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Abstract

Quasi-one-dimensional systems demonstrate Van Hove singularities in the density

of states 𝜈𝐹 and the resistivity 𝜌, occurring when the Fermi level 𝐸 crosses a bottom

𝐸𝑁 of some subband of transverse quantization. We demonstrate that the character

of smearing of the singularities crucially depends on the concentration of impurities.

There is a crossover concentration 𝑛𝑐 ∝ |𝜆|, 𝜆 ≪ 1 being the dimensionless amplitude

of scattering. For 𝑛 ≫ 𝑛𝑐 the singularities are simply rounded at 𝜀 ≡ 𝐸 −𝐸𝑁 ∼ 𝜏−1 –

the Born scattering rate. For 𝑛 ≪ 𝑛𝑐 the single-impurity non-Born effects in scattering

become essential despite 𝜆 ≪ 1. The peak of the resistivity is asymmetrically split

in a Fano-resonance manner (however with a more complex structure). Namely, for

𝜀 > 0 there is a broad maximum at 𝜀 ∝ 𝜆2 while for 𝜀 < 0 there is a deep minimum

at |𝜀| ∝ 𝑛2 ≪ 𝜆2. The behaviour of 𝜌 below the minimum depends on the sign of 𝜆.

In case of repulsion 𝜌 monotonically grows with |𝜀| and saturates for |𝜀| ≫ 𝜆2. In case

of attraction 𝜌 has sharp maximum at |𝜀| ∝ 𝜆2. The latter feature is due to resonant

scattering at quasistationary bound states that inevitably arise just below the bottom

of each subband for any attracting impurity.
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1 Introduction

In this study we consider clean multichannel quasi-one-dimensional metallic systems: wires,

tubes, strips etc. We revisit a seemingly well-understood problem of semiclassical (i.e. with-

out localization effects) resistivity for such systems in the presence of weak short-range

impurities at low concentration. It is well known, that this resistivity (as well as the den-

sity of states at the Fermi level) has a square-root Van Hove singularities as a function of

the Fermi level position 𝐸, occurring when 𝐸 crosses a bottom 𝐸𝑁 of certain subband of

transverse quantization [1]. These singularities are expected to be smeared due to scattering

of electrons by impurities and (at least in the Born approximation) the width of the peak

ΓB ∼ 𝜏−1
min can be estimated as an electronic scattering rate at maximum of resistivity. This

smearing was theoretically studied within the self-consistent Born approximation by different

groups of authors [2, 3, 4, 5, 6, 7, 8].

We demonstrate that the above picture is valid only if the concentration of impurities

is relatively high while for low concentration due to specifics of the quasi-one-dimensional

systems the non-Born effects become essential despite the nominal weakness of scattering.

These effects lead to dramatic restructuring of the Van Hove singularities.

Complex asymmetric features were experimentally observed in many quasi-one-dimensional

systems, such as nanotubes (both single-wall [9, 10] and multi-wall [11, 12] ones). These

features were attributed to Fano resonance [13], arising due to interference of the scat-

tering at some narrow resonant state with the scattering at background continuum. The

𝐸-dependence of resistivity 𝜌 at the Fano resonance is usually described by the formula

𝜌(𝐸) ∝ (𝐸 − 𝐸𝑁 + 𝑞Γ/2)2

(𝐸 − 𝐸𝑁)2 + (Γ/2)2
(1.1)

with phenomenological parameters 𝑞 and Γ (see, e.g., [14]). There were attempts [9, 10, 11] to

fit the experimental data on the Van Hove singularities in nanotubes with the formula (1.1)

with an appropriate choice of Γ and 𝑞. We will show, however, that this phenomenological

expression is not sufficient to describe the entire zoo of possible 𝜌(𝐸) shapes. In this diploma

work we will give the microscopic derivation of the actual 𝜌(𝐸) dependence. The main

ingredient of our theory is the non-Born effects in scattering.
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1.1 Statement of the problem

In this study we restrict our consideration to 2 simple realizations of quasi-one-dimensional

system: a single-wall metallic tube in a strong longitudinal magnetic field and a conducting

strip. The zero (or weak) field case for a tube is more difficult for theoretical study because

of the chiral degeneracy of the electronic states that is only lifted due to an interaction with

an impurity.

Besides the simplicity of the theoretical interpretation the case of strong magnetic field

is convenient practically since the changing of magnetic field is an effective instrument for

tuning the energy distance 𝐸 − 𝐸𝑁 , so it is easy to sweep the Van Hove singularity in a

controllable way.

Oscillations of the longitudinal resistivity with the magnetic flux Φ threading the tube is

a well known effect that was experimentally observed in various tubes and wires (especially

semimetallic) [15, 16, 17]. These oscillations are the direct manifestation of the Aharonov-

Bohm effect [18] – the interference of electronic waves with opposite chiralities. From the

semiclassical point of view it is instructive to write the resistivity 𝜌 in the form of Fourier

series:

𝜌 = 𝜌0

(︃
1 +

∞∑︁
𝑛=1

𝐴𝑛 cos(𝜋𝑛Φ/Φ0)

)︃
(1.2)

where Φ0 = 𝜋𝑐~/𝑒 = 𝑐ℎ/2𝑒 is the flux quantum. The oscillations can be observed in both

dirty and clean systems. As it was shown in a seminal paper by Altshuler, Aronov and Spivak

[19] in dirty (diffusive) systems the odd-𝑛 harmonics of the Aharonov-Bohm oscillations (1.2)

are washed out due to strong variations in the length of different diffusive trajectories that

lead to randomisation of the non-magnetic part of the phases of electronic wave-functions.

The even-𝑛 harmonics – the oscillations associated with a special sort of trajectories (the

ones containing closed topologically non-trivial loops on the cylinder) survive the randomi-

sation. This effect was observed in experiments (see [20, 21]). The odd-𝑛 harmonics are in

general very fragile: they may be suppressed also in nominally clean systems [17] due to the

fluctuations of the tube’s parameters: e.g., the radius [22]. The even-𝑛 harmonics are less

fragile but still, in the presence of any kind of disorder the amplitudes 𝐴𝑛 rapidly decrease

with 𝑛 so that the oscillations in the imperfect systems usually look roughly harmonic.

It is not the case for the geometrically perfect clean systems where 𝐴𝑛 decrease with 𝑛

only as 𝑛−1/2 so that the series diverges at Φ → 2𝑀Φ0 with integer 𝑀 . This divergency is
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nothing else but the Van Hove singularity (see, e.g., [22]). So, the shape of oscillations is

very different for perfect and for imperfect systems (see Fig.1).

Figure 1. 𝜌(Φ) dependence for clean and dirty cases. Top: clean case, 𝜌(Φ) is periodic with
a period 2Φ0 and Van Hove square root singularities are present for Φ = 2𝑛Φ0. Bottom:
dirty case, 𝜌(Φ) is periodic with a period Φ0 - odd harmonics are suppressed.

It this work we concentrate on geometrically perfect tubes with low concentration of weak

short-range impurities, where one can expect strongly unharmonic oscillations dominated by

the Van Hove singularities as in the upper panel of Fig.1.

Thus, we consider a single-wall tube of radius 𝑅 threaded by magnetic flux Φ and a

strip of width 𝐷. Both the tube and the strip are supposed to be cut from a sheet of

two-dimensional metal with simple quadratic spectrum [23] of electrons 𝐸 = ~2k2/2𝑚*.

Impurities are embedded in this sheet with two-dimensional concentration 𝑛2. They are

supposed to be short-range and weakly scattering ones.
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1.2 Principal approximations

It is convenient to measure all the energies in the units of 𝐸(𝑡)
0 = ~2/2𝑚*𝑅2 for a tube and

𝐸
(𝑠)
0 = 2𝜋2~2/𝑚*𝐷2 for a strip. We will assume the semiclassical condition throughout this

paper:

𝜀0 ≫ 1, 𝜀0 ≡ 𝐸/𝐸0, 𝑁 ∼ 𝜀
1/2
0 ≫ 1. (1.3)

where 𝑁 is the label of a subband whose bottom is the closest to the Fermi level and has

the meaning of the number of open channels in the system.

The magnetic field (tube case) is assumed to be strong enough so that the splitting

between 𝐸𝑁 and 𝐸−𝑁 is larger than the width of the peaks Γ. Besides that, the parameter

2
√
𝜀0 should not be close to any integer 𝐾 to avoid resonance between the subbands with

𝑚 = 𝑁 and 𝑚′ = 𝑁 ± 2
√
𝜀0.

All the interesting effects associated with the Van Hove singularities occur in the range

where

|𝜀| ≪ 1, 𝜀 ≡ (𝐸 − 𝐸𝑁)/𝐸0. (1.4)

Besides the semiclassical parameter 𝑁 ≫ 1 there are two additional dimensionless small

parameters in this problem:

(i) The dimensionless concentration of impurities

𝑛 ≡

⎧⎪⎨⎪⎩𝑛2(2𝜋𝑅)
2, tube

𝑛2𝐷
2 strip

𝑛≪ 1. (1.5)

It is assumed to be small which in particular means that the average distance between

impurities is larger than the transverse size of the system.

(ii) Dimensionless scattering amplitude

Λ2𝑑 = 𝜆− 𝑖𝜆2 (1.6)

of the background two-dimensional problem (𝜆 > 0 corresponds to repulsion, 𝜆 < 0 – to
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attraction). It is also supposed to be small:

|𝜆| ≪ 1. (1.7)

The imaginary part of complex Λ2𝑑 in (1.6) is necessary to fulfil the unitarity requirement

[24] (the optical theorem):

Im Λ2𝑑 = −|Λ2𝑑|2. (1.8)

Actually we will need this imaginary part only for proper treatment of quasistationary states

arising in the case of attracting 𝜆 < 0. In all other cases we can simply put Λ2𝑑 → 𝜆.

There is also a condition imposed on the length 𝐿 of the system: it should satisfy the

inequality

𝑙(𝜀) ≪ 𝐿≪ ℒloc(𝜀), (1.9)

where 𝑙(𝜀) is the mean free path and ℒloc ∼ 𝑁𝑙(𝜀) is the localization length. The large

parameter 𝑁 ≫ 1 assures at least the possibility for inequality (1.9) to be fulfilled.

Indeed, it is very well known that weak localization effects in quasi-one-dimensional

systems lead (in the absence of inelastic processes) to an ultimate localization on all electronic

states. However, for the tubes or strips with lengths 𝐿 in the range (1.9) the localization

corrections are still small so that the results obtained throughout this paper are well justified

and should give a valid expressions for the resistivity 𝜌(𝜀). Moreover, these results provide

a possibility to estimate the dependence of the localization length on the parameter 𝜀:

ℒloc(𝜀) =
[︀
𝑒2𝜌(𝜀)

]︀−1
. (1.10)

1.3 The structure of the diploma work

The structure of the diploma work is as follows:

In Section 2 we bring together all the principal results of the paper. In Section 3 we briefly

remind the well-known facts about quantum mechanics of an electron on a tube threaded

by magnetic field and on a strip. In Section 4 we discuss the scattering of electrons near the

Van Hove singularity within the Born approximation. In Section 5 we discuss the non-Born

effects for scattering of electrons in the tube and strip geometry and derive the corresponding
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renormalization of the scattering amplitude for both cases of tube and strip. In the case of

attracting potential we find the poles in the scattering matrix that are related to quasista-

tionary states under the bottom of each subband. We also consider the manifestations of

the non-Born effects in resistivity, firstly in the single-impurity approximation. In particular

we demonstrate that in this approximation the resistivity vanishes exactly at the Van Hove

singularity. Then we estimate the effects of interference between scattering events at differ-

ent impurities in the subsection for a tube. Taking into account these effects resolves the

zero-resistivity paradox of the single-impurity approximation and gives estimation for the

minimal resistivity. In Section 5.4 we discuss the inhomogeneous broadening of the peaks in

the resistivity that arise due to resonant scattering at quasistationary states. In Section 6 we

explore the effects that should arise if impurity with different effective scattering amplitudes

are present in the system. In Section 7 we summarize the results and outline the direction

of future research. In Appendices A and B we evaluate the behaviour of the system in the

immediate vicinity of the Van Hove singularity (where the single-impurity approximation

breaks down) using the self-consistent approximation. In Appendices C and D we evaluate

some integrals that one encounters while analyzing the resistivity of a strip.
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2 The principal results

The number of physical scenarios and distinct ranges of parameters considered in this paper

is large. Therefore we find it reasonable to start with the list of different regimes and principal

results.

2.1 The Born approximation

Away from the Van Hove singularities (at |𝜀| ≫ 1) the applicability of the Born approxi-

mation requires only the condition (1.7). Here the system behaves simply as a classic piece

of the background two-dimensional material. The density of states, the resistivity and the

scattering rate (the latter is being measured in units of 𝐸0) are

𝜈0 =

⎧⎪⎨⎪⎩𝑚
*𝑅, tube

𝑚*𝐷
2𝜋

, strip

, 𝜌0 =
1

𝑒2𝜀0

1

𝜏0
,

1

𝜏0
= 2𝑛

(︂
𝜆

𝜋

)︂2

. (2.1)

In all cases the main contribution to the current comes from the one-dimensional sub-

bands with labels 𝑚 that are not very close to 𝑁 because for 𝑚 ≈ 𝑁 the longitudinal velocity

of electrons with energy 𝐸 tends to zero. However, the role of the 𝑁 -band becomes very

important near the singularity when 𝐸 → 𝐸𝑁 . Indeed, when the total density of states

𝜈(𝜀) = 𝜈0

(︂
1 +

𝜃(𝜀)

𝜋
√
𝜀

)︂
, (2.2)

is dominated by the second term (the contribution of the resonant 𝑁 -band), the electrons

from the current-carrying bands (those with labels 𝑚 ∼ 𝑁/2) are scattered predominantly

to the resonant one (with 𝑚 = 𝑁). Near the singularity the properties of electrons in the

resonant band differ from the properties of all others. For a general quasi-one-dimensional

system there are in principle two distinct scattering amplitudes and corresponding rates:

𝜆nonres and 𝜏−1
nonres(𝜀) describe the scattering from the current-carrying bands to the resonant

one while 𝜆res and 𝜏−1
res (𝜀) correspond to scattering within the resonant band. The rate

𝜏−1
nonres(𝜀) directly determines the mean free path and the resistivity

𝜌(𝜀) =
1

𝑒2𝜀0

1

𝜏nonres(𝜀)
=

1

𝑒2𝑁𝑙(𝜀)
, 𝑙(𝜀) = 𝑁𝜏nonres(𝜀), (2.3)

where we have used the obvious relations 𝑙 ∼ 𝑣𝐹 𝜏 and 𝑣𝐹 ∼ 𝐸1/2 ∼ 𝑁 . The rate 𝜏−1
res (𝜀)

is responsible for smearing of the singularity in the density of states and is relevant only in
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the immediate vicinity of the singularity. However, we demonstrate in Section 4 that for the

case of a tube

𝜏res(𝜀) = 𝜏nonres(𝜀) ≡ 𝜏. (2.4)

However, 𝜏res(𝜀) ̸= 𝜏nonres(𝜀) for a strip.

