this result it is fully independent of temperature except for the weak logarithmic de-

pendence due to the coupling constants renormalization. We note that Ibs vanishes forJzx = Jzy =

0 in the considered limit. Since we assume that J has a general form we do not discuss the case
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Jzx = Jzy = 0 below.

Next, we consider the low-energy transport in the case of the easy-plane anisotropy Dz > 0.

In this regime the impurity is frozen in its ground state |0⟩ whereas the transitions to the excited

states are exponentially suppressed with a large parameterDz/T . Consequently, the backscattering

current evaluated to the second order in J with the help of Eqs. (4.22) and (4.23) is small as

exp {−Dz/T} as well. At the same time, virtual transitions of the magnetic impurity to the closest

excited states | ± 1⟩ yield the contribution to the current of the fourth order in J which is not

exponentially small. In order to estimate it, we project the exchange interactionHe−i
edge = JijSisj/ν

onto the ground state |0⟩. To the second order in J , we obtain the following effective low-energy

Hamiltonian

He−i
eff = − 1

Dz

JijJklsjsl
∑
α=±1

⟨0|Si|α⟩⟨α|Sk|0⟩ = −S(S + 1)

2Dz

sjsl
∑
k=x,y

JkjJkl. (4.35)

The resultant expression indicates that the magnetic impurity effectively mediates electron-electron

interaction between the edge states in its vicinity. Its sophisticated spin structure allows for the non-

zero backscattering current Ibs in the steady state regime. To evaluate Ibs one has to take the finite

range of the electron-impurity interaction limp into account: for limp = 0 the effective Hamiltonian

(4.35) yields no backscattering as dictated by the Pauli exclusion principle. Thus, we replace the

spin density operators in Eq. (4.35) by

sj =
1

2

∫
dyc(y)Ψ†(y)σjΨ(y), (4.36)

where c(y) is a smooth symmetric function centred around the position y0 = 0 of the impurity

which satisfies
∫
dyc(y) = 1,

∫
dyy2c(y) = l2imp.

The presence of the effective electron-electron interaction (4.35) induces two-particle scattering

processes which occur near the magnetic impurity. Three types of them contribute to the backscat-

tering current. These are

(ia) |σz,1 = +1, σz,2 = +1⟩ � |σz,1 = +1, σz,2 = −1⟩,

(ib) |σz,1 = −1, σz,2 = −1⟩ � |σz,1 = +1, σz,2 = −1⟩, (4.37)

(ii) |σz,1 = +1, σz,2 = +1⟩ � |σz,1 = −1, σz,2 = −1⟩.

Here σz,1/2 and σz,2/2 stand for the spin-z projections of the two interacting electrons. The latter

are labelled by the indexes 1, 2. The sketches of the interaction processes (ia), (ib), and (ii) are
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(ia) (ib) (ii)

Figure 4.2: Three types of processes in which the impuritymakes a virtual transition from its ground
state |0⟩ into the lowest excited states | ± 1⟩. (ia) and (ib) depict processes with one backscattered
electron. (ii) depicts the process with two backscattered electrons.

presented in Fig. 4.2. The processes (ia) and (ib) describe the scattering events in which only one

electron flips its spin and, due to the spin-momentum locking, changes its direction of motion. In

the processes of type (ii) two electrons flip their spins and get backscattered synchronously.

We divide the backscattering current Ibs in a sum of two contributions: Ibs = I (i)bs + I (ii)bs , where

I (i)bs is related to the scattering events of types (ia) and (ib) and I
(ii)
bs is due to the events of type (ii).

Using the Fermi Golden rule, we estimate I (i)bs and I
(ii)
bs as

I (i)bs
G0V

∼ −S
2(S + 1)2

D2
zv

4

∑
j=x,y

(∑
l=x,y

JljJlz

)2

max {|µ|, T, V }2max {T, V }4 l4imp, (4.38)

I (ii)bs
G0V

∼ −S
2(S + 1)2

D2
zv

4

∑
l,j,m,p,r,n=x,y

JljJlmJprJpnOmn
jr max {|V |, T}6 l4imp, (4.39)

where Omn
jr = δjrδmn − εjrzεmnz and µ is the helical edge chemical potential. Interestingly, in the

limit max {T, V } ≪ |µ| the single spin-flip processes are much more efficient compared to those

with two simultaneous spin-flips, i.e.
∣∣∣I (i)bs ∣∣∣ ≫ ∣∣∣I (ii)bs

∣∣∣. Notice, the both I (i)bs and I (ii)bs are the power-

law functions of voltage and temperature: there is no exponential suppression of the backscattering

current, although Ibs is of the fourth order in J . Finally, we mention that for J = J (iso) =

diag {J⊥, J⊥, Jz} the backscattering current Ibs nullifies. This is a consequence of the fact that,

even in the presence of Himp = DzS
2
z , the Hamiltonian (4.16) with the exchange matrix J (iso)

conserves Sz + Σz. Now, we switch to the case of the impurity with a half-integer spin.