We will show, that close to the singularity the Born approximation remains valid only if

the dimensionless concentration 𝑛 of impurities is relatively high.

Let us first assume that this condition is fulfilled and estimate the width of the smeared

Van Hove singularity. The scattering rate is proportional to the density of final states so

that

1

𝜏nonres(𝜀)
=

1

𝜏0

𝜈(𝜀)

𝜈0
. (2.5)

The width ΓB of the peak in the density of states (and in the resistivity at the same time)

may be estimated from the condition

𝜏−1
nonres (𝜀 ∼ ΓB) ∼ ΓB. (2.6)

Though 𝜏−1
nonres(𝜀) is not necessarily equal to 𝜏−1

res (𝜀), within the Born approximation they can

only differ in numerical prefactor (see Section ). As a result, the Van Hove singularity is

smeared on the scale |𝜀| ∼ ΓB

ΓB ∼
(︁𝑛
𝜋

)︁2/3(︂𝜆
𝜋

)︂4/3

≫ 1

𝜏0
, (2.7)

𝜌max
B ∼ 1

𝑒2𝜀0

(︁𝑛
𝜋

)︁2/3(︂𝜆
𝜋

)︂4/3

≫ 𝜌0. (2.8)

2.2 The origin of non-Born effects

The origin of the special importance of non-Born effects in quasi-one-dimensional systems

is renormalization of the scattering matrix that is dramatically enhanced near a Van Hove

singularity.
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2.2.1 The case of tube

In the case of tube this matrix can be effectively reduced to a single complex constant Λ(𝜀)

that can be found from the Dyson equation. As a result

𝜆→ Λ(𝜀) ≈ 𝜆

{︂
1− Λ2𝑑

𝜋
√
𝜀

}︂−1

(2.9)

From (2.9) it is clear that the energy scale

𝜀nB = (𝜆/𝜋)2 ≪ 1, (2.10)

measures the range near the singularity where the non-Born effects are considerable. In

particular, we see that if, due to low concentration of impurities, the Born scattering rate is

low enough:

ΓB < 𝜀nB, (2.11)

then the non-Born effects have chance to come into play in the range Γ < |𝜀| < 𝜀nB.

Substituting the explicit formulas (2.7) and (2.10) to the condition (2.11), we arrive at

the criterion

𝑛 < 𝑛𝑐, 𝑛𝑐 = |𝜆|/𝜋. (2.12)

of the breakdown of the Born approximation in the vicinity of the singularity. Under the

opposite condition the Born approximation is sufficient for all 𝜀.

It is convenient to rewrite (2.9) in the form

𝜆→ Λ(𝜖) ≈ 𝜆

1− [sign(𝜆)− 𝑖|𝜆|](−𝜀/𝜀nB)−1/2
. (2.13)

2.2.2 The case of strip

A similar renormalization is present also in the case of strip. However, in this case there are

some nice additional effects, absent for a tube. Namely, the renormalization of the scattering

amplitude now depends on the position of impurity with respect to wave function nodes.
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The bare scattering amplitude reads

Λ𝑖 = 2Λ sin2(𝜋𝑁𝜉𝑖). (2.14)

Here 𝜉𝑖 is the position of impurity (in units of 𝐷). From (2.14) we see that we can distin-

guish between strong impurities (sin2(𝜋𝑁𝜉𝑖) ≈ 1), weak (sin2(𝜋𝑁𝜉𝑖) ≈ 0) and typical ones

(sin2(𝜋𝑁𝜉𝑖) ∼ 1). Renormalization of Λ𝑖 reads:

Λ
(ren)
𝑖 =

Λ𝑖

1 + Λ𝑖/𝜋
√
−𝜀

. (2.15)

We see from (2.15) that the renormalization of Λ𝑖 is nonlinear - namely, it is stronger for

strong impurities. Thus, paradoxically, for 𝜀 ≪ 𝜀nB scattering predominantly occurs not at

strong impurities, but at some ’optimal’ ones:

Λ𝑖 ∼
√︀
|𝜀|.

2.3 The non-Born effects in resistivity: repulsing impurities

At low concentration of impurities 𝑛 ≪ 𝑛𝑐 the shape of the 𝜌(𝜀) dependence in the vicinity

of Van Hove singularities is strongly modified by non-Born effects in scattering.

A narrow peak at 𝜀 = 0 is replaced by a broad one slightly above the bottom – with the

maximum at 𝜀 ∼ 𝜀nB and the width Γ
(+)
nB ∼ 𝜀nB, independent of the concentration 𝑛. The

shape of this broad peak can be found explicitly:

1

𝜏(𝜀)
= 2

(︁𝑛
𝜋

)︁(︂𝜆
𝜋

)︂
𝐹 (𝜖), 𝜖 ≡ 𝜀/𝜀nB, (2.16)

𝐹 (𝜖) =

⎧⎪⎪⎨⎪⎪⎩
(𝜖1/2 + 𝜖−1/2)−1, tube(︂√

1+4/𝜖−1

2(1+4/𝜖)

)︂1/2

, strip
(2.17)

The maximal (in the range 𝜀 > 0) resistivity

𝜌
max(+)
nB ∼ 2

𝑒2𝜀0

(︁𝑛
𝜋

)︁(︂𝜆
𝜋

)︂
𝐹max ≪ 𝜌max

B , (2.18)
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is reached at 𝜖 = 𝜖max, where

𝐹max =

⎧⎪⎨⎪⎩1/2,

1/2
√
2,

𝜖max =

⎧⎪⎨⎪⎩1, tube

4/3, strip

(2.19)

Both variants of function 𝐹 (𝜖) are shown in Fig. 2. At 𝜖≫ 1 it has asymptotics 𝐹 (𝜖) ≈ 𝜖−1/2

in both cases. It corresponds to the standard Van Hove singularity. The height of the broad

peak is much less than it would be within the Born approximation but still is much higher

than the background resistivity 𝜌0.

Figure 2. Dependence of the resistivity on the position of the Fermi level for repulsing
impurities in the case of low concentration of impurities 𝑛≪ 𝑛𝑐 (strongly non-Born regime).
Red line stands for tube case, blue line – strip case. Note that 𝜌(𝜖) vanishes as 𝜖 → 0: it is
an artefact of the single-impurity approximation that is not applicable in the narrow vicinity
of 𝜖 = 0: for 𝜖 . 𝜖min ≪ 1. The horizontal asymptote (dashed line) corresponds to 𝜌 = 𝜌0.

The behaviour of the resistivity above the Van Hove singularity (for 𝜀 > 0), described

by (2.16), does not depend on the sign of 𝜆, it is the same for attracting and repulsing

impurities. It is not the case for the range 𝜀 < 0 below the singularity. For repulsing

impurities we obtain

1

𝜏(𝜀)
= 2𝜋

(︁𝑛
𝜋

)︁(︂𝜆
𝜋

)︂2

𝐹 (𝜖), (2.20)
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𝐹 (𝜖) =

⎧⎪⎨⎪⎩[1 + |𝜖|−1/2]−2, 𝜖 < 0, tube

|𝜖|1/4(1+|𝜖|1/2)
(2+|𝜖|1/2)3/2 , 𝜖 < 0, strip

(2.21)

so that 𝜌(𝜀) monotonically increases with |𝜀| and saturates at 𝜌 = 𝜌0.

It is easy to see that, as it formally follows from (2.21), the resistivity 𝜌(𝜀) should vanish

for 𝜀→ 0 from either side. Indeed, for |𝜖| ≪ 1

𝐹 (𝜖) ≈

⎧⎪⎨⎪⎩𝜖
1/2,

𝜖1/4

2
,

𝐹 (𝜖) ≈

⎧⎪⎨⎪⎩|𝜖|, tube

(|𝜖|/4)3/4, strip.

(2.22)

Of course we immediately suspect that in reality the decrease of resistivity will be ulti-

mately stopped by some additional effect (and this is indeed so, as we will see). But anyway,

a dramatic suppression of resistivity in the narrow vicinity of the Van Hove point is an im-

portant phenomenon. Physically it is a result of destructive interference of partial electronic

waves with different winding numbers.

2.4 Attracting impurities, quasistationary states and resonant scat-

tering

As we have already mentioned in previous section, the behaviour of resistivity above the

singularity is identical for repulsing and attracting impurities. However, below the singularity

the attracting impurities introduce some nice additional physics. We will first discuss it for

the simpler case of cylinder.

2.4.1 Quasistationary states on a tube

It can be shown that, besides the true bound state with the energy below the bottom of

the lowest subband of the electronic spectrum of the cylinder, a weakly attracting short-

range impurity produces an infinite series of quasistationary states: one such state below the

bottom of each band. In this paper we concentrate on the quasistationary states associated

with the quasiclassic subbands (those, with large 𝑁 ≫ 1). In particular we show that for

𝜆 < 0 the scattering amplitude (2.13) has a pole at 𝜖 = −1+2𝑖|𝜆| (or at 𝜀 = (−1+2𝑖|𝜆|)𝜀nB
in other notation). This pole corresponds to a quasistationary state with a relatively small

decay rate. In the case of cylinder these poles are identical for all impurities and, since

electrons can be scattered by these resonances, the latter lead to formation of sharp maxima
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in resistivity for 𝜀 < 0 and 𝜆 < 0:

𝐹 (𝜖) ≈

⎧⎪⎪⎨⎪⎪⎩
1

(1− |𝜖|−1/2)2
, for |1− |𝜖|| ≫ |𝜆|,

4

(1− |𝜖|)2 + 4𝜆2
, for |1− |𝜖|| . |𝜆|,

(2.23)

This result is illustrated by Fig. 3:

Figure 3. The same as in Fig. 2 but for attracting impurities. The sharp maximum at 𝜖 < 0
arises due to resonant scattering at quasistationary states.

The maximal (in the range 𝜖 < 0) resistivity is reached at 𝜖 = −1,

𝜌
max(−)
nB ∼ 1

𝑒2𝜀0

2𝑛

𝜋2
, (2.24)

the width of this maximum is Γ
(−)
nB = 4|𝜆|𝜀nB.

The physical origin of the quasistationary states that exist slightly below each of the

subbands is as follows. Semiclassical trajectories of electrons with energies near the bottom

of subband are almost closed; if an electron with such energy has passed near certain impurity

once then it will do so again, and many times. Therefore the attraction to impurity is strongly

enhanced and the bound state is formed. An alternative way of thinking is just to neglect

in the leading approximation all the transitions from the resonant band to all others. The

arising strictly one-dimensional problem grants a bound state for arbitrary weak attraction.

Taking the transitions to nonresonant bands into account perturbatively leads to the finite
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decay rate of the state.

2.4.2 The quasistationary states on a strip

In the case of strip there are also quasistationary states that are manifested in the pole of

renormalized scattering amplitude (2.15): 𝜖(𝜉𝑖) = 4 sin4(𝜋𝑁𝜉𝑖)(−1 + 2𝑖𝜆). We see that in

this case energy of quasistationary state is different at different impurity and its real part is

confined in the range −4 < 𝜖 < 0. Due to uniform distribution of 𝜉𝑖 between 0 and 1 we can

define the following distribution function for 𝜖qs:

𝑃 (𝜀qs) =

∫︁ 1

0

𝑑𝜉𝛿
[︀
𝜖qs + 4 sin4(𝜋𝑁𝜉)

]︀
=

=
1

𝜋
√︀

|𝜖qs|(4− |𝜖qs|)
. (2.25)

So, we see that for strip case the peak of resistivity is inhomogeneously broadened com-

pared to the case of tube (where all 𝜀qs are identical). Moreover, for 𝜖 < −4 there are no

quasistationary states and as a final states of scattering processes may serve only states of

continuos spectrum while for −4 < 𝜖 < 0, in principle, both kinds of states are likely to do

so. However, in this range quasistationary states are dominant everywhere except narrow

region ||𝜖| − 4| . |𝜆|. Expression for 𝜌(𝜖) reads:

𝜌(𝜖)

𝜌0
=

⎧⎪⎪⎨⎪⎪⎩
8
√
2 (|𝜖| − 4)−3/2 , for 4 + 𝜖→ −0,

2
√
2

|𝜆|
(4− |𝜖|)−1/2, for 4 + 𝜖→ +0.

(2.26)

Thus, at 𝜖 = −4 the resistivity has an asymmetric peak. If we recall (2.25), we can see that

this Van Hove-like(formally divergent) peak is nothing else but the divergency of 𝑃 (𝜖) at

𝜖 → −4. Here we also note that the main contribution to resistivity in the vicinity of the

maximum is given by strong impurities, in the vicinity of 𝜖 = 0 - by weak ones.

The Van Hove-like singularity at |𝜖| → 4 is indeed smeared in the range ||𝜖|−4| . |𝜆|, where

the contribution of both types of final states – the continuum and the quasistationary states
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– are comparable. As a result of calculations we obtain:

𝜌(𝜖)

𝜌0
=

1√
2

(︃√
𝑎2 + 1− 𝑎

|𝜆|3(𝑎2 + 1)

)︃1/2

≈

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8
√
2

(|𝜖| − 4)3/2
, for 8|𝜆| ≪ |𝜖| − 4 ≪ 1,

2
√
2

|𝜆|(4− |𝜖|)1/2
, for 8|𝜆| ≪ 4− |𝜖| ≪ 1,

(2.27)

where 𝑎 = (|𝜖| − 4)/8|𝜆|.

From (2.27) we conclude that the maximal resistivity

𝜌
(−)
max

𝜌0
=

33/4

2
√
2|𝜆|3/2

(2.28)

is attained at 𝜖 = −4
(︁
1− 2|𝜆|√

3

)︁
. The width of this maximum Γ ∼ |𝜆| ≪ 1.

Thus, we conclude that the left peak of resistivity (that exists only for attracting impurities)

is higher than the right one: its height is proportional to |𝜆|−3/2 instead of |𝜆|−1. On the

other hand, due to the inhomogeneous broadening, it is lower than it would be in the case

of cylinder: |𝜆|−3/2 instead of |𝜆|−2.

The divergency of 𝑃 (𝜖) at 𝜖 → 0 does not lead to divergency of 𝜌(𝜖) at 𝜖 → 0: 𝜌(𝜖) still

goes to zero but for all energies is much larger than in the case of repulsing impurities. The

strong scattering at quasistationary states with low binding energies gives additional large

factor |𝜆|−1 in 𝜌(𝜖) dependence at 𝜖 < 0, |𝜖| ≪ 1:

𝜌(𝜖)

𝜌0
≈ |𝜖|1/4√

2

⎧⎨⎩ 1/|𝜆|, for 𝜆 < 0,

1/2, for 𝜆 > 0.
(2.29)

while for tube we have

𝜌(𝜖)

𝜌0
≈ |𝜖| (2.30)

for both signs of 𝜆.

2.5 The minimum of resistivity (tube)

All the effects described above are the single impurity ones. Their origin is the coherent

multiple scattering of an electron by the same impurity which fact is manifested in the linear
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dependence of resistivity on the concentration 𝑛. To reveal the mechanism that limits the

suppression of resistivity at 𝜖→ 0 and to estimate the resistivity at its minimum one has to

find the scattering rate 𝜏−1
res (𝜀) in the range |𝜀| ≪ 𝜀nB:

𝜏0
𝜏res(𝜀)

= |𝜀|
(︂
1 +

𝜃(𝜀)

|𝜆|
√
𝜀

)︂
(2.31)

The characteristic width ΓnB of the feature (namely, the minimum) in the density of states

near 𝜀 = 0 can be estimated from the condition

ΓnB ∼ 𝜏−1
res (𝜀 ∼ +ΓnB) , (2.32)

and we get

ΓnB ∼ 𝜀min ≡ (𝑛/𝜋)2 ≪ 𝜀nB (2.33)

for both cases of tube and strip. Note that this width does not depend on 𝜆. At 𝜀 < 0 the

resonant contribution to the density of states rapidly drops on the same energy scale so that

the factor 𝜈(𝜀) becomes of order of 𝜈0 already at 𝜀 ∼ −𝜀min. As a result, the resistivity has

a minimum at 𝜀 = 𝜀dip, where

𝜀dip < 0, |𝜀dip| ∼ 𝜀min ∼ (𝑛/𝜋)2. (2.34)

The scattering rate 𝜏−1
nonres and the resistivity at minimum are

1

𝜏dip
∼ 𝑛3, 𝜌dip ∼ 𝑛3

𝑒2𝜀0
, (2.35)

and do not depend on the scattering amplitude 𝜆. Thus, there is a deep and narrow minimum

of resistivity slightly below the bare Van Hove singularity, the resistivity in the minimum

depends on 𝑛 superlinearly.
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3 Ideal system

3.1 Tube case

We consider a tube of radius 𝑅 threaded by a magnetic flux Φ = 𝜋𝑅2𝐻 (the magnetic field

𝐻 is oriented along the axis of a cylinder 𝑧).

Figure 4. Thin conducting tube, threaded by magnetic field 𝐻. Impurities (shown as stars)
are embedded in the tube. Electrons live on the surface of the cylinder.

Electrons in the tube have the following spectrum and wave functions:

𝜓𝑚𝑘(𝜑, 𝑧) = (2𝜋)−1/2 exp{𝑖𝑘𝑧 + 𝑖𝑚𝜑}, (3.1)

𝐸𝑚𝑘 =
~2𝑘2

2𝑚* + 𝐸𝑚, (3.2)

𝐸𝑚 = 𝐸0(𝑚+ Φ/2Φ0)
2, 𝐸0 =

~2

2𝑚*𝑅2
(3.3)

where 𝑚 ∈ 𝑍 is the azymuthal quantum number, 𝑘 is the momentum along the cylinders

axis and Φ0 = 𝜋𝑐~/𝑒 = 𝑐ℎ/2𝑒 is the flux quantum. 𝐸𝑚 has the meaning of position of the

bottom of 𝑚-th one-dimensional subband. Actually we have introduced the magnetic field

as a tool of easy shifting of the Fermi level in the system but all the physics described below

is present already in the case 𝐻 = 0.

The density of states in each subband

𝜈𝑚(𝐸) =

∫︁
𝑑𝑘

2𝜋
𝛿

(︂
𝐸 − 𝐸𝑚 − 𝑘2

2𝑚*

)︂
=

=
2

2𝜋

√︂
𝑚*

2(𝐸 − 𝐸𝑚)
𝜃(𝐸 − 𝐸𝑚), (3.4)

The factor 2 arises because the equation 𝐸−𝐸𝑚− 𝑘2

2𝑚* = 0 has two roots 𝑘 = ±
√︀
2𝑚*(𝐸 − 𝐸𝑚).
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Figure 5. Spectrum of an electron on a surface of an ideal cylinder. Subbands of the
transverse quantization are shown. The Fermi level 𝐸 crosses all the subbands with 𝑚 ≤ 𝑁 .

The total density of states

𝜈(𝐸) =
∑︁
𝑚

𝜈𝑚(𝐸) = − 1

𝜋
Im 𝑔(𝐸), (3.5)

𝑔(𝐸) ≡ 𝐺
(0)
𝐸 (0, 0) =

∑︁
𝑚

∫︁
𝑑𝑘

2𝜋

1

𝐸 − 𝐸𝑘𝑚 + 𝑖0
=

=
∑︁
𝑚

√︂
𝑚*

2(𝐸𝑚 − 𝐸)
, (3.6)

𝐺
(0)
𝐸 (0, 0) being the one-point retarded Green function of an ideal tube. Strictly speaking,

the real part of 𝑔 diverges. The recipe how to deal with this divergency will be discussed

somewhat later. Now we just mention that the divergent part is energy-independent and

therefore can be removed by a constant shift of the energy.

In the main part of this paper we will measure all energies in the units of 𝐸0 and all

distances in the units of 2𝜋𝑅:

𝐸 ≡ 𝐸0𝜀0, 𝐸 − 𝐸𝑚 ≡ 𝐸0𝜀𝑚, 𝜈𝑚(𝐸) ≡
𝜈𝑚(𝜀)

2𝜋𝑅𝐸0

, (3.7)

𝜈𝑚(𝜀) =
1

√
𝜀𝑚
𝜃(𝜀𝑚), 𝑔(𝜀) =

∑︁
𝑚

𝜋√
−𝜀𝑚

. (3.8)

We are interested in semiclassical case when 𝐸0 ≪ 𝐸 or 𝜀0 ≫ 1. Then, in the leading
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semiclassical approximation

𝜈(𝜀) =
∞∑︁

𝑚=−∞

𝜈𝑚(𝜀) ≈ 𝜈0 =

∫︁ 𝜀0

0

𝑑𝜀𝑚√︀
𝜀𝑚(𝜀0 − 𝜀𝑚)

= 𝜋. (3.9)

This result is valid for all 𝜀 except narrow intervals in the vicinity of points where 𝜀𝑚 = 0

for some 𝑚.

The condition of strong magnetic field reads

𝜀𝑁 − 𝜀−𝑁 ∼ 𝑁Φ/Φ0 ≫ Γ, (3.10)

where Γ is the broadening of peaks and 𝑁 =
√
𝜀0 denotes the closest to Fermi level 𝐸

subband.

In the entire range of variation of 𝜖 one can write

𝜈(0)(𝜀) ≈ 𝜈0

(︂
1 +

𝜃(𝜀)

𝜋
√
𝜀

)︂
, (3.11)

where we have introduced 𝜀 ≡ 𝜀𝑁 for brevity.

Under the semiclassical condition 𝑁 ≫ 1 the result (3.9) is not valid in the vicinity of the

Van Hove singularity (for 𝜀 . 1) where the second – resonant – term in (3.22) is anomalously

large. We see that for

𝜀 > 0, 𝜀≪ 1 (3.12)

the inequality 𝜈𝑁(𝜀) ≫ 𝜈0 holds: the density of states is indeed dominated by the second

term in (3.22) – the contribution of the 𝑁 -subband. Note that in the semiclassical limit

𝑁 ≫ 1 the different peaks in the function 𝜈(𝜀) are strictly identical.

3.2 Case of strip

The eigenfunctions and eigenenergies of electrons in an ideal strip are

𝜓𝑚𝑘(𝑥, 𝑧) =
√︀
2/𝐷 sin(𝜋(𝑚+ 1)𝑥/𝐷) exp{𝑖𝑘𝑧}, (3.13)

𝐸𝑚𝑘 =
~2𝑘2

2𝑚* + 𝐸𝑚, 𝐸𝑚 =
𝐸𝐷

4
(𝑚+ 1)2, (3.14)
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Figure 6. Conducting strip of width 𝐷. Impurities (shown as stars) are embedded in the
strip, position of ith impurity is denoted as 𝜉𝑖𝐷. Electrons live within the strip.

𝑚 = 0, 1, 2 . . . , 𝐸𝐷 =
2~2𝜋2

𝑚*𝐷2
(3.15)

where 𝑧 is the coordinate along the strip and 0 < 𝑥 < 𝐷 is the distance from one of the

strip’s edges. Integer 𝑚 is the transverse quantum number, 𝑘 is the momentum along the

strip, and 𝐸𝑚 has the meaning of position of the bottom of 𝑚-th one-dimensional subband.

The density of states in each subband

𝜈𝑚(𝐸) =

∫︁
𝑑𝑘

2𝜋
𝛿

(︂
𝐸 − 𝐸𝑚 − 𝑘2

2𝑚*

)︂
=

=
2

2𝜋

√︂
𝑚*

2(𝐸 − 𝐸𝑚)
𝜃(𝐸 − 𝐸𝑚), (3.16)

We will measure all energies in the units of 𝐸𝐷 and all distances in the units of 𝐷:

𝑥 ≡ 𝐷𝜉, 𝐸 − 𝐸𝑚 ≡ 𝐸𝐷𝜀𝑚, (3.17)

For brevity, we will introduce

𝜀 ≡ 𝜀𝑁 (3.18)
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with 𝑁 being the label of the subband closest to the Fermi level. The partial densities of

states in the dimensionless variables

𝜈𝑚(𝐸) ≡
𝜈𝑚(𝜀)

𝐷𝐸𝐷

, 𝜈𝑚(𝜀) =
𝜃(𝜀𝑚)√
𝜀𝑚

, (3.19)

We are interested in semiclassical case when 𝐸𝐷 ≪ 𝐸 or 𝜀0 ≫ 1. Under this condition

both the label 𝑁 of the resonant state and the number 𝑁ch of open channels in the system

are large:

𝑁 ≈ 𝑁ch ≈ 2
√
𝜀0 ≫ 1. (3.20)

Then, in the leading semiclassical approximation

𝜈(𝜀) =
∞∑︁

𝑚=1

𝜈𝑚(𝜀) ≈ 𝜈0 =

∫︁ 𝜀0

0

𝑑𝜀𝑚√︀
𝜀𝑚(𝜀0 − 𝜀𝑚)

= 𝜋. (3.21)

This result is valid for all 𝜀 except narrow interval in the vicinity of 𝜀 = 0 point. In the

entire range of variation of 𝜀 one can write

𝜈(𝜀) ≈ 𝜈0

(︂
1 +

𝜃(𝜀)

𝜋
√
𝜀

)︂
, (3.22)
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4 Born scattering by short-range impurities

4.1 Case of tube

Our first step is finding the longitudinal resistivity of the tube using the Drude and Born

approximations. We consider weak short range impurities with the hamiltonian

𝐻̂ = 𝐻̂0 + 𝑉 𝛿(r− r0), 𝐻̂0 = −∇2/2𝑚* (4.1)

where 𝛿(r) ≡ 1
𝑅
𝛿(𝑧 − 𝑧0)𝛿(𝜑 − 𝜑0) is a two-dimensional delta-function and r0 denotes the

position of the impurity on the wall of the tube. Let us find the self-energy for an electron

Σ𝑘𝑚 =
2𝜋𝑅𝑛

(2)
imp

𝐸0

∑︁
𝑚′

∫︁
𝑑𝑘′

2𝜋
|𝑉𝑘𝑘′𝑚𝑚′ |2𝐺(0)

𝑘′𝑚′ (4.2)

Since for the short range potential (4.1)

𝑉𝑘𝑘′𝑚𝑚′ =
𝑉

2𝜋𝑅
exp{𝑖(𝑚−𝑚′)𝜑0 + 𝑖(𝑘 − 𝑘′)𝑧0}, (4.3)

|𝑉𝑘𝑘′𝑚𝑚′ |2 ≡ |𝑉 |2 depends neither on 𝑘𝑚, nor on 𝑘′𝑚′, and we conclude that Σ𝑘𝑚 = Σ(𝐸𝑘𝑚)

is a function only of the total energy 𝐸. In our dimensionless variables we get:

Σ(𝜀) =
𝑔(𝜀)

2𝜋𝜈0𝜏0
, (4.4)

where 𝜏0 is the dimensionless scattering time for an electron away from the resonance (i.e.,

for 𝜀≫ 1):

𝜏−1
0 =

𝑚*𝑉 2𝑛2

𝐸0

= 2𝑛(𝜆/𝜋)2, (4.5)

the dimensionless Born scattering amplitude

𝜆 = 𝑚*𝑉/2, |𝜆| ≪ 1, (4.6)

is assumed to be small and may have either signs (the positive sign corresponds to repulsion,

the negative – to attraction). The dimensionless concentration 𝑛 is also assumed small.
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The Born decay rate

1

𝜏𝑘,𝑚
=

1

𝜏(𝐸𝑘𝑚)
= −2ImΣ =

1

𝜏0

𝜈(𝜀)

𝜈0
. (4.7)

For point impurities the scattering is isotropic and therefore the transport time coincides

with the simple decay time.

Thus, if (3.12) is fulfilled, the particle is scattered predominantly (though not completely)

to the upper band. In particular, if the particle was already in the upper subband then the

scattering event most probably will not remove it from there. It means that in the zero

approximation the upper subband is almost decoupled from all others.

Under the condition (3.12) the electrons in the 𝑁 -subband states have low longitudinal

velocity and therefore do not contribute much to the current. The latter is dominated by

the states in all other bands. However, the singularity in the 𝑁 -band is manifested also in

the resistivity 𝜌 through the scattering rate that is proportional to the density of the final

states on the Fermi surface:

𝜌

𝜌0
=
𝜈(𝜀)

𝜈0
, 𝜌0 =

1

𝑒2𝜀0𝜏0
. (4.8)

These final states predominantly belong to the 𝑁 -band.

4.2 Case of a strip

In the case of strip the scattering matrix elements depend both on the quantum numbers of

scattering states and on the position of the impurity r𝑖:

𝑉
(𝑖)
𝑘𝑘′𝑚𝑚′(𝜉𝑖, 𝑧𝑖) =

2𝑉

𝐷
exp{𝑖(𝑘 − 𝑘′)𝑧𝑖}

× sin(𝜋(𝑚+ 1)𝜉𝑖) sin(𝜋(𝑚
′ + 1)𝜉𝑖), (4.9)

where 𝑧𝑖 and 𝜉𝑖 characterize the position of 𝑖-th impurity.
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The averaged over the positions of impurities decay rate for a general state 𝑚:

1

𝜏𝑚(𝜀)
= 𝑛imp

⟨∫︁
𝑑𝑘′
∑︁
𝑚′

|𝑉 (𝑖)
𝑘𝑘′𝑚𝑚′(𝜉)|2𝛿(𝐸𝑚′𝑘′ − 𝐸𝑚𝑘)

⟩
𝜉

=

=
1

𝜏0

∫︁ 1

0

𝑑𝜉
∑︁
𝑚′

(2 sin2(𝜋(𝑚+ 1)𝜉))(2 sin2(𝜋(𝑚′ + 1)𝜉))
𝜃(𝜀𝑚′)

𝜋
√
𝜀𝑚′

=
1

𝜈0𝜏0

(︃∑︁
𝑚′

𝜈𝑚′ +
1

2
𝜈𝑚

)︃
≈

≈ 1

𝜏0

⎛⎝1 +
𝜃(𝜀)

𝜋
√
𝜀

⎧⎨⎩ 1, for 𝑚 ̸= 𝑁,

3/2, for 𝑚 = 𝑁.