Half-integer impurity spin

The result (4.34) for the backscattering current in the presence of the easy-axis local anisotropy

(Dz < 0) is trivially extended from the case of the integer spin impurity to the case of the half-

integer spin impurity. However, there is no connection like that if the anisotropy is of the easy-

plane type (Dz > 0).

In the low-energy regime the half-integer spin impurity with Dz > 0 is pinned to the two-
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fold degenerate subspace {|+ 1/2⟩, | − 1/2⟩}. To describe the backscattering current Ibs in this

scenario we project the total Hamiltonian (4.16) onto the states |+ 1/2⟩ and | − 1/2⟩ and obtain

Heff
tot =

Dz

4
+

1

ν
J̄ijS̄isj + iv

∫
dyΨ†(y)σz∂yΨ(y), S̄i = σ̄i/2, (4.40)

where

J̄ =


(S + 1/2)Jxx (S + 1/2)Jxy (S + 1/2)Jxz

(S + 1/2)Jyx (S + 1/2)Jyy (S + 1/2)Jyz

Jzx Jzy Jzz

 . (4.41)

We immediately conclude that the problem of determining the backscattering current in the pres-

ence of the anisotropic impurity with the spin S was mapped to those with a spin-1/2 impurity and

the exchange matrix J̄ . As it was shown in Chapter 3 in the latter case it is possible to deduce an

exact relation for Ibs (see Eq. (3.52)) which would be valid at arbitrary voltage and temperature.

With its help we find

Ibs =
π2

4

(
X̄ T Γ̄−1X̄ V

2T
coth

V

2T
− ḡ

)
, X̄k = 2εkmnJ̄mxJ̄ny, (4.42)

Γ̄lk =
1

πT

(
δlktrη̄ −

η̄lk + η̄kl
2

+ V εlkjJ̄jz

)
, η̄ = J̄ K0

V J̄ T , (4.43)

ḡ =
(
J̄ T J̄

)
xx

+
(
J̄ T J̄

)
yy
. We remind the reader that, as a function of voltage, the expression

for Ibs saturates at V ∼ J̄ T and not at V ∼ T . Eqs. (4.42) and (4.43) finish the discussion of the

low-energy transport.

4.3.3 Transport at intermediate temperatures and voltages

This subsection is dedicated to the discussion of the backscattering current in the regime of inter-

mediate temperatures and voltages, i.e. max {J 2T,J V } ≪ |Dz| ≪ max {T, V } (region II in Fig.

4.1). Below, we separately consider the cases of the magnetic impurity with integer and half-integer

spin.

Integer impurity spin

As was discussed in section 4.3.1 at V = 0 the eigenstates of the impurity Hamiltonian H tot
imp

can be characterized by the spin z-projection Sz = α. The states with α ≥ 1 form doublets

{|+ α⟩, | − α⟩}. At finite voltage the mean-field interactionHe−i
mf splits them into the states |+α⟩

and | − α⟩ separated by the gap ∼ J V . Depending on the ratio between this splitting and the
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level broadening due to the relaxation, which is controlled by the inverse Korringa time τ−1K ∼

J 2max {T, V }, the behavior of the backscattering current may be different. Thus, in the following

we first discuss the limit of well-separated energy levels and then switch to case of strongly smeared

energy levels.

Integer impurity spin: well-split doublets

To begin with, we assume that V ≫ J T (for the illustration, see Fig. 4.1). This condition guaran-

tees that all of the doublets are well-split as compared to their smearing. Thus, the rotating wave

approximation may be employed in this case to simplify the master equation (4.24) for the reduced

density matrix of the magnetic impurity. The procedure is described in details in section 3.4. Here

we only provide its sketch. First, we switch to the interaction representation in Eq. (4.24) . Then

we average the resultant equation over the time-scale ∆t satisfying (J V )−1 ≪ ∆t ≪ τK . In this

way, we obtain the equation for the evolution of the diagonal elements of the density matrix ρS
which is fully decoupled from the equation for the dynamics of the off-diagonal components:

dpα
dt

=
∑
β

Wαβpβ, Wαβ = wα←β − δαβ
∑
β′

wβ′←α, wα←β = ηmnS
αβ
m Sβα

n . (4.44)

Here pα(t) = ⟨ψα
S |ρIS(t)|ψα

S⟩, Sαβ
x,y,z = ⟨ψα

S |Sx,y,z|ψβ
S⟩, and η = JK0

VJ T . We explicitly utilized

the fact that for max {T, V } ≫ |Dz| the spin-spin correlation function KV (ωαβ) may be evaluated

at zero frequency. As was discussed in section 4.3.1, for the integer spin impurity the eigenstates

|ψα
S⟩ are trivial: they are characterized by the spin z-projection, |ψα

S⟩ = |α⟩.

Next, we search for the stationary solution of Eq. (4.44) p(st)α . With its help one may readily

recover the steady state density matrix as ρ(st)S =
∑

α p
(st)
α |α⟩⟨α|. By evaluating the transition rates

ωα←β we establish that in the basis |S⟩, |S − 1⟩,..., | − S⟩ the tridiagonal matrix Wαβ has the

following matrix elements

Wα,α∓1 = η± (S(S + 1)− α(α∓ 1)) /4, (4.45)

Wα,α = −Wα−1,α −Wα+1,α, (4.46)

where η± = (ηxx ± iηxy)∓ i (ηyx ± iηyy). From these equations we find

p(st)α =
1

Z

(
η+
η−

)α

, α = S, S − 1, ...,−S. (4.47)

The multiplier Z guarantees
∑

α p
(st)
α = 1. The density matrix ρ(st)S which corresponds to the
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populations (4.47) may be written in a basis independent form as

ρ
(st)
S =

1

Z
exp (βSz) , β = 2arth

(
V

2T

Xzz

Γzz

)
. (4.48)

We recall that Xk = 2εkmnJmxJny and the matrix Γ is defined in Eq. (3.27). The explicit form of

Γzz is

Γzz =
∑
k=x,y

J 2
kz +

V

2T
coth

V

2T

∑
m,n=x,y

J 2
mn. (4.49)

We mention that, in contrast to the case of negligible anisotropy (see Eq. (3.44)), the density matrix

(4.48) does not have a Gibbs form∼ exp
{
−H tot

imp/Teff
}
and, consequently, cannot be characterized

by any effective temperature. Yet, in the chosen basis the ratio between the consecutive populations

p
(st)
α+1/p

(st)
α = eβ , α = S − 1, S − 2, ...,−S, is independent of α. Notice, that in the limit V ≫ T

the factor exp (β) saturates at a finite value and the impurity does not get fully polarized.

Interestingly, for V ≫ J T the impurity spin is directed along the z-axis in the regime of

intermediate temperatures and voltages max {J 2T,J V } ≪ |Dz| ≪ max {T, V } (region II in

Fig. 4.1). At the same time, for high energies max {J 2T,J V } ≫ |Dz| (region III in Fig. 4.1)

the average spin ⟨S⟩ is collinear with the mean-field interaction He−i
mf = JkzSkV /2 as long as

V ≫ J T is fulfilled.

With the help of the expression (4.48) one can readily evaluate the averages ⟨Sk⟩ and ⟨{Sm, Sn}⟩

entering the formula for the backscattering current (3.30) and, thus, find the correction to the con-

ductance analytically. The corresponding result is not illustrative and, hence, is not presented here.

Integer impurity spin: strongly smeared doublets

In this subsection we discuss the regime V ≪ J T . Together with max {J 2T,J V } ≪ |Dz| ≪

max {T, V } this condition implies T ≫ |Dz|. Hence, the stationary density matrix is close to

equipartitioning ρ(st)S ≃ ρ
(eq)
S = I(2S+1)×(2S+1)/(2S + 1). The deviations from ρ

(eq)
S are small as

V /T . Thus, it is reasonable to decompose

ρ
(st)
S = ρ

(eq)
S +

V

T
ρ
(1)
S + ... (4.50)

The matrix η may also be expanded as η = η(0) − iη(1)V /T + ..., where η(0) is a symmetric matrix

and η(1) is an antisymmetric matrix. Next, we substitute the decompositions for ρ(st)S and η into Eq.
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(4.24) (for Dx = 0) and project the latter onto the states |α⟩ and |α′⟩. In this way, we establish

(α2 − α′2)
(
ρ
(1)
S

)
αα′

=
εmnkS

αα′

k

2S + 1

η
(1)
mn

Dz

− iη
(0)
mn

Dz

(
Smρ

(1)
S Sn −

1

2

{
SnSm, ρ

(1)
S

})
αα′

. (4.51)

Here we neglected the mean-field interaction term: this is a justified approximation because the

doublets are strongly smeared, i.e. V ≪ J T .

It is worth mentioning that the parameters η(0,1)jk /Dz which enter Eq. (4.51) are of the order of

J 2T/Dz and, thereby, are small. Hence, the components (ρ(1)S )αα′ with |α| ̸= |α′| are negligible

in comparison to those with |α| = |α′| as indicated by Eq. (4.51). Therefore, to the leading

order in J 2T/Dz it is possible to constrict Eq. (4.51) to the subspace |α| = |α′| by representing

ρ
(1)
S =

∑
α p

(1)
α |α⟩⟨α|+

∑
α ̸=0 q

(1)
α |α⟩⟨−α|. Solving Eq. (4.51) for p(1)α and q(1)α we obtain

p(1)α =
α

2S + 1

2η
(1)
mnεmnz

η
(0)
xx + η

(0)
yy

=
α

2S + 1

Xz

(Γ0)zz
, q(1)α = 0. (4.52)

We recall that Γ0 = tr
(
JJ T

)
− JJ T . Thus,

ρ
(st)
S ≃

I(2S+1)×(2S+1)

2S + 1
+
V

T

Sz

2S + 1

Xz

(Γ0)zz
. (4.53)

With the help of (4.53) we evaluate the averages in the equation for the backscattering current

(3.30) and, to the leading order in V /T , find

Ibs = π2S(S + 1)

3

(
X 2

z

(Γ0)zz
− g

)
G0V, g =

(
J TJ

)
xx

+
(
J TJ

)
yy
. (4.54)

Remarkably, the stationary density matrix (4.53) and, therefore, the backscattering current (4.54)

which were derived in the regime V ≪ J T match smoothly with ρ(st)S and Ibs found in the limit

V ≫ J T (see Eq. (4.48)).