⎫⎬⎭
⎞⎠

where we have used

∫︁ 1

0

𝑑𝜉(2 sin2(𝜋(𝑚+ 1)𝜉))(2 sin2(𝜋(𝑚′ + 1)𝜉)) =

⎧⎨⎩ 1, 𝑚′ ̸= 𝑚,

3/2, 𝑚′ = 𝑚.

and the fact that for large 𝑁 ≫ 1 each individual non-resonant contribution to the sum is

relatively small, while the resonant one may be large, provided 𝜀𝑁 ≡ 𝜀 ≪ 1. The rate of

scattering away from resonance 𝜏−1
0 coincides with that in an infinite plane:

1

𝜏0
= 2𝑛

(︂
𝜆

𝜋

)︂2

. (4.10)

where 𝜆 is a dimensionless scattering amplitude and 𝑛 is dimensionless concentration of

impurities (both 𝜆 and 𝑛 are assumed to be small throughout this paper

𝑛 = 𝑛
(2)
imp𝐷

2 ≪ 1, 𝜆 = 𝑚*𝑉/2, |𝜆| ≪ 1, (4.11)

So, we have shown that, within the Born approximation the scattering rate is the same

for all the nonresonant states 𝑚 ̸= 𝑁 :

𝜏0
𝜏𝑚(𝜀)

=
𝜏0

𝜏nonres(𝜀)
≈ 1 +

𝜃(𝜀)

𝜋
√
𝜀
=
𝜈(𝜀)

𝜈0
, (4.12)

while for the resonant state 𝑚 = 𝑁

𝜏0
𝜏𝑁(𝜀)

=
𝜏0

𝜏res(𝜀)
≈ 1 +

3𝜃(𝜀)

2𝜋
√
𝜀
, (4.13)
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4.3 The conductivity

To evaluate the conductivity of both systems (per one spin projection) we can use the Kubo

formula:

𝜎 =
𝑒2

2𝜋
Tr[𝑣𝑧𝐺̂

𝑅𝑣𝑧𝐺̂
𝐴] =

𝑒2

2𝜋

∫︁
𝑑𝑘

2𝜋

∑︁
𝑚

(𝑣𝑧𝑘𝑚)
2

(𝜀− 𝐸𝑘𝑚)2 + 1/4𝜏 2𝑚(𝜀)
≈

≈ 𝑒2
∫︁

𝑑𝑘

2𝜋

∑︁
𝑚

(𝑣𝑧𝑘𝑚)
2𝛿(𝜀− 𝐸𝑘𝑚)𝜏𝑚(𝜀), (4.14)

From (4.14) we immediately see that only non-resonant states are expected to be current

carrying: the resonant state contribution to the current is suppressed by the factor (𝑣𝑧𝑁)2 ∝

𝜀𝑁 ≪ 1. Hence, we can write

𝜎 ≈ 𝑒2𝐷(𝜀)𝜈tr(𝜀), 𝐷(𝜀) =
1

2
𝑣2𝐹 𝜏nonres = 𝐷0

𝜈0
𝜈(𝜀)

(4.15)

where 𝐷0 =
1
2
𝑣2𝐹 𝜏0 is the two-dimensional diffusion coefficient, and

𝜈tr(𝜀) = 2

∫︁
𝑑𝑘

2𝜋

∑︁
𝑚

(︂
𝑣𝑧𝑘𝑚
𝑣𝐹

)︂2

𝛿(𝜀− 𝐸𝑘𝑚), (4.16)

is the “transport density of states”. In contrast with the standard density of states, the

transport one does not exhibit any Van Hove singularity at 𝜀 → 0: the latter is suppressed

by the factor
(︁

𝑣𝑧𝑘𝑚
𝑣𝐹

)︁2
. As a result, under the semiclassical condition 𝜀0 ≫ 1 we can always

substitute 𝜈tr(𝜀) ≡ 𝜈0, even at 𝜀→ 0.

Thus, in the Born domain for the resistivity 𝜌 ≡ 1/𝜎 we get a simple result:

𝜌(𝜀)

𝜌0
=

𝜏0
𝜏nonres(𝜀)

=
𝜈(𝜀)

𝜈0
, (4.17)

where

𝜌0 =
1

𝑒2𝜀0𝜏0
. (4.18)

is the resistivity away from the resonance, coinciding with the resistivity of an infinite two-

dimensional sample.

As we see, for 𝜀 → 0 the resistivity 𝜌(𝜀) diverges. This divergency is nothing else but

Van Hove singularity.

So, we conclude that in the range of 𝜀, where the perturbation theory is applicable (i.e.,
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neither the single-impurity non-born effects, nor the interference of scattering at different

impurities are relevant) the resistivity of a conducting strip is described by exactly the

same formulae, as the resistivity of a conducting tube. One should only replace the unique

scattering time 𝜏 of the tube theory by 𝜏nonres of the strip theory.

4.4 Smearing of the Van Hove singularity within Born approxima-

tion

It is instructing to distinguish two groups of effects nonlinear in the scattering amplitude:

1. Single-impurity non-Born effects, arising due to more accurate treatment of individual

scattering acts;

2. The multi-impurity ones, coming from the interference of scattering acts at different

impurities.

Upon approaching the Van Hove singularity the nonlinear effects of both types become

stronger. However, if the concentration of impurities is relatively high,

𝑛≫ 𝜆, (4.19)

then the multi-impurity effects come into play earlier than the non-Born single-impurity

effects, so that the latter do not have chance to show up and effectively can be neglected

(the Born regime). In this section we will be dealing only with this Born regime.

4.4.1 Shift of the singularity

The strongest of the multi-impurity effects, that comes into play at 𝜀 ∼ 𝜆𝑛, is quite simple.

It is just the shift of the resonant subband by the average potential of impurities:

𝑈 =

⟨
𝑉
∑︁
𝑖

𝛿(r− r𝑖)

⟩
r𝑖

=
𝜆𝑛

𝜋2
, (4.20)

It is important to note that an introduction of this shift makes sense only under condition

(4.19). Indeed, an effective self-averaging of the potential takes place if the electronic wave

function does not change much on the scale of an inter-impurity distance 𝑛−1, which means

𝑛−1(𝑚𝑈)1/2 ∼ (𝜆/𝑛)1/2 ≪ 1. The latter condition is equivalent to (4.19). Thus, if (4.19) is
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fulfilled, one should first of all renormalize the position of the Van Hove singularity:

𝜀→ 𝜀 = 𝜀− 𝑈, (4.21)

and substitute 𝜀 instead of 𝜀 in the results of the preceding section.

4.4.2 Smoothing of the singularity: qualitative description

The next multi-impurity effect is the smearing of the singularity due to scattering. This effect

becomes essential at still smaller energy scales 𝜀 . 𝜀min, where the perturbation theory breaks

down. The scale 𝜀min can be extracted from the condition

𝜏−1
res (𝜀min) ∼ 𝜀min, (4.22)

when the resonant state becomes smeared. Note that the current carrying nonresonant

states become smeared at the same scale, since, as it follows from (4.12) and (4.13), 𝜏res ≈

(2/3)𝜏nonres. The divergencies of both 𝜏−1
nonres(𝜀) and 𝜏−1

res (𝜀) are due to the divergency of the

density of final states in the scattering processes.

4.4.3 Smoothing of the singularity: a link to strictly one-dimensional systems

Electrons with energies |𝜀| ≪ |𝑈 | are effectively scattered not by individual impurities, but

by fluctuations of the density of impurities. Typically such fluctuations are constituted by

many impurities and, therefore, their distribution is essentially gaussian. It is important to

note that these gaussian fluctuations are universal, in particular, they do not depend on the

character (repulsing or attracting) of individual impurities.

The latter is not true for rare very large non-gaussian fluctuations with |𝜀| & |𝑈 |. How-

ever, these large fluctuations are not relevant, since the corresponding part of the spectrum

is likely to be dominated not by the far tail of the resonant band, but by the non-resonant

ones (see below).

Combining the formulas (4.13) and (4.22) we get an estimate for the width of smeared

singularity

𝜀min ∼ (𝑛𝜆2)2/3,
𝜀min

𝑈
∼
(︂
𝜆

𝑛

)︂1/3

≪ 1, (4.23)

so, indeed, under condition (4.19) the smearing occurs on the energy scale that is much
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smaller than the shift of the band.

For energies |𝜀| . 𝜀min plane waves exp(𝑖𝑘𝑧) do not provide any good approximation to

the eigenfunctions of an electron in the resonant band: they should be substituted by a set of

certain nontrivial wave functions 𝜓𝛼(𝑧), depending of concrete realization of disorder. At the

same time, the plane waves remain valid eigenfunctions for electrons in the current-carrying

nonresonant bands. Then, if we, as before, neglect the contribution of the resonant band

to the current, the conductivity still can be written in a form (4.14), the only modification

occurs in the expression for 𝜏𝑚(𝜀) for 𝑚 ̸= 𝑁 :

1

𝜏𝑚(𝜀)
= 𝑛imp

⟨∫︁
𝑑𝑘′

∑︁
𝑚′ ̸=𝑁

|𝑉 (𝑖)
𝑘𝑘′𝑚𝑚′(𝜉)|2𝛿(𝐸𝑚′𝑘′ − 𝐸𝑚𝑘)

⟩
𝜉

+

+𝑛imp

⟨∑︁
𝛼

|𝑉 (𝑖)
𝑘𝛼𝑚𝑁(𝜉, 𝑧)|

2𝛿(𝐸𝑁𝛼 − 𝐸𝑚𝑘)

⟩
𝜉,𝑧

(4.24)

𝑉
(𝑖)
𝑘𝛼𝑚𝑁(𝜉𝑖, 𝑧𝑖) =

2𝑉

𝐷
exp{𝑖𝑘𝑧𝑖}𝜓*

𝛼(𝑧𝑖) sin(𝜋(𝑚+ 1)𝜉𝑖) sin(𝜋𝑁)𝜉𝑖), (4.25)

So, the second term in (4.24) can be rewritten in terms of a density of states 𝜈res(𝜀) for

strictly one-dimensional system

1

𝜏0

∫︁ 1

0

𝑑𝜉(2 sin2(𝜋(𝑚+ 1)𝜉))(2 sin2(𝜋𝑁𝜉))

∫︁
𝑑𝑧
∑︁
𝛼

|𝜓𝛼(𝑧)|2𝛿(𝐸𝑁𝛼 − 𝐸𝑚𝑘) =
𝜈res(𝜀)

𝜋𝜏0
(4.26)

We would like to stress that in our quasi-one-dimensional problem the conductivity is ex-

pressed through the exact average density of states of a purely one-dimensional problem,

which is the average of one-particle Green-function (involving two 𝜓-operators). On the

other hand, it is well known that the conductivity should be expressed through the exact

average two-particle Green function (four 𝜓-operators), which is a much more sophisticated

object that the one-particle one.

The explanation for this paradox is as follows: There are two distinct types of 𝜓-operators

in our quasi-one-dimensional problem: 𝜓nonres for electrons in non-resonant bands and 𝜓res

– for electrons in the resonant band. Since in our problem the resonant band does not

contribute to the current directly, each term in the conductivity should necessarily contain

at least two 𝜓nonres-operators. Remaining two 𝜓-operators may be either both of 𝜓nonres type

(that leads to the first term in (4.24)), or both of 𝜓res-type (the second term in (4.24)).

In this term the 𝜓res-operators enter through the density of final states in the scattering
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process (c.f. (4.12)). There are no terms containing four 𝜓res-operators since the purely one

dimensional contribution to the current is strongly suppressed.

So, in the Born regime we end up with the formula (4.12) for the scattering rate of

nonresonant electrons with

𝜈(𝜀) ≈ 𝜈nonres(𝜀) + 𝜈res(𝜀), (4.27)

where 𝜈nonres(𝜀) ≈ 𝜈0, while the relation 𝜈res(𝜀) = 𝜃(𝜀)(𝜀)−1/2 is true only for |𝜀| ≫ 𝜀min.

At |𝜀| . 𝜀min one should use exact solutions from the theory of strictly one dimensional

disordered systems.

4.4.4 Correction to the density of states due to hybridization of bands

Besides the nontrivial and strong modification of 𝜈res(𝜀) by disorder, there is an additional

effect – hybridization between resonant and nonresonant bands due to presence of impurities.

As we will see in the next subsection, the corresponding correction to the nonresonant density

of states 𝜈nonres is relatively small in the relevant range of energies and can be evaluated

perturbatively:

𝜈nonres(𝜀) = 𝜈0 + 𝛿𝜈(𝜀), 𝛿𝜈(𝜀) = 𝜈0
𝑑

𝑑𝜀
𝛿𝜀(𝜀), (4.28)

where 𝛿𝜀(𝜀) is the second order (in 𝑉 ) correction to the energy 𝜀 of certain nonresonant state

arising due to scattering

𝛿𝜀(𝜀) =
𝑛𝜆2

𝜋4
v.p.

∫︁
𝜈(𝜀′)𝑑𝜀′

𝜀− 𝜀′
, (4.29)

For 𝜀 < 0 and |𝜀| ≫ 𝜀
(t)
min the principal contribution to the integral in (4.29) comes from the

states in the resonant band with energies 𝜀′ > 0 and 𝜀′ ∼ |𝜀|, so that the correction can be

estimated as

𝛿𝜈(𝜀) =
𝑛𝜆2

𝜋4

∫︁ ∞

0

𝑑𝜀′

(𝜀− 𝜀′)2
√
𝜀′

∼ 𝜈0

(︂
𝜀min

|𝜀|

)︂3/2

. (4.30)

Thus, we conclude that for |𝜀| ≫ 𝜀min the relative correction to the density of states is indeed

small.
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4.4.5 Non-matching asymptotes and SCBA

At this point one should also note that the correction (4.30) is relatively small already for

|𝜀| . 𝜀min. For 𝜀 > 0 it seems natural that the value of 𝜈(𝜀) can not change considerably for

𝜀 < 𝜀min and therefore

𝜈(𝜀) ∼ 𝜈max, 𝜏res(𝜀) ∼ 𝜏min, for |𝜀| . 𝜀min (4.31)

Also, (4.30) means that

𝜈(−𝜀min) ∼ 𝜈0 ≪ 𝜈(𝜀min) (4.32)

and direct smooth matching of (4.32) and (4.31) is impossible!

To resolve this paradox one should in principle go beyond the estimates made above, and

accurately solve the problem in the range |𝜀| . 𝜀min. This will be done in following sections

in 2 ways: (i) self-consistent Born approximation and (ii) asymptotical mapping to exactly

soluable one-dimensional problem. Although the self-consistent Born approximation in our

case can not be justified analytically, we will see by comparison with more robust second

approach that it gives qualitatively reasonable results. For a qualitative understanding of

paradox resolution it is enough to note that there is practically only one scenario for such a

giant drop in the density of states: a “quasifold” – an inflection point with almost vertical

slope, see Fig. 7.

In the dependence 𝜈(𝜀) at some point 𝜀bi there should be

(i) very large positive first derivative 𝜈 ′(𝜀bi) ≫ 𝜈(𝜀min)/𝜀min,

(ii) zero second derivative, and

(iii) rather small third derivative.