In conclusion, we mention that for max {J 2T,J V } ≪ |Dz| ≪ max {T, V } none of results

presented above (see Eqs. (4.48), (4.53), and (4.54)) depend on the sign and the magnitude of the

anisotropyDz. Nonetheless, the anisotropy is crucially important for the transport properties in the

considered limit because it controls the structure of the energy levels of the magnetic impurity.

Half-integer impurity spin

Now, we describe the backscattering current mediated by a half-integer spin impurity in the regime

max {J 2T,J V } ≪ |Dz| ≪ max {T, V }. Qualitatively, this scenario is similar to those of an
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integer spin impurity. Once again, the impurity energy levels at zero-voltage have a definite spin

z-projection Sz = α and form doublets {|+ α⟩, | − α⟩} for any α ≥ 1/2. At V ̸= 0 these doublets

are split by He−i
mf . For α > 1/2 the splitting is trivial and the pair {|+ α⟩, | − α⟩} breaks into

| + α⟩ and | − α⟩ (for details, see section 4.3.1). However, this is not the case for α = 1/2:

the doublet {+1/2,−1/2} splits into the two rotated combinations presented in Eqs. (4.29) and

(4.30). The latter feature is specific for the half-integer spin impurity. Ultimately, it makes the

steady state density matrix ρ(st)S somewhat more complicated than that for the impurity with integer

spin. To illustrate this peculiarity, we determine ρ(st)S in the case of the well-separated energy levels

V ≫ J T .

Once again, the condition V ≫ J T allows us to employ the rotating wave approximation to

describe the evolution of the impurity density matrix. With its help we establish that the stationary

density matrix is diagonal in the basis of H tot
imp eigenstates: ρ

(st)
S =

∑
α p

(st)
α |ψα

S⟩⟨ψα
S |. Here |ψα

S⟩ =

|α⟩ for |α| ≥ 3/2 whereas
∣∣∣ψ±1/2S

⟩
are defined in Eqs. (4.29) and (4.30). By finding the steady

state solution of the classical Markov equation (4.44) and establish

p(st)α =
1

Z



(η+/η−)
α , α ≥ 3/2,

a1, α = +1/2,

a2, α = −1/2,

b (η+/η−)
α , α ≤ −3/2,

(4.55)

where η± are the same as for the integer spin impurity,

a1 =
cos2

(
θ1/2
2

)
− b sin2

(
θ1/2
2

)
cos θ1/2

, a2 =
b cos2

(
θ1/2
2

)
− sin2

(
θ1/2
2

)
cos θ1/2

, (4.56)

b =
ηxx + ηyy + tr(χη)
ηxx + ηyy + tr(χTη)

, χ =
ΘT cos2

(
θ1/2
2

)
+Θ sin2

(
θ1/2
2

)
2 sin2

(
θ1/2
2

)
cos2

(
θ1/2
2

)
(S(S + 1)− 3/4)

, (4.57)

and, finally, Θ is a 3× 3 Hermitian matrix which has the following components

Θ11 = (S + 1/2)2(1− sin2 θ1/2 cos2 ϕ1/2), Θ22 = (S + 1/2)2(1− sin2 θ1/2 sin2 ϕ1/2),

Θ33 = sin2 θ1/2, Θ12 = (S + 1/2)2(sin2 θ1/2 sin 2ϕ1/2 + 2i cos θ1/2)/2,

Θ13 = (S + 1/2) sin θ1/2(cosϕ1/2 cos θ1/2 − i sinϕ1/2),

Θ23 = −(S + 1/2) sin θ1/2(sinϕ1/2 cos θ1/2 + i cosϕ1/2).
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While the components p(st)α with |α| ≥ 3/2 have a similar form as compared to the integer spin

case (see Eq. (4.47)), the components with α = ±1/2 have a sophisticated structure. This is

a manifestation of the non-trivial splitting character of the doublet {+1/2,−1/2}. As always,

the steady state density matrix ρ(st)S =
∑

α p
(st)
α |ψα

S⟩⟨ψα
S |, in principle, allows us to evaluate the

impurity averages in the equation for the backscattering current (3.30) and, hence, to determine the

correction to the ballistic conductance. The explicit form of these averages lacks demonstrativeness

and, therefore, is not presented here.

For the impurity with the half-integer spin the regime of strongly smeared energy levels V ≪

J T may also be analysed with the help of Eq. (4.51). Once again, we readily conclude that the

correction to the stationary density matrix of the first order in V /T has the diagonal and “anti-

diagonal” components only: ρ(1)S =
∑

α p
(1)
α |α⟩⟨α| +

∑
α ̸=0 q

(1)
α |α⟩⟨−α|. However, unlike in the

case of the integer spin impurity, both p(1)α and q(1)α are present in a steady state solution. This fea-

ture hinders the derivation of a concise analytical expression for the backscattering current in the

considered regime. Nonetheless, Eq. (4.51) may be easily solved numerically. We mention that,

in contrast to Eq. (4.24) which yields (2S + 1)2 × (2S + 1)2 linear system for ρ(st)S , the system of

equations for p(1)α and q(1)α based on Eq. (4.51) has the dimensionality (4S + 1) × (4S + 1) and,

hence, presents a much simpler problem for the impurities with S ≫ 1.

To conclude this section, in Fig. 4.3 we provide the exemplary voltage dependences of the

backscattering correction to the ballistic conductance∆G(V ) = Ibs/V on V in the presence of the

uniaxial easy-plane anisotropy of the magnetic impurity. The curves are plotted for the impurity

with integer spin (Fig. 4.3(a)) and the half-integer spin (Fig. 4.3(b)) in the regimes T ≪ Dz (solid

lines) and J 2T ≪ Dz ≪ T (dashed lines). The data for the charts was obtained numerically with

the help of Eqs. (4.22) and (4.23).

For T ≪ Dz the backscattering current due to the impurity with integer spin is exponentially

small2 as long as V . Dz (see the solid curve in Fig. 4.3(a)). In this case the impurity is pinned to

its ground state |0⟩. At V ≃ Dz the absolute value of ∆G(V ) starts to increase abruptly: now, the

helical electrons have enough energy to cause the transitions of the impurity to the excited levels.

There are several peaks in the dependence of ∆G(V ) on V in the vicinity of V ∼ Dz. They are

located at V ≃ Dz|α2−(α−1)2| = Dz|2α−1|, α = S, S−1, ...,−S+1. Since T ≪ Dz ≪ Dz/J

the correction ∆G(V ) reaches saturation at V ∼ Dz/J .

At higher temperatures, i.e. T ≫ Dz, the backscatteringmediated correction to the conductance
2The numeric plots are based on Eqs. (4.22) and (4.23) and, hence, do not take into account the contributions to

the backscattering current mediated by the virtual transitions of the impurity to the excited levels.
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(a) (b)

Figure 4.3: Correction ∆G(V ) to the conductance as a function of voltage in the presence of the
local easy-plane anisotropy DzS

2
z . ∆G(V ) is measured in the units of ∆G(V → +∞). The non-

zero dimensionless couplings areJxx = Jyy = 10−3, Jxz = 0.8Jxx, Jzx = 0.3Jxx, Jzz = 0.9Jxx.
The solid curves are plotted for T = 0.05Dz. The dashed curves correspond to T = 50Dz. The
results in (a) are presented for S = 2. In (b) S = 3/2. Solid (empty) diamonds depict V ∼ T
(V ∼ J T ) for T = 0.05Dz. Solid (empty) circles depict V ∼ T (V ∼ J T ) for T = 50Dz.

is non-vanishing in the limit V → 0 (see the dashed curve in Fig. 4.3(a)). In this regime, the peaks

at V ∼ Dz are smeared. Interestingly, for the impurity with integer spin there is no crossover

behavior for T ≫ Dz at the voltage V ∼ J T . This is in accordance with our predictions relying

on Eqs. (4.48) and (4.53).

As it was expected, in the regime T ≪ Dz the impurity with half-integer spin behaves as a spin-

1/2 impurity for V . Dz (see the solid curve in Fig. 4.3(b)). In particular, similarly to S = 1/2,

∆G(V ) saturates to a plateau at V ∼ J T . This plateau breaks when the voltage reaches Dz and

the dependence of ∆G on V exhibits a cusp. It is connected with the fact that the edge electrons

start to mediate the transitions of the impurity between its energy levels. Finally,∆G(V ) becomes

constant at V ∼ Dz/J .

For T ≫ Dz the correction to the conductance due to the impurity with half-integer spin shows

two crossovers before saturating at V ∼ max {T,Dz/J }: one is located at V ∼ J T and the other

one – at V ∼ T (see the dashed curve in Fig. 4.3(b)).

4.4 Non-uniaxial anisotropy

So far, we have only been discussing the transport along the edge of the topological insulator as-

suming that the local anisotropy of the magnetic impurity is uniaxial: Himp = DzS
2
z . At the same

time, a simple realistic model of the impurity in the CdTe/HgTe/CdTe quantum well indicates (see

Eq. (4.15)) that the anisotropy might be more complicated than that. In this section we revise

the problem of determining the backscattering current for the impurity Hamiltonian of the form
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Himp = DxS
2
x+DzS

2
z . We recall that any quadratic anisotropyHimp = DqpSqSp may be reduced to

the two-component structure above by a proper redefinition of the exchange matrix J (see section

4.2).

Throughout this section, wewill suppose that the non-uniaxial admixtureDxS
2
x is small: |Dx| ≪

|Dz|. Furthermore, we will focus on qualitatively new backscattering regimes only leaving minor

effects, e.g. parametrically small corrections to the results presented in section 4.3, aside. We begin

the discussion by examining the level structure of the impurity – as we have already seen the latter

plays a decisive role in determining the character of the backscattering.