An example of such a behaviour is provided by the results of the self-consistent Born ap-

proximation. One can write(see, e.g., [6, 8])

⟨𝜈(𝜀)⟩ = 𝜈(0)[𝜀− Σ(𝜀)] (4.33)

where Σ(𝜀) is given by (4.4). This equation is solved in Appendix A. Although all the

calculations in this Appendix are carried out for the case of tube, 𝜏 (𝑠)res and 𝜏
(𝑡)
res differs only

by the factor 3/2 so that all the formulas hold true up to replacement 𝜏−1
0 → 3/2𝜏−1

0 .
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Figure 7. The “quasifold”: in the vicinity of the bifurcation point 𝜀 = 𝜀bi the slope of the
curve 𝜌(𝜀) is anomalously steep.

Despite the fact that these results can not be taken too seriously (since the self-consistent

Born approximation is not rigorous), as we see below, the main message happens to be true:

the entire domain |𝜀| ∼ 𝜀min is split into two basic subdomains: 𝜀 < 𝜀bi where 𝜈 ∼ 𝜈0

and 𝜀 > 𝜀bi where 𝜈 ∼ 𝜈(+𝜀min) ≫ 𝜈0. Between these two subdomains there is a narrow

intermediate layer around 𝜀bi in which 𝜈(𝜀) undergoes a dramatic change.

The results of self-consistent Born approximation can be roughly summarized as follows:

𝜌(𝜀)

𝜌0
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 +

1

𝜋
√
𝜀
, for 𝜀min ≪ 𝜀, 𝜀 > 0,

∼ 𝜆−2/3𝑛−1/3, for 𝜀bi < 𝜀 . 𝜀min,

∼ 1, for 𝜀 < 𝜀bi,

(4.34)

with certain 𝜀bi < 0, |𝜀bi| ∼ 𝜀min. 𝜀
(𝑠)
bi and 𝜀

(𝑠)
min are suppressed by factor 2−2/3 compared to

that of a tube. A schematic plot of (4.34) is shown in FIG.8.

4.4.6 Exact results: the case of tube

Now we start from the case of the tube with a more accurate approach exploring the exact

solutions known for the strictly one-dimensional systems. Under the condition (4.19) the

one-dimensional model with identical point-like scatterers randomly distributed on a line,

was exhaustively studied in [31]. It was shown[30] that the random potential is effectively
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Figure 8. The shape of a smeared Van Hove singularity within the self-consistent Born
approximation.

gaussian and the density of states may be evaluated with the help of Fokker-Planck equation.

As a result

𝜈(t)res(𝜀) = 𝜈0

(︁
𝜀
(t)
min

)︁−1/2

𝑌
(︁
𝜀/𝜀

(t)
min

)︁
, (4.35)

where

𝜀
(t)
min = (2𝜋𝜏0)

−2/3 =
(︁𝑛
𝜋

)︁2/3(︂𝜆
𝜋

)︂4/3

, (4.36)

𝑌 (𝑞) =
2√
𝜋

𝜕

𝜕𝑞

(︂∫︁ ∞

0

𝑑𝑥√
𝑥
exp

{︂
−𝑥𝑞 − 𝑥3

12

}︂)︂−1

. (4.37)

The asymptotics of (4.37) at 𝑞 > 0, 𝑞 ≫ 1,

𝑌 (𝑞) ≈ 1

𝜋
√
𝑞
, (4.38)
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corresponds to the trivial perturbative result, while the asymptotics for 𝑞 < 0, |𝑞| ≫ 1

𝑌 (𝑞) ≈ 4|𝑞|
𝜋

exp

{︂
−4

3
|𝑞|3/2

}︂
, (4.39)

describes the well-known Lifshits tail of the density of states in one dimensional system with

effectively gaussian disorder. It should be noted that (4.39) is indeed only an intermedi-

ate asymptotics[31], valid in the range 1 ≪ |𝑞| ≪
√︀
𝑛/𝜆, where the random potential is

effectively gaussian.

As it was argued in Section 4.4.5, there should be certain bifurcation energy 𝜀
(t)
bi , such

that for all energies 𝜀(t)bi < 𝜀 ≪ 1 the principal contribution to the density of states comes

from the resonant subband 𝑁 : 𝜈nonres(𝜀) ≪ 𝜈res(𝜀). Let us demonstrate that this statement

is valid also for the exact solution.

The bifurcation point 𝜀(t)bi can be roughly defined as the energy, at which the contribu-

tion to the density of states coming from the resonant band becomes equal to that of the

nonresonant ones:

𝜈(t)nonres(𝜀
(t)
bi ) = 𝜈(t)res(𝜀

(t)
bi ). (4.40)

As a first step, let’s suppose that |𝜀(t)bi | ≫ 𝜀
(t)
min. Then, according to (4.30), 𝜈(t)nonres(𝜀) differs

from 𝜈0 only slightly, and (4.40) takes the form

𝜈0 = 𝜈0

(︁
𝜀
(t)
min

)︁−1/2

𝑌
(︁
𝑞
(t)
bi

)︁
, (4.41)

𝜀
(t)
bi = 𝜀

(t)
min𝑞

(t)
bi , 𝑞

(t)
bi ≈ −

(︂
3

8

)︂2/3

ln2/3
(︁
1/𝜀

(t)
min

)︁
. (4.42)

We want to remind here again that the result (4.42) (as well as (4.39)) is valid under condition

𝜀
(t)
min ≪ |𝜀(t)bi | ≪ 𝑈 , which is equivalent to

1 ≪ ln
(︀
1/𝑛𝜆2

)︀
≪
(︁𝑛
𝜆

)︁1/2
. (4.43)

In particular, the first inequality in (4.43) justifies our assumption |𝜀(t)bi | ≫ 𝜀
(t)
min.

So, we conclude that the contribution of the nonresonant bands is essentially unperturbed

in the relevant domain |𝜀| > |𝜀(t)bi |. As a result the total density of states and the resistivity
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of a tube can be written as

𝜈(t)(𝜀)

𝜈0
=
𝜌(t)(𝜀)

𝜌0
≈ 1 +

(︁
𝜀
(𝑡)
min

)︁−1/2

𝑌
(︁
𝜀/𝜀

(t)
min

)︁
, (4.44)

with high accuracy in the entire range of energies 𝜀.

4.4.7 Exact results: the case of the strip

Evaluation of the density of states in the case of strip is very similar to that in the case of

tube. For the energies above the bifurcation point the density of states is dominated by the

states from the resonant subband and its smearing is also controlled by scattering processes

in which both initial and final states belong to the resonant subband. It means that the

smearing depends on 𝜏 (s)res(𝜀), but not on 𝜏 (s)nonres(𝜀). In this sence the problem is very similar

to that of the tube, the only difference is an additional factor 2/3 in the definition (4.13) of

𝜏
(s)
res , as compared to 𝜏 (t)res . This difference, however, can be removed by the redefinition of the

energy scale:

𝜀
(t)
min = (2𝜋𝜏0)

−2/3 −→ 𝜀
(𝑠)
min = (4𝜋𝜏0/3)

−2/3 (4.45)

After the rescaling the scattering rate and the density of states can be expressed in terms

of the very same function 𝑌 (𝑞), which appeared in the results for the tube (see (4.37),

(4.38), (4.39)). It also can easily be demonstrated that, exactly as in the case of tube, the

nonresonant contribution to the density of states remains equal to 𝜈0 for all |𝜀| > |𝜀bi|. As a

result

𝜈(s)(𝜀)

𝜈0
=
𝜌(s)(𝜀)

𝜌0
≈ 1 +

(︁
𝜀
(s)
min

)︁−1/2

𝑌
(︁
𝜀/𝜀

(s)
min

)︁
, (4.46)

𝜀
(s)
min = (4𝜋𝜏0/3)

−2/3 =

(︂
3𝑛

2𝜋

)︂2/3(︂
𝜆

𝜋

)︂4/3

. (4.47)

So, the difference in the resistivities of a tube and a strip is only in different numerical factors

entering characteristic energy scales 𝜀(t)min and 𝜀(s)min
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4.4.8 General features of resistivity in the Born case

In general, the energy profile of the resistivity of a quasi-one-dimensional system with “rela-

tively high” concentration (that is, for |𝜆| ≪ 𝑛≪ 1) of weak short-range impurities consists

of a set of shifted and smeared Van Hove singularities (see Fig.9).

Figure 9. The shape of a smeared Van Hove singularity in Born approximation (results from
asymptotical mapping to 1D exactly soluable chain).

Each singularity is characterized by four distinct ranges:

1. Relatively smooth right slope of a shifted singularity:

𝜌(𝜀) ≈ 𝜌0

𝜋(𝜀− 𝑈)1/2
, 𝜀− 𝑈 > 0,

|𝜀− 𝑈 |
𝜀min

≫ 1, (4.48)

2. Smeared core of the singularity:

𝜌(𝜀) ∼ 𝜌max ∼
𝜌0

𝜋𝜀
1/2
min

,
|𝜀− 𝑈 |
𝜀min

. 1, (4.49)

3. Exponentially steep left slope of a shifted singularity:

𝜌(𝜀) ≈ 4𝜌0

𝜋(𝜀− 𝑈)1/2
exp

{︃
−4

3

⃒⃒⃒⃒
𝜀− 𝑈

𝜀min

⃒⃒⃒⃒3/2}︃
, (4.50)

𝜀− 𝑈 < 0, 1 ≪ |𝜀− 𝑈 |
𝜀min

< |𝑞bi|, (4.51)
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4. Left plateau:

𝜌(𝜀) ≈ 𝜌0. (4.52)

The relevant energy scales 𝑈 (shift of the peak) and 𝜀min (its width) are given by (4.20),

(4.36) and (4.47). For the tube and the strip cases these scales differ only in numerical

prefactor. Logarithmically large parameter 𝑞bi is defined in (4.42).

4.4.9 Comparison of exact and SCBA results

We see that self-consistent Born approximation is in qualitative agreement with the exact

results. Namely, its prediction has the same main feature: 𝜌(𝜀) changes very fast (has

a bifurcation point 𝜀bi) under the position of shifted bottom of a subband. In the exact

solution the rapid decrease of 𝜌(𝜀) is the manifestation of exponential Lifshits tail in 1D

density of states of resonant subband.
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5 Beyond the Born approximation

The above considerations seem plausible and straightforward. However, the analysis below

shows that they are only applicable if the concentration of impurities is high enough, i.e. for

𝑛 ≫ 𝑛𝑐 ∼ |𝜆|. For 𝑛 ≪ 𝑛𝑐 the scattering that determines the form of smeared Van Hove

singularities is strongly modified by the single-impurity non-Born effects that dramatically

grow upon approaching the singularity. We start our discussion from the properties of an

exact amplitude of scattering by a single short-range impurity, placed on the infinite 2D

plane.

5.1 A single impurity problem in two dimensions: non-Born effects

Properties of short-range impurities or defects in two-dimensional systems are well studied.

In this subsection we briefly remind the main facts.

In particular, it is known that a weakly-attracting short-range impurity always forms a

bound state [24]. Writing the hamiltonian of the system in the form (4.1) with 𝜆 < 0 one

finds that there is a single bound state with small binding energy

𝐸
(2𝑑)
bound ≈ − ~2

𝑚*𝑎20
exp

(︂
− 𝜋

|𝜆|

)︂
, (5.1)

where 𝑎0 is the ultraviolet cutoff (“radius of the delta-function”) The wave-function of the

ground state

𝜓0(𝑟) ∼ exp(−𝑟/𝑎(2𝑑)), 𝑎(2𝑑) = (2𝑚*|𝐸(2𝑑)
bound|)

−1/2, (5.2)

being the radius of the ground state wave function.

A scattering of a particle with positive energy 𝐸 ≪ ~2
𝑚*𝑎20

is isotropic. For 𝑟 ≫ 𝑎0 one

can write the “scattering wave-function” in the form [24]

𝜓p(𝑟) = exp{𝑖(p · r)} − 𝑖𝜆𝐻
(1)
0 (𝑝𝑟), 𝐸 = 𝑝2/2𝑚*, (5.3)

where 𝐻(1)
0 (𝑥) is the Hankel function. Moreover, for 𝑝𝑟 ≫ 1 one can use the asymptotics of

the Hankel function:

𝜓p(𝑟) ≈ exp{𝑖(p · r)} − 𝜆

√︂
2

−𝑖𝜋𝑝𝑟
exp(𝑖𝑝𝑟), (5.4)
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The above results should be modified if one wants to go beyond the Born approximation. If

the condition 𝐸 ≪ ~2
𝑚*𝑎20

(or 𝑘𝑎0 ≪ 1) is fulfilled then the scattering remains isotropic even

beyond the Born approximation; it means that the scattering amplitude is still characterised

by a single dimensionless constant: small real 𝜆 in the result (5.4) should be replaced by not

necessarily small complex Λ – the nonperturbative dimensionless scattering amplitude. The

latter should obey the optical theorem:

ImΛ = −|Λ|2, (5.5)

hence the scattering amplitude can be parametrised by a single real constant 𝜆

Λ = 𝜆𝑒−𝑖 arcsin𝜆 ≡ 𝜆
(︁√

1− 𝜆2 − 𝑖𝜆
)︁
. (5.6)

In particular, for weak interaction (|𝜆| ≪ 1)

Λ ≈ 𝜆− 𝑖𝜆2. (5.7)

Note that parameter 𝜆 in (5.6) is related to the potential amplitude 𝑉 by formula (4.6)

only for |𝜆| ≪ 1. In general case it is not true and 𝜆 is just a convenient parameter for

expressing the phenomenological scattering amplitude.

5.2 Non-Born effects in a tube

5.2.1 A single impurity problem on a tube: semiclassical treatment of non Born

effects

Let us place a single weakly attracting impurity on the surface of the cylinder. Clearly, there

are two distinct cases with respect to the bound state of an electron:

(i) Wide cylinder or strong scattering: 𝑅 ≫ 𝑎(2𝑑). In this case the bound state will not

differ much from the purely two-dimensional case and the formula (5.1) applies.

(ii) Narrow cylinder or weak scattering: 𝑅 ≪ 𝑎(2𝑑). This is an effectively one-dimensional

case, the bound state can also be studied easily.