4.4.1 Level structure

The level structure of the total HamiltonianH tot
imp = DxS

2
x+DzS

2
z +JkzSkV /2 is strongly sensitive

to the parity of 2S. Thus, we first focus on the case of the impurity with half-integer spin.

Level structure of the half-integer spin impurity

At V = 0 the Hamiltonian H tot
imp is time-reversal symmetric. Therefore, for the impurity with the

half-integer spin the Kramers theorem holds and every energy level is two-fold degenerate. As

a result, for any Dx a series of doublets is formed. For instance, for Dx = 0 these are the pairs

{|+ α⟩, | − α⟩} with energies Dzα
2, where α = 1/2, 3/2, ..., S denotes the value of Sz. If a finite

but small Dx is introduced, then each doublet exhibits an overall energy shift without getting split.

In the process, the correspondingwave functions acquire the corrections of the order ofDx/Dz. The

presence of these small contributions∼ Dx/Dz is the only difference in the level structure between

the case of the non-uniaxial anisotropy with |Dx| ≪ |Dz| and the case of uniaxial anisotropy.

Accordingly, for the impurity with the half-integer spin all of the results for the backscattering

current are qualitatively similar to those presented in section 4.3: at non-zero Dx the latter acquire

the corrections of the order of ∼ Dx/Dz only. We do not discuss these fine effect below. Instead,

we switch to the case of the integer spin impurity in which even a smallDx might have a profound

influence on the backscattering current for certain voltages and temperatures.

Level structure of the integer spin impurity

At V = 0 andDx = 0 the energy levels of the integer spin impurity form doublets {|+ α⟩, | − α⟩}

in which α = 1, 2, ..., S denotes the spin z-projection Sz. In contrast to the case of the half-integer

S, the finiteDx lifts the degeneracy of these doublets. To the lowest non-vanishing order inDx/Dz

the splitting of a pair {|+ α⟩, | − α⟩}with α > 0 is governed by the following secular Hamiltonian
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(in the basis |+ α⟩, | − α⟩):

Hα
sec =

Dzα
2 +∆α δα

δα Dzα
2 +∆α

 , ∆α = Dx

(
S(S + 1)− α2

)
/2,

δα = Dx

(
Dx

Dz

)α−1 ⟨α|S2
x|α− 2⟩⟨α− 2|S2

x|α− 4⟩...⟨−α + 2|S2
x| − α⟩

(α2 − (α− 2)2) (α2 − (α− 4)2) ... (α2 − (−α + 2)2)
. (4.58)

Hence, the doublet {|+ α⟩, | − α⟩} with the energy Dzα
2 breaks into a symmetric superposition

[|+ α⟩+ | − α⟩] /
√
2 and an antisymmetric superposition [|+ α⟩ − | − α⟩] /

√
2. The respective

energies Dzα
2 + ∆α ± δα are divided by a gap 2δα. The numeric multiplier in the expression for

δα is of the order of unity for the impurities with S ∼ 1 and, therefore, δα ∼ Dx (Dx/Dz)
α−1. We

mention that the overall shift in the energy of doublet∆α does not affect the backscattering current

significantly and will be disregarded below.

A non-zero voltage applied to the edge induces the effective Zeeman field He−i
mf ∼ J V and,

thus, provides another mechanism for the doublets splitting. To understand the implications of

the finite V let us consider a fixed doublet {|+ α⟩, | − α⟩} with α > 0. If the voltage is low

enough, i.e. |δα| ≫ J V , then the pair | ± α⟩ splits predominantly due to DxS
2
x. As a result, the

eigenfunctions of H tot
imp are given by

|ψ±αS ⟩ = |+ α⟩ ± | − α⟩√
2

. (4.59)

On the contrary, if the voltage is rather high: |δα| ≪ J V , then the splitting is mainly controlled by

the mean-field interactionHe−i
mf and, hence, the doublet {|+ α⟩, | − α⟩} breaks into |ψ±αS ⟩ = |±α⟩.

Therefore, the hierarchy of voltages arises.

• IfDz ≫ J V ≫ |δ1| then all of the doublets are split by the effective fieldHe−i
mf and the wave

functions |ψα
S⟩ of H tot

imp are approximately given by |ψα
S⟩ = |α⟩, α = S, S − 1, ...,−S.

• If |δ1| ≫ J V ≫ |δ2| then |ψα
S⟩ = |α⟩ for |α| > 1 and α = 0 whereas

|ψ±1S ⟩ = |+ 1⟩ ± | − 1⟩√
2

.

• If δ2 ≫ J V ≫ δ3 then |ψα
S⟩ = |α⟩ for |α| > 2 and α = 0 whereas

|ψ±1S ⟩ = |+ 1⟩ ± | − 1⟩√
2

, |ψ±2S ⟩ = |+ 2⟩ ± | − 2⟩√
2

,

and so on.
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As a result of the competition between the splitting mechanisms qualitatively new backscattering

regimes emerge. In the next section, we investigate them.

4.4.2 Backscattering current due to the impurity with integer spin

The manifestations of the non-uniaxial admixture to the anisotropy are exceptionally rich in the

regime of the intermediate temperatures and voltages max {J 2T,J V } ≪ |Dz| ≪ max {T, V }

(region II in Fig. 4.1). Below, we will restrict the discussion to this case. The transport at low

energies max {T, V } ≪ |Dz| in the presence of a finite Dx is beyond the scope of the thesis.

To begin with, we assume that the voltage is sufficiently high V ≫ J T . In this regime all

energy levels are well-separated and each doublet’s splitting exceeds the broadening due to the

Korringa-type relaxation ∼ τ−1K ∼ J 2max {T, V }. The classical Markov equation (4.44) may be

used to establish the steady state density matrix ρ(st)S of the magnetic impurity. First, we find ρ(st)S

when the voltage belongs to the interval |D|z ≫ J V ≫ |δ1|. In this case, all of the doublets are

split predominantly by the mean-field interaction He−i
mf . Hence, all signatures of the non-uniaxial

admixture DxS
2
x to the anisotropy effectively drop from Eq. (4.44). Thus, the answer (4.48) for

uniaxial anisotropy is recovered:

ρ
(st)
S =

∑
α

p(st)α |α⟩⟨α|, p(st)α = exp (βα) /Z, β = 2arth
(
V

2T

Xzz

Γzz

)
. (4.60)

After that, we consider the voltage interval |δ1| ≫ J V ≫ |δ2|. In this limit, all doublets but

{|+ 1⟩, | − 1⟩} are split by He−i
mf whereas the latter breaks into the symmetric and antisymmetric

combinations due to DxS
2
x (see Eq. (4.59)). Taking this feature into the account, we solve Eq.

(4.44) and find the steady state density matrix. It is diagonal in the basis of the states with a fixed

spin z-projection and has the following form:

ρ
(st)
S =

∑
α

p(st)α |α⟩⟨α|, p(st)α =
1

Z


exp (β(α− 1)) , α > 1,

1, |α| ≤ 1,

exp (β(α + 1)) , α < −1.

(4.61)

Thus, in the regime |δ1| ≫ J V ≫ |δ2| the states with α = −1, 0, 1 are populated equally. The

consequences of such peculiar structure of ρ(st)S for the backscattering current are particularly vivid

for the impurity with S = 1. In this case ρ(st)S = ρ
(eq)
S = I3×3/3. Then, with the help of Eq. (3.30),
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for the correction to the ballistic current we immediately find:

Ibs = −2π2

3

{(
J TJ

)
xx

+
(
J TJ

)
yy

}
G0V. (4.62)

Remarkably, the expression (4.62) remains finite even for the exchange interaction matrix J (iso) =

diag {J⊥,J⊥,Jz}. As was discussed before, He−i
edge = J (iso)

ij Sisj/ν commutes with Sz + Σz for

J = J (iso) and, hence, cannot induce the backscattering by itself. However, the presence ofDxS
2
x

breaks the conservation of Sz + Σz and, thus, allows for non-zero Ibs.

In principle, all further intervals |δα| ≫ J V ≫ |δα+1|with α > 1may be analysed in a manner

similar to that described above. For example, by solving the master equation for the voltages

|δ2| ≫ J V ≫ |δ3| we establish that the structure of the steady state density matrix resembles the

one presented in Eq. (4.61), although the populations of five intermediate states are equal:

p(st)α =
1

Z
{
eβ(S−2), ..., eβ, 1, 1, 1, 1, 1, e−β, ..., e−β(S−2)

}
α
. (4.63)

Yet, in the present thesis we do not discuss the voltage intervals |δα| ≫ J V ≫ |δα+1| with α > 1

thoroughly.

Now, we proceed to the case J V ≪ T . Crucially, only some of the doublets are strongly

smeared by the relaxation in this regime. Indeed, while the splitting of the pair {|+ α⟩, | − α⟩},

which is given by δα ∼ Dx(Dx/Dz)
α−1, differs parametrically between the doublets, the level

broadening ∼ J 2T is the same – at least on a parametric level – for all of the states. Therefore, if,

for instance, |Dz| ≫ J 2T ≫ |δ1|, then all of the doublets are strongly smeared by relaxation. If

|δ1| ≫ J 2T ≫ |δ2|, then the states
∣∣ψ+1

S

⟩
and

∣∣ψ−1S

⟩
(see Eq. (4.59)) are well-separated whereas

the broadening of the doublets {|+ α⟩, | − α⟩} with α > 1 exceeds the splitting. Similarly, if

|δ2| ≫ J 2T ≫ |δ3| then the first two doublets, {|+ 1⟩, | − 1⟩} and {|+ 2⟩, | − 2⟩} are well-split

while the other ones – with α > 2 – are strongly smeared, and so on. As a result, in the regime

J V ≪ T the hierarchy of temperatures alike that of the voltages for J V ≫ T is present.