In this paper we will be interested, however, not in the ground state but in the scattering

matrix for an electron with an essentially positive energy 𝐸 > 0 in the range

𝐸0, 𝐸bound ≪ 𝐸 ≪ ~2

𝑚*𝑎20
. (5.8)
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Under this condition the scattering process can be conveniently described in semiclassical

terms. To find the scattering amplitude beyond the Born approximation one has to solve

the Dyson equation

𝐺(r1, r2) = 𝐺0(r1, r2) +𝐺0(r1, r0)𝑉 𝐺(r0, r2) (5.9)

for the retarded Green function defined as

𝐺 =
{︁
𝐸 − 𝐻̂ + 𝑖0

}︁−1

𝐺0 =
{︁
𝐸 − 𝐻̂0 + 𝑖0

}︁−1

(5.10)

where r0 is the position of the impurity. In particular, putting r1 = r2 = r0 we arrive at the

equation

𝑔 = 𝑔0 + 𝑔0𝑉 𝑔, 𝑔 ≡ 𝐺(r0, r0) =
𝑔0

1− 𝑉 𝑔0
(5.11)

where

𝑔0 ≡ 𝐺0(r0, r0) (5.12)

One can also write

𝐺(r1, r2) = 𝐺0(r1, r2) +𝐺0(r1, r0)𝑉ren𝐺0(r0, r2) (5.13)

with the renormalized scattering amplitude

𝑉ren =
𝑉

1− 𝑉 𝑔0
(5.14)

First of all we have to find the single-site 𝑔0 ≡ 𝐺𝐸(0, 0). For our nontrivial topology one can

write in the semiclassical approximation

𝑔0 =
∞∑︁

𝑛=−∞

𝑒𝜋𝑖𝑛Φ/Φ0𝒢𝐸(2𝜋𝑛𝑅), (5.15)

𝒢𝐸(r) being the retarded Green function in an infinite two-dimensional metal. For 𝑛 ̸= 0
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one can use the semiclassical approximation:

𝒢𝐸(r) ≈
√︂

2

𝜋𝑝𝑟
𝑒𝑖(𝑝𝑟+𝜋/4). (5.16)

For the 𝑛 = 0 term we have

𝒢𝐸(0) = −𝑖𝑚
*

2
+ 𝐶 (5.17)

where 𝐶 is a formally infinite real constant. This divergency is well known – it means that the

perturbation theory does not work well in spatial dimensions 𝑑 ≥ 2 when applied to point-

like impurities. This phenomenon is not specific for the cylinder geometry – it is present in

an infinite two-dimensional metal as well. Special methods to deal with this divergence were

developed already long ago. It was shown that in the case of isotropic scattering, accurate

calculations lead to the substitution of the bare coupling constant 𝜆 by the exact complex

amplitude Λ of scattering by the same impurity in the infinite two-dimensional metal. Thus,

for the fully renormalized scattering amplitude Λ(ren) in the case of cylinder we get

Λ(ren)(𝜀) =
Λ

1 + Λ𝑔(𝜀)/𝜋𝜈0
, (5.18)

where 𝑔(𝜀) ≡ 𝑔0 is given by the formulas (5.15), (5.52), (5.17) where the infinite constant

𝐶 is discarded. As a result, we arrive at the expression (3.8). Consequently, the scattering

rate is also renormalized:

1

𝜏(𝜀)
=

2𝑛

𝜋2

⃒⃒⃒⃒
Λ

1 + Λ𝑔(𝜀)/𝜋𝜈0

⃒⃒⃒⃒2
𝜈(𝜀)

𝜈0
. (5.19)

For small 𝜆 the discussed renormalization is only essential in the vicinity of some Van Hove

singularity so that we can use asymptotics 𝑔(𝜀)/𝜋𝜈0 ≈ 𝜋−1(−𝜀)−1/2 and for small 𝜆≪ 1 one

can write

Λ(ren)(𝜀) ≈ 𝜆− 𝑖𝜆2

1 + (𝜆− 𝑖𝜆2)(−𝜀)−1/2/𝜋
. (5.20)

The importance of the renormalization of the scattering matrix in the systems with the

singularity in the density of states (e.g., superconductors) that can even lead to formation of

bound states was discovered and explored in details already in 60-ies (see [25, 26, 27, 28, 29]).
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It is clear that the non-Born effects first come into play for 𝜀 . 𝜀nB, where

𝜀nB = (𝜆/𝜋)2, (5.21)

so that it is sometimes convenient to use the “normalized” energy:

𝜖 ≡ 𝜀/𝜀nB. (5.22)

Note that for 𝜀 ≪ 𝜀nB the scattering amplitude formally vanishes: Λ(ren) ≈ 𝜋(−𝜀)1/2.

It means, in particular, that exactly at the van Hove singularity a quasi-one-dimensional

system tends to become an ideal conductor with zero resistivity. In the following section

we will demonstrate that for finite concentration of impurities the resistivity remains finite,

though very small: it is proportional not to 𝑛, but to 𝑛3.

5.2.2 Single-impurity Non-Born effects in resistivity

Physically the effect of renormalization is manifested in the scattering time 𝜏(𝜀) in which 𝜆

should be replaced by Λ(ren)(𝜀). Similar to the Born case, for

𝜏−1(𝜀) ≪ 𝜀 (5.23)

the scattering is effectively weak (though non-Born!) so that only the single impurity effects

should be taken into account and one can use the standard Drude formula with properly

renormalized scattering time. In this Section we concentrate on this “weak non-Born scat-

tering” regime. We will consider the cases of repulsing and attracting impurities separately.

Certainly, there were some theoretical approaches to the non-Born effects in quasi-one-

dimensional systems in the past. S. Hügle and R. Egger [8] studied the smearing of Van

Hove singularities within the self-consistent Born approximation. In contrast with our work,

instead of the quadratic spectrum of electrons they considered more realistic linear spectrum,

characteristic of carbon nanotubes. This difference, however, is not essential, as far as one

is interested only in the shape of the Van Hove singularities: it may actually be reduced

to redefinition of some constants. What is much more important, instead of considering

individual impurities, the Authors of [8] introduced the disorder in the form of gaussian

white noise. Such an approach does not allow to find the single-impurity non-Born effects

which, as we have seen, are crucial at low concentrations 𝑛2 ≪ 𝑛
(𝑐)
2 . So, their results are

applicable to impurities only at high concentration 𝑛2 ≫ 𝑛
(𝑐)
2 .
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5.2.3 Repulsing impurities

For weak repulsive impurities (𝜆 > 0, |𝜆| ≪ 1) the imaginary part of Λ can be neglected and

we get

𝜌(𝜀)

𝜌0
=
𝜏0
𝜏

=
|Λ(ren)|2

𝜆2

(︂
1 +

1

𝜋
√
𝜀
𝜃(𝜀)

)︂
=

=

⎧⎪⎪⎨⎪⎪⎩
1

𝜆

1

𝜖1/2 + 𝜖−1/2
, for 𝜖 > 0,

1

(1 + |𝜖|−1/2)2
, for 𝜖 < 0,

(5.24)

This dependence is plotted in Fig. 2:

So, for 𝜀 > 0 both the scattering rate and the resistivity have smooth maxima at 𝜀 = 𝜀nB)

with the value at maximum

1

𝜏
(+)
min

=
1

2𝜆𝜏0
=
𝑛𝜆

𝜋2
, (5.25)

or, in dimensional variables

1

𝜏
(+)
min

=
2𝑛2

𝑚* 𝜆,
𝜌
(+)
max

𝜌0
=

1

𝜆
≫ 1. (5.26)

For 𝜀 < 0 the scattering rate grows monotonically with growing |𝜀| and saturates at 𝜏−1 = 𝜏−1
0

for |𝜀| ≫ 𝜀nB .

The non-Born effects somewhat suppress the resistivity, compared to the Born results.

For repulsing impurities this is true for all 𝜀 but the strongest effect is expected for |𝜀| . 𝜀nB.

5.2.4 Attracting impurities

For attracting impurities the renormalized scattering amplitude has a pole in the complex

plane of 𝜀 at

𝜀 = 𝜀nB(−1 + 2𝑖𝜆), (5.27)

close to the real axis. This fact indicates the existence of a quasistationary state. We have

to take into account the imaginary part of Λ that keeps trace of the decay of this state:

otherwise the pole would move to the real axis and there will be a nonphysical divergence

of amplitude. However, this is only necessary in the narrow vicinity of the resonance at
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|𝜀| = 𝜀nB. So we can write

𝜌(𝜀)

𝜌0
=
𝜏0
𝜏

=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

|𝜆|
1

𝜖1/2 + 𝜖−1/2
, for 𝜖 > 0,

1

(1− |𝜖|−1/2)2
, for 𝜖 < 0, |1− |𝜖|| ≫ |𝜆|,

4

(1− |𝜖|)2 + 4𝜆2
, for 𝜖 < 0, |1− |𝜖|| . |𝜆|,

(5.28)

This result is plotted Fig. 3.

Thus, for 𝜀 > 0 (and also for 𝜀 < 0 but |𝜀| ≪ 𝜀nB) the behaviour of the renormalized

scattering rate for attracting impurities is identical to that of repulsing ones. Their be-

haviours are very different, however, for 𝜀 < 0 (and not small |𝜀| compared to 𝜀nB). While

for repulsive impurities both the rate 𝜏−1 and the resistivity 𝜌 smoothly and monotonically

increase with |𝜀|, for attracting impurities they first grow, reach sharp maxima at 𝜀 = −𝜀nB
and only then decrease, saturating at 𝜏−1 = 𝜏−1

0 and 𝜌 = 𝜌0 for |𝜀| ≫ 𝜀nB. The maximum

has a Lorenzian shape:

𝜌(𝜀) = 𝜌(−)
max

𝜋Γhom

2
𝐿(𝜀+ 𝜀nB, Γhom), (5.29)

𝐿(𝑥, 𝛾) ≡ 𝛾/2

𝜋 (𝑥2 + (𝛾/2)2)
. (5.30)

The width of maximum (homogeneous broadening)

Γhom ∼ 4|𝜆|𝜀nB =
4|𝜆|3

𝜋2
≪ 𝜀nB, (5.31)

is relatively small. This decay is due to small (but finite) probability of scattering to the

bands other than the 𝑁 -band. The height of the maximum is universal – it does not depend

on the strength of impurities 𝜆. In dimensional variables:

𝜌(−)
max =

4𝑛2

𝑒2𝑚*𝑅𝐸
. (5.32)

The scattering rate at maximum is even more universal:

1

𝜏
(−)
min

=
1

𝜆2𝜏0
=

2𝑛

𝜋2
=

4𝑛2

𝑚* , (5.33)

it depends neither on 𝜆, nor on 𝑅 or 𝐸.
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5.2.5 Multi-impurity effects. The central dip in resistivity

In the previous section we have implicitly assumed the concentration of impurities 𝑛 to be so

low that scattering amplitude at certain impurity could not be affected by the presence of all

the others: 𝜏−1(𝜀) ≪ 𝜀. Let us first derive the condition that would justify this assumption.

We have found that the non-Born effects are negligible for 𝜀 & 𝜀nB. On the other hand, if one

totally neglects the non-Born effects, then, as it follows from (4.22), the scattering effects

lead to the saturation of both the density of states and the conductivity for 𝜀 . 𝜀min. These

two facts taken together mean that for 𝜀nB ≪ 𝜀min the non-Born effects do not have chance

to show up at all. On the contrary, for 𝜀min ≪ 𝜀nB the scattering only comes into play at

𝜀≪ 𝜀nB where the non-Born effects are already huge. Thus, looking at the expressions (4.36)

for 𝜀min and (5.21) for 𝜀nB we conclude that the non-Born effects are relevant for 𝑛 < 𝑛𝑐,

where

𝑛𝑐 ∼ |𝜆|, (5.34)

while for 𝑛 > 𝑛𝑐 the Born approximation is justified for all 𝜀 and the results of section 4 are

applicable.

In this Section we are going to study the effect of scattering at low concentration 𝑛≪ 𝑛𝑐

but also at very low |𝜀| at the same time. We will show that the presence of other impurities

ultimately becomes essential in the narrow vicinity of the Van Hove singularity – at certain

energy scale 𝜀(nB)
min ≪ 𝜀nB.

In the case of developed non-Born regime, for 𝜀≪ 𝜀nB we have Λ𝑔 ≫ 1, so that

⃒⃒
Λ(ren)(𝜀)

⃒⃒2 ≈ 𝜋2|𝜀|. (5.35)

We see that the rate 1/𝜏 ceases to depend on 𝜆 and becomes universal: independent on the

characteristics of impurities:

𝜏−1(𝜀) = 2|𝜀|𝑛
(︂
1 +

1

𝜋
√
𝜀
𝜃(𝜀)

)︂
. (5.36)

It should be stressed that the scattering rate decreases as the Fermi level approaches the

Van Hove singularity from either side and formally vanishes at 𝜀 = 0. Taken seriously, it

would mean that exactly at singularity the system has zero residual resistivity. Of course,

we expect that taking scattering in account will remove this paradox.
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To demonstrate this, we have to incorporate the scattering in the result (5.36). Again,

as in Section 4.4.2 we notice that the above calculations only make sense for 𝜏−1(𝜀) ≪ 𝜀, so

that the dip in the resistivity predicted by (5.36) will be rounded at certain 𝜀 ∼ 𝜀
(nB)
min , where

𝜀
(nB)
min , however, is not given by (4.36) any more because the expression for the scattering time

(5.36) differs from (4.7): it has been changed by the non-Born effects. So, the self-consistency

condition 𝜏−1(𝜀) ∼ 𝜀 for 𝜀(nB)
min reads

𝜏−1
(︁
𝜀 = +𝜀

(nB)
min

)︁
=

2𝑛

𝜋

√︁
𝜀
(nB)
min ∼ 𝜀

(nB)
min , (5.37)

from where immediately follows

𝜀
(nB)
min = (𝑛/𝜋)2 . (5.38)

Comparing (5.38) to (5.21) we see that, indeed, the scattering effects bring the renormaliza-

tion of the amplitude Λ(ren)(𝜀) to stop at some small, but nonzero value.

The results (5.35) and (5.38) were obtained under the assumption 𝜀 > 0 so we need yet

to discuss the scattering effects for 𝜀 < 0. Here we get

𝜏−1(𝜀) = 2𝑛|𝜀| ≪ |𝜀|, (5.39)

which formally means that for negative 𝜀 the scattering does not affect the result (5.36) for

all values of |𝜀|, down to 𝜀 = 0! This is, of course, not quite true because, due to scattering

effects, the discontinuity in the density of states at 𝜀 = 0 should be smoothed and 1/𝜏(𝜀)

should remain of the order 1/𝜏max also for 𝜀 < 0 in the range |𝜀| . 𝜀
(nB)
min .