In order to evaluate the backscattering current, we first determine the steady state density matrix

ρ
(st)
S with the help of Eq. (4.51) modified by the presence of DxS

2
x. For |Dz| ≫ J 2T ≫ |δ1| the

result for ρ(st)S matches with (4.53). Then the backscattering current is given by Eq. (4.54). For the

temperature satisfying |δ1| ≫ J 2T ≫ |δ2| we find

ρ
(st)
S ≃

I(2S+1)×(2S+1)

2S + 1
+
V

T

∑
α

p(1)α |α⟩⟨α|, (4.64)
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where

p(1)α =


α−1
2S+1

Xz

(Γ0)zz
, α > 1,

0, |α| ≤ 1,

α+1
2S+1

Xz

(Γ0)zz
, α < −1.

(4.65)

Then, using Eq. (4.53) we obtain

Ibs = π2S(S + 1)

3

(
2(S − 1)

2S + 1

X 2
z

(Γ0)zz
− g

)
G0V, g =

(
J TJ

)
xx

+
(
J TJ

)
yy
. (4.66)

The regimes |δα| ≫ J 2T ≫ |δα+1| may be considered in a similar way. We leave them outside

the framework of the present thesis.

In conclusion of this section, we mention that the results discussed above indicate that a series

of qualitatively new regimes of the backscattering emerge in the (V, T ) plane for the impurity with

integer spin in the presence of non-uniaxial admixture to the anisotropy. Hence, the region II of the

diagram 4.1 gets subdivided into the region II0 defined by |Dz| ≫ max {J 2T,J V } ≫ |δ1|, the

region II1 which corresponds to |δ1| ≫ max {J 2T,J V } ≫ |δ2|, and so on. These new regions

are depicted in Fig. 4.4.

Figure 4.4: Regions in the (V, T ) plane.
FiniteDx splits the region II of Fig. 4.1
into the regions II0, II1, II2, and so on.
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Chapter 5

Conclusions

In the thesis, we conducted a comprehensive study of the transport along the edge of a 2D topo-

logical insulator in the presence of a sole quantum magnetic impurity with arbitrary spin S. No

constrictive assumptions about the relative magnitude of the applied voltage V and temperature T

were made. For the impurities with S > 1/2 the local magnetic anisotropy was taken into account.

Below, we highlight the main novel results of the work.

• In Chapter 3 we considered the helical edge transport assuming that the local anisotropy of

the magnetic impurity may be ignored. We have shown that the backscattering current Ibs
mediated by the impurity is determined by the stationary state of the latter (see Eq. (3.30)).

In order to evaluate the corresponding spin averages we derived, the master equation (3.19)

for the reduced density matrix of the impurity ρS .

• With the help of Eqs. (3.30) and (3.19) we evaluated the correction to the ballistic conduc-

tance in the linear limit V ≪ J T (see Eq. 3.32). No assumptions about the the exchange

interaction constants Jij (i, j = x, y, z) apart from J ≪ 1 were made.

• We established that in the non-linear limit V ≫ J T the steady state density matrix ρ(st)S of

the magnetic impurity has a Gibbs structure (3.44). It is characterized by the effective non-

equilibrium temperature (3.45). Using ρ(st)S we found the explicit expression (3.49) for the

backscattering current in the regime J T ≪ V ≪ T .

• For the impurity with S = 1/2 we found the backscattering current Ibs analytically for any

voltage V and temperature T (see Eq. 3.52).

• In Chapter 4 we examined the influence of the local magnetic anisotropy of the impurity

on the transport properties of the helical edge. We established that the anisotropy of typical
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magnitude D may be fully neglected in the regime max {J 2T,J V } ≫ D only. In case the

condition is not fulfilled, the anisotropy strongly affects the backscattering current.

• In section 4.1 we estimated the anisotropy produced by the indirect exchange interaction of

the magnetic impurity with itself (see Eqs. (4.6) and (4.8)) for the 2D topological insulator

based on the CdTe/HgTe/CdTe quantum well.

• In section 4.3 we considered the case of the uniaxial anisotropy of the impurity, i.e. Himp =

DzS
2
z . First, we analysed the low-energy limit max {T, V } ≪ |Dz|. For the easy-axis

anisotropy we obtained the explicit expression (4.34) for the backscattering current. If the

anisotropy is of the easy-plane type, the results differ for the impurities with integer and

half-integer spin. For integer S we have shown that the backscattering is mainly induced by

the virtual transition of the impurity to the excited states (see Eqs. (4.38) and (4.39)). For

half-integer S we have mapped the problem to the transport in the presence of a spin-1/2 im-

purity and obtained Eq. (4.42) for Ibs. Then we discussed the limit of intermediate voltages

and temperatures max {J 2T,J V } ≪ |Dz| ≪ max {T, V }. We found the corresponding

stationary state of the density matrix of the impurity (see Eqs. (4.48), (4.53), and (4.55)).

• Finally, in section 4.4 we analysed the influence of a small non-uniaxial admixture DxS
2
x

to the anisotropy with |Dx| ≪ |Dz| on the helical edge transport. For the impurity with

the integer spin we established that qualitatively new backscattering regimes emerge in the

(V, T ) plane (see Fig. 4.4).

In the future, we will examine the influence of electron-electron interaction on the transport

properties of the edge of the topological insulator in the presence of an anisotropic magnetic impu-

rity. Furthermore, we will try to take more than one impurity into account.
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