Thus, in the strongly non-Born domain 𝑛≪ 𝑛(nB) we encounter the similar paradox as in

the Born case at 𝑛 ≫ 𝑛(nB). Namely, the above consideration gives nonmatching estimates

on the opposite sides of the interval |𝜀| . 𝜀
(nB)
min :

𝜏−1 ∼

⎧⎨⎩𝑛2, for 𝜀 > 0, 𝜀 ∼ 𝑛2,

𝑛3, for 𝜀 < 0, |𝜀| ∼ 𝑛2.
(5.40)

The resolution of this paradox is also similar to that in the Born case: there is a quasifold

at certain 𝜀 = 𝜀
(nB)
bi ≡ 𝑞bi𝜀

(nB)
min , (with 𝑞bi < 0, |𝑞bi| ∼ 1) where the scattering rate undergoes

49



a dramatic drop, so that

𝜏−1(𝜀) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑛|𝜀|, for 𝜀 < 𝜀

(nB)
bi ,

𝑛2, for 𝜀 > 𝜀
(nB)
bi , 𝜀 . 𝜀

(nB)
min ,

2𝑛
√
𝜀/𝜋, for 𝜀≫ 𝜀

(nB)
min ,

(5.41)

and the weakest scattering is realized at some 𝜀 = 𝜀
(nB)
dip below 𝜀

(nB)
bi :

1

𝜏max

≈ 1

𝜏(𝜀 = 𝜀
(nB)
dip )

∼ 𝑛𝜀
(nB)
min ∼ 𝑛3, (5.42)

or, in dimensional variables

1

𝜏max

∼ (2𝜋𝑅)4[𝑛2]
3

𝑚* . (5.43)

This result is supported by the calculations within the “self-consistent non-Born approx-

imation”, given in Appendix B. Thus, we conclude that the minimal value of the scattering

rate and, consequently, the minimal value of resistivity is attained a little bit to the left from

the initial (nonrenormalized) position of the Van Hove singularity, at 𝜀 = 𝜀
(nB)
dip ∼ −𝑛2 and

𝜌min =
1

𝑒2𝑅𝐸

1

𝜏max

∼ (2𝜋𝑅)4[𝑛2]
3

𝑒2𝑚*𝑅𝐸
(5.44)

This minimal value depends neither on sign, nor on magnitude of 𝜆 and is much less than

the standard resistivity:

𝜌min

𝜌0
∼ 𝑛2

𝜆2
=

(︂
𝑛

𝑛𝑐

)︂2

≪ 1. (5.45)

The dependence 𝜌(𝜀) near the minimum is shown in Fig 10.

5.3 Non-Born effects in a strip

5.3.1 General results

From the results of our study of the scattering of electrons in a tube we know that non-

Born effect strongly modify the above picture for the energies, sufficiently close to the Van

Hove singularities. We expect quite similar phenomena also for the case of a strip. We

will see, however, that in the case of a strip there is important specifics, absent for a tube.
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Figure 10. The energy-dependence of resistivity near the minimum. Dashed line – for 𝑛→ 0,
solid line – for finite 𝑛.

Namely, the renormalization of the scattering amplitude depends on the spatial position of

the impurity with respect to the edges of the strip. It introduces nonequivalence of different

impurities and, therefore, new nontrivial (and quite unexpected!) physics.

Solving the standard Dyson equation

𝐺(r1, r2) = 𝐺0(r1, r2) +𝐺0(r1, r𝑖)𝑉 𝐺(r𝑖, r2) (5.46)

where ri is the position of the impurity and 𝐺0 is the free Green function. Then we arrive

at the following expression for the renormalized scattering amplitude:

𝑉ren =
𝑉

1− 𝑉 𝐺0(r𝑖, r𝑖)
(5.47)

With the help of expressions (3.13) and (3.14), we can easily write

𝐺
(𝑅)
𝐸 (r𝑖, r𝑖) = −

∞∑︁
𝑚=1

2𝜋 sin2(𝜋(𝑚+ 1)𝜉)√
−𝜀𝑚

. (5.48)

The imaginary part of (5.48) is finite, it is related to the density of states

𝜈(𝜀) = − 1

𝜋
Im

∫︁
𝐺

(𝑅)
𝐸 (r, r)𝑑r. (5.49)
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The problem is that, due to contribution of terms with large 𝑚, the real part of (5.48)

diverges. To understand the reason for this ultraviolet divergency and to find a proper way

of its regularization, it is instructive to rewrite 𝐺(r𝑖, r𝑖) in a form

𝐺(𝑟𝑖, 𝑟𝑖) = 𝒢(0) + 𝑔(𝜀, 𝜉𝑖), (5.50)

𝑔(𝜀, 𝜉𝑖) = −𝒢(2𝜉𝑖)+

+
∞∑︁
𝑛=1

{2𝒢(2𝑛)− 𝒢(2𝑛+ 2𝜉𝑖)− 𝒢(2𝑛− 2𝜉𝑖)} , (5.51)

where 𝒢 is the free Green-functions on an infinite plane. This result can be obtained by

the method of images. In the quasiclassical limit 𝑁 ≫ 1 all the terms entering 𝑔(𝜀, 𝜉𝑖) are

quasiclassical and can be written in the form

𝒢(r) ≈ −𝑚
*

2

√︃
2𝑖

𝜋𝑝𝐹 𝑟
𝑒𝑖𝑝𝐹 𝑟, 𝑝𝐹 = 2𝜋

√
𝜀0 ≫ 1. (5.52)

In particular, near the Van Hove singularity, where 𝜀0 = (𝑁/2)2 + 𝜀 with 𝜀≪ 1,

𝑝𝐹 ≈ 𝜋

(︂
𝑁 +

2𝜀

𝑁

)︂
, (5.53)

𝒢(r) ≈ −𝜋
√︂

2𝑖

𝑁𝑟
exp

{︂
𝜋𝑖𝑟

(︂
𝑁 +

2𝜀

𝑁

)︂}︂
(5.54)

Using the language of the Feynman path integrals, one can interpret each term in (5.51) as

a contribution of a bunch of paths close to certain classical trajectory that starts and ends

at the same point r𝑖. We are interested in the results valid in the vicinity of the Van Hove

singularity, therefore |𝜀| ≪ 1 and we expect that the sum in (5.51) is dominated by large 𝑛,

so that the summation can be replaced by integration. As a result:

𝑔(𝜀, 𝜉𝑖) ≈ −4𝜋 sin2(𝜋𝑁𝜉𝑖)

√︂
𝑖

𝑁

∫︁ ∞

0

𝑑𝑛√
𝑛
exp

{︂
4𝜋𝑖𝜀𝑛

𝑁

}︂
=

= −2𝜋 sin2(𝜋𝑁𝜉𝑖)√
−𝜀

(5.55)

Thus, we conclude, that (at least near the Van Hove singularity) the quasiclassical part of

𝐺0(r𝑖, r𝑖) corresponds to the resonant term in the sum (5.48), while the divergent contribution

of terms with 𝑚→ ∞ should be associated with the 𝒢(0) term in (5.50).
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The latter term is by no means quasiclassical: it is a contribution of short purely quantum

loops (their length being ∼ 𝑝−1
𝐹 ≪ 𝐷), that typically have no chance to reach any boundary of

the strip. Formally this contribution diverges for the case of infinitely-short-range potential

of impurity, so that to accurately evaluate this contribution one has to introduce short but

finite range 𝑟0 ≪ 𝑝−1
𝐹 of potential and then tend it to zero only at the end of calculations. An

explicit treating of this problem can be avoided if one notes that taking into account only the

first term in (5.51), when solving the Dyson equation (5.46) gives just the renormalization

effect in the infinite 2D plane. Therefore, from the phenomenological point of view we can

simply discard this term in the sum (5.50) and simultaneously replace everywhere the Born

scattering amplitude 𝜆 by the exact complex scattering amplitude Λ for a lonely impurity

on an infinite 2D plane. It should satisfy the unitarity condition ImΛ = − |Λ|2 so that for

our case (weak scattering |𝜆| ≪ 1) one can write

Λ ≈ 𝜆− 𝑖𝜆2, 𝜆 = 𝑚*𝑉/2, (5.56)

Although for |𝜆| ≪ 1 the exact scattering amplitude Λ only slightly differs from the Born

one 𝜆, we will see that the difference is essential in some cases.

Now we are prepared to write down the scattering operator 𝑉ren. Combining the effects,

coming from the 𝒢(0)-term (i.e., 𝜆 → Λ) and those, coming from the 𝑔-term (i.e., the

quasiclassical corrections due to presence of the strips boundary) we arrive at

𝑉
(ren)
𝑖 =

𝑉

1 + Λ𝑖/𝜋
√
−𝜀

, Λ𝑖 = 2Λ sin2(𝜋𝑁𝜉𝑖). (5.57)

5.3.2 Non-Born scattering rates

With the help of (5.57) we can easily find matrix elements of operator 𝑉ren, the scattering

rates 𝜏−1
𝑚 and the resistivity:

𝑉
(ren)
𝑘𝑘′𝑚𝑚′(𝜉𝑖, 𝑧𝑖) ≈

2𝑉

𝐷
{︀
1 + 2Λ sin2(𝜋𝑁𝜉𝑖)/𝜋

√
−𝜀
}︀ exp{𝑖(𝑘 − 𝑘′)𝑧𝑖} sin(𝜋(𝑚+ 1)𝜉𝑖) sin(𝜋(𝑚

′ + 1)𝜉𝑖),

(5.58)

𝜏0
𝜏𝑚(𝜀)

=
∑︁
𝑚′

∫︁ 1

0

𝑑𝜉
[1− cos(2𝜋(𝑚+ 1)𝜉)][1− cos(2𝜋(𝑚′ + 1)𝜉)]

|1 + 2Λ sin2(𝜋𝑁𝜉)/𝜋
√
−𝜀|2

𝜃(𝜀𝑚′)

𝜋
√
𝜀𝑚′

≈

≈
∫︁ 1

0

𝑑𝜉
1− cos(2𝜋(𝑚+ 1)𝜉)

|1 + 2Λ sin2(𝜋𝑁𝜉)/𝜋
√
−𝜀|2

(︂
1 + 2 sin2(𝜋𝑁𝜉)

𝜃(𝜀)

𝜋
√
𝜀

)︂
(5.59)
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Compared to the Born results (4.9),(4.12) we have in (5.58) an additional renormalization

factor in the denominator depending on the distance 𝜉𝑖 between impurity and the edge of

the strip. The integration over 𝜉 in (5.59) represents the averaging over the positions of

impurities.

The expression for the resistivity involves summation over all the current carrying (non-

resonant) states 𝑚. This summation suppresses the rapidly oscillating term, proportional

to cos(2𝜋(𝑚 + 1)𝜉), and therefore all the nonresonant are characterized by the same decay

rate: 𝜏𝑚 ≡ 𝜏nonres(𝜀) for 𝑚 ̸= 𝑁 , where

𝜏0
𝜏nonres(𝜀)

≈
∫︁ 1

0

𝑑𝜉
1 + 2 sin2(𝜋𝑁𝜉) 𝜃(𝜀)

𝜋
√
𝜀⃒⃒

1 + 2Λ sin2(𝜋𝑁𝜉)/𝜋
√
−𝜀
⃒⃒2 , (5.60)

The decay rate for the resonant state 𝜏𝑁 = 𝜏res, where

𝜏0
𝜏res(𝜀)

≈
∫︁ 1

0

𝑑𝜉

(︁
1 + 2 sin2(𝜋𝑁𝜉) 𝜃(𝜀)

𝜋
√
𝜀

)︁
2 sin2(𝜋𝑁𝜉)⃒⃒

1 + 2Λ sin2(𝜋𝑁𝜉)/𝜋
√
−𝜀
⃒⃒2 , (5.61)

The obtained results imply that 𝑝𝐹 𝑟0 ≪ 1 (i.e., the Fermi wave-length 𝜆𝐹 ≡ 𝑝−1
𝐹 is much

larger that the radius of potential 𝑟0). It is quite possible for isoelectronic impurities in

semiconductors with low concentration of charge carriers.

It is convenient to introduce the characteristic energy scale for non-Born effects:

𝜀nB = (𝜆/𝜋)2, 𝜖 = 𝜀/𝜀nB (5.62)

Then, using, instead of 𝜉, a new variable 𝑡 = sin2(𝜋𝑁𝜉), we arrive at the following results

for the resistivity

𝜌(𝜀)

𝜌0
=

𝜏0
𝜏nonres(𝜀)

=
𝜈(𝜀)

𝜈0

⎧⎨⎩𝐹 (𝜖), 𝜀 > 0,

𝐹 (𝜖), 𝜀 < 0,
(5.63)

where

𝐹 (𝜖, 𝜆) =
2

𝜋

∫︁ 1

0

𝑡1/2(1− 𝑡)−1/2𝑑𝑡

|1 + 2𝑡 sign(𝜆)(1 + 𝑖|𝜆|)/
√
−𝜖|2

, (5.64)

𝐹 (𝜖, 𝜆) =
1

𝜋

∫︁ 1

0

𝑡−1/2(1− 𝑡)−1/2𝑑𝑡

|1 + 2𝑡 sign(𝜆)(1 + 𝑖|𝜆|)/
√
−𝜖|2

, (5.65)

The functions 𝐹 (𝜖) and 𝐹 (𝜖, 𝜆) are evaluated in Appendices C and D. It is convenient to
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continue the discussion of the resistivity separately for the cases of repulsing (𝜆 > 0) and

attracting (𝜆 < 0) impurities.

5.3.3 Non-Born resistivity: repulsing impurities

For repulsing impurities (𝜆 > 0) using Eq(5.63) and the results (C.1) for the function 𝐹 (𝜖)

we find that for 𝜖 > 0

𝜌(𝜖)

𝜌0
=

1

𝜆

(︃√︀
1 + 4/𝜖− 1

2(1 + 4/𝜖)

)︃1/2

≈

≈ 1

𝜆

⎧⎨⎩ 𝜖1/4/2, for 𝜖≪ 1,

1/
√
𝜖, for 𝜖≫ 1,

(5.66)

while for 𝜖 < 0, with the help of (D.1) we obtain

𝜌(𝜖)

𝜌0
=

=
|𝜖|1/4(1 + |𝜖|1/2)
(2 + |𝜖|1/2)3/2

≈

⎧⎪⎨⎪⎩
1

2
√
2
|𝜖|1/4, for |𝜖| ≪ 1,

1, for |𝜖| ≫ 1,

(5.67)

The maximum

𝜌
(+)
max

𝜌0
=

1

2
√
2𝜆

(5.68)

is reached at 𝜀 = 4
3
𝜀nB. Thus, the maximum of the resistivity in the case of strip is somewhat

broadened, compared to that in the case of cylinder.

5.3.4 Paradox: at |𝜀| ≪ 𝜀nB weak impurities scatter more effectively than strong

ones!

It is important to note a different (compared to the case of cylinder) law 𝜌 ∝ |𝜖|1/4 (5.66),

(5.67) of vanishing 𝜌(𝜖) at 𝜖 → 0. For the cylinder the analogous law isTo elucidate the

reason for this difference let’s analyze the integral over 𝜉 in (5.64) and (5.65). While for

|𝜖| & 1 the entire interval 0 < 𝜉 < 1 (or 𝑡 ∼ 1) contributes to this integral, for |𝜖| ≪ 1 the

main contribution comes from small 𝑡 = sin2(𝜋𝑁𝜉) ∼
√︀
|𝜖| ≪ 1. It means that scattering at

“weak” impurities, situated close to nodes of the transversal wave-function of the resonant

band, turn out to be more effective in scattering, than the strong ones, sitting close to
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antinodes. How it can possibly be?

The reason is that the strong “non-Born self-screening” of the scattering amplitudes

Λ
(ren)
𝑖 (𝜀), occurring at 𝜀 ≪ 𝜀nB, is nonlinear: it is stronger for the impurities 𝑖 with larger

bare amplitudes Λ𝑖. As a result, scattering by the impurities with large bare Λ𝑖 ≫
√︀

|𝜖|

turns out to be suppressed stronger than scattering by those with some moderately small

optimal Λ𝑖 ∼
√︀

|𝜖|.

Λ𝑖 ∼ Λopt(𝜖) =
√︀
|𝜖| ≪ 1. (5.69)

Thus, we arrive at paradoxical and exciting conclusion: though for small |𝜖| ≪ 1 the

scattering is generally suppressed, the residual weak scattering is dominated by presumably

ineffective impurities, that sit relatively close to the nodes (at distances 𝜉 ∼ 𝜆𝐹 |𝜖|1/4 ≪ 𝜆𝐹 )

and have, therefore, anomalously small bare scattering amplitudes. As one of the conse-

quences, the resistivity of a strip vanish with |𝜖| → 0 slower than the resistivity of a cylinder.

5.3.5 Non-Born resistivity for a strip: attracting impurities

Above the Van Hove singularity, for 𝜀 > 0 the scattering rate depends only on 𝜆2, so that

the case of attracting impurities does not differ from that of the repulsing ones and the

resistivity for 𝜀 > 0 is described by the formula (5.66). Below the Van Hove singularity, for

𝜀 > 0, however, there are some impressive effects, specific for the attractive impurities. They

are mostly due to the presence of quasistationary states.

5.3.6 Quasistationary states

As we have shown in [34] in a quasi-one-dimensional system each attracting impurity forms

a quasistationary state below each subband of transverse quantization. These states arise

for arbitrary weak attraction, without a threshold. Moreover, for weak attraction the qua-

sistationary states are even better defined, than for strong one: the quality factor (i.e., the

ratio of the energy to the decay rate) increases with decreasing strength of attraction. The

quasistationary states are manifested as poles of the renormalized scattering amplitude

Λ(ren)(𝜀) =
Λ

1 + Λ[2 sin2(𝜋𝑁𝜉)]/𝜋
√
−𝜀

, (5.70)

in the complex 𝜀 plane.

In contrast to the case of cylinder, in a strip to each impurity 𝑖 corresponds its own value
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of the scattering amplitude Λ𝑖 ≈ (𝜆−𝑖𝜆2)2 sin2(𝜋𝑁𝜉𝑖), so that energies of the quasistationary

states are different at different impurities:

𝜖qs(𝜉𝑖) = 4 sin4(𝜋𝑁𝜉𝑖)(−1 + 2𝑖𝜆), 𝜖qs = 𝜀qs/𝜀nB. (5.71)

Let’s forget for a while about small imaginary part of 𝜖qs; we will easily restore it in a due

time. We see that values of 𝜖qs are confined in an interval −4 < 𝜖qs < 0. Since 𝜉𝑖 is a random

variable homogeneously distributed between 0 and 1, the distribution function for 𝜀qs is

𝑃 (𝜀qs) =

∫︁ 1

0

𝑑𝜉𝛿
[︀
𝜖qs + 4 sin4(𝜋𝑁𝜉)

]︀
=

=
1

𝜋
√︀

|𝜖qs|(4− |𝜖qs|)
. (5.72)

Thus, for 𝜖 < −4 the scattering is only possible to usual states of continuous spectrum, while

for −4 < 𝜖 < 0, in principle, both continuum and the quasistationary states may serve as

final states of scattering processes. In fact, we will see that quasistationary states dominate

everywhere in this range, except narrow interval at the boundary 𝜖 = −4, with a width being

of order Im 𝜖qs ∼ |𝜆| – the decay rate of the quasistationary states.

5.3.7 Nonresonant scattering

Since there are no quasistationary states in the energy range 𝜖 < −4, here we can simply

put 𝜆 = 0 in (5.65). The corresponding integral is evaluated in (D.5) and we get

𝜌(𝜖)

𝜌0
= 𝐹 (𝜖, 0) =

|𝜖|1/4
(︁√︀

|𝜖| − 1
)︁

(︁√︀
|𝜖| − 2

)︁3/2 ≈

⎧⎨⎩ 8
√
2 (|𝜖| − 4)−3/2 , for |𝜖| − 4 ≪ 1

1, for |𝜖| ≫ 1
(5.73)

5.3.8 Resonant scattering

For any given energy in the range −4 < 𝜖 < 0 the leading contribution to the resistivity

comes from the scattering on resonant impurities with such 𝜉𝑖 that 𝜖qs(𝜉𝑖) ≈ 𝜖. In contrast

with the previous case, to avoid divergency, here we have to take into account the imaginary

part of 𝜖qs(𝜉𝑖). The corresponding calculations are presented in Appendix D, resulting in

(D.4).

𝜌(𝜖)

𝜌0
= 𝐹 (𝜖, 𝜆) =

1

|𝜆|

(︃ √︀
|𝜖|

2−
√︀

|𝜖|

)︃1/2

≈ 1

|𝜆|

⎧⎨⎩ |𝜖|1/4, for |𝜖| ≪ 1,

2
√
2(4− |𝜖|)−1/2, for 4− |𝜖| ≪ 1.

(5.74)
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5.3.9 Van Hove-like feature in resistivity: resonant scattering on strongest im-

purities

Combining (5.73) and (5.74), we arrive at

𝜌(𝜖)

𝜌0
=

⎧⎪⎪⎨⎪⎪⎩
8
√
2 (|𝜖| − 4)−3/2 , for 4 + 𝜖→ −0,

2
√
2

|𝜆|
(4− |𝜖|)−1/2, for 4 + 𝜖→ +0.

(5.75)

Thus, at 𝜖 = −4 the resistivity has an asymmetric (formally divergent) peak, somewhat

similar to Van Hove singularity.

This entire feature is nothing else, but the inhomogeneously broadened (due to the dis-

persion of scattering amplitudes 𝜆𝑖 for different impurities) peak of the resonant scattering,

that in the case of cylinder (where all 𝜆𝑖 are identical) was manifested as a sharp line. The

square-root divergency in (5.75) reflects the fact that the values of 𝜖qs are confined in the

range −4 < 𝜖qs < 0, the lower boundary corresponding to “strongest” impurities – those,

sitting in the antinodes of the transversal wave-function of the resonant band. The density of

quasistationary states (5.72) indeed diverges at 𝜖 = 0 and at 𝜖 = −4. It is just the divergency

of 𝑃 (𝜖) at 𝜖 → −4, that is manifested as a Van Hove-like singularity in the resistivity 𝜌(𝜖).

Let us stress again, that scattering near the peak is dominated by strongest impurities.

The Van Hove-like singularity at |𝜖| → 4 is indeed smeared in the range ||𝜖| − 4| . |𝜆|,

where the contributions of both types of final states – the continuum and the quasista-

tionary states – are comparable. To elucidate this mixing one should accurately treat the

Eq(D.2) directly, without using an approximate formula (D.3). As a result of calculations

(see Appendix D), we obtain

𝜌(𝜖)

𝜌0
= 𝐹 (𝜖, 𝜆) =

1√
2

(︃√
𝑎2 + 1− 𝑎

|𝜆|3(𝑎2 + 1)

)︃1/2

≈

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8
√
2

(|𝜖| − 4)3/2
, for 8|𝜆| ≪ |𝜖| − 4 ≪ 1,

2
√
2

|𝜆|(4− |𝜖|)1/2
, for 8|𝜆| ≪ 4− |𝜖| ≪ 1,

(5.76)

where 𝑎 = (|𝜖| − 4)/8|𝜆|. Naturally, the asymptotics of (5.75) and (5.76) overlap at |𝜆| ≪

||𝜖| − 4| ≪ 1. The function 𝐹 reaches its maximum 𝐹max = 33/4

2
√
2|𝜆|3/2 at 𝑎 = −3−1/2, so that
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the maximal resistivity

𝜌
(−)
max

𝜌0
=

33/4

2
√
2|𝜆|3/2

(5.77)

is reached at 𝜖 = −4
(︁
1− 2|𝜆|√

3

)︁
. The width of this maximum Γ ∼ |𝜆| ≪ 1.

Thus, we conclude that the left peak of resistivity (that exists only for attracting impu-

rities) is higher, than the right one: its height is proportional to |𝜆|−3/2 instead of |𝜆|−1. On

the other hand, due to the inhomogeneous broadening, it is lower than it would be in the

case of cylinder: |𝜆|−3/2 instead of |𝜆|−2.

5.3.10 Low energy resonant scattering on weak impurities

The divergency of 𝑃 (𝜖) at 𝜖 → 0 does not lead to divergency of 𝜌(𝜖) at 𝜖 → 0: 𝜌(𝜖) still

goes to zero but for all energies is much larger than in the case of repulsing impurities. The

strong scattering at quasistationary states with low binding energies gives additional large

factor |𝜆|−1 in 𝜌(𝜖) dependence at 𝜖 < 0, |𝜖| ≪ 1:

𝜌(𝜖)

𝜌0
=

𝜏0
𝜏nonres(𝜖)

≈ |𝜖|1/4√
2

⎧⎨⎩ 1/|𝜆|, for 𝜆 < 0,

1/2, for 𝜆 > 0.
(5.78)

5.4 Inhomogeneous contribution to broadening of the resonant peak

In this section we discuss possible contribution of other impurities to the width of the 𝜌(𝜖)

peak under the Van Hove singularity. This peak is present for 𝜆 < 0 in both cases of tube

and strip. Generally speaking, in tube case the energy of a quasistationary state does not

depend on the position of impurity which is not the case for a strip. Thus, we start with the

simplier tube case and then move to the case of strip

One could expect that in the case of attracting impurities the scattering would lead also to

broadening of the narrow resonant peak at 𝜀 = −𝜀nB, so that Γ → Γhom + 𝜏−1. But this

idea is wrong since the corresponding electrons are localized at resonant states of certain

individual impurities and, at low concentration, have no chance to be scattered by some

other impurity. This statement is justified if 𝑛𝑎loc ≪ 1, where 𝑎loc = (2𝜀nB)
−1/2 = 𝜋|𝜆|−1 is

the radius of the localized state. So, 𝑛𝑎loc ∼ 𝑛/|𝜆| ∼ 𝑛/𝑛𝑐 and, under condition 𝑛≪ 𝑛𝑐, the

influence of other impurities typically is exponentially small. However, this influence may be

large in some rare non-typical configurations and we will estimate their contribution.

Due to a rare local fluctuation two impurities may occur at non-typically small distance
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𝑟 . 𝑎loc from each other, resulting in a considerable splitting Δ(𝑟) ∼ 𝜀nB of a pair of initially

degenerate localized states. It leads to inhomogeneous broadening

Γinhom ∼ (𝑛𝑎loc)𝜀nB ∼ 𝑛

𝑛𝑐

𝜀nB (5.79)

that prevails in the intermediate range of concentrations: |𝜆|2 ≪ 𝑛 ≪ |𝜆|, while for lowest

𝑛≪ |𝜆|2 the homogeneous broadening is stronger. We should stress that the inhomogeneous

broadening (5.79) exists already in the system where all impurities are identical (have the

same 𝜆). Naturally, the systems with dispersion of 𝜆 demonstrate much stronger inhomoge-

neous broadening. We will briefly discuss such systems in Section 6.

For the case of strip the criterion of ’single-impurity approximation’ at the energy near

resonance is the same: 𝑛𝑎loc ≪ 1. Here 𝑎loc ∼ |𝜀|−1/2 where 𝜀 is the energy of a quasis-

tationary state and is in the range −4𝜀nB < 𝜖 < 0. Thus, the criterion may be rewritten

as |𝜀| ≫ 𝑛2. Note that it coincides with the threshold of perturbation theory applicability

(5.38). However, the 𝜌(𝜖) peak is positioned at 𝜖 = −4 because of the inhomogeneous distri-

bution of quasistationary states energies (5.72). Therefore, inhomogeneous broadening for a

strip is identical to that for a tube.
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6 Systems with different sorts of impurities (tube)

In realistic physical systems the impurities are not necessarily identical. They may be of

different types and they may be situated not directly in the wall of the tube, but at some

distance from it. As a result the effective scattering amplitudes Λ𝑖 of different impurities

may be different and random, with some distribution function 𝑃 (𝜆) for real parameter 𝜆𝑖

(see (5.6)). The most important characteristic of this distribution is

𝜆 ≡
√︀

⟨𝜆2⟩ (6.1)

What may be the consequences of such disorder? In the Drude approximation the only

dependence of the resistivity 𝜌(𝜀) on Λ comes from the factor 𝜏−1(𝜀). Since the contributions

of different impurities to the resistivity are additive, one can write

⟨𝜌(𝜀)⟩ ∝
⟨

1

𝜏(𝜀, 𝜆)

⟩
𝜆

∝
∫︁ ⃒⃒⃒⃒

Λ

1 + Λ𝑔(𝜀)/𝜋𝜈0

⃒⃒⃒⃒2
𝑃 (𝜆)𝑑𝜆 (6.2)

For 𝑛 ≫ 𝜆 the expression (6.2) can be expanded in small Λ, the non-Born effects are small

and we return to the results of Section 4 where one should substitute 𝜆→ 𝜆.

For 𝑛 ≪ 𝜆 the scattering rate does not depend on 𝜆 in the range |𝜀| ≪ 𝜀nB ≡ (𝜆/𝜋)2,

therefore all the results of Section 5.2.5 also apply to the case of random 𝜆 in this range. The

case |𝜀| ∼ 𝜀nB is non-universal, here the result of averaging may depend on explicit shape

of the function 𝑃 (𝜆). In particular, the contribution of the inhomogeneously broadened

resonant peak can be evaluated with the help of expressions (5.31), (5.29). Assuming that

the Lorenzian peak in (5.29) is much sharper than the distribution 𝑃 (𝜆), we obtain

⟨𝜌(res)(𝜀)⟩ =
∫︁
𝑑𝜆𝑃 (𝜆)𝜌(−)

max𝜋Γhom(𝜆)𝛿(𝜀+ (𝜆/𝜋)2) =

= 𝜌(−)
max𝜋

3|𝜀|𝑃
(︁
−𝜋
√︀
|𝜀|
)︁
, for 𝜀 < 0. (6.3)
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7 Summary and discussion

In this work we have found the shape of the Van Hove singularity manifested in the resis-

tivity of 2 distinct quasi-one-dimensional systems: a clean metallic tube of radius 𝑅 and

a conducting strip with width 𝐷 with low concentration 𝑛2 of weak short-range impurities

(either repulsing or attracting). Below we measure all lengths in units of 2𝜋𝑅 or 𝐷 and all

energies in units of 𝐸(𝑠)
0 = }2

2𝑚𝑅2 or 𝐸(𝑡)
0 = 2𝜋2}2

𝑚𝐷2 respectively. We have shown that there is

certain crossover concentration

𝑛(𝑐) = |𝜆|/𝜋. (7.1)

For 𝑛 ≫ 𝑛(𝑐) the Van Hove singularities are smoothed peaks at |𝐸 − 𝐸𝑁 | ∼ ΓB with the

width

ΓB ∼
(︀
𝑛𝜆2
)︀2/3

. (7.2)

The smoothing happens due to interference of scattering events at different impurities, while

the amplitude of scattering at each individual impurity is not affected. The structure of the

Van Hove singularity for 𝑛2 ≫ 𝑛
(𝑐)
2 remains simple: “plateau–maximum–plateau” (see Fig.

8).

In the most interesting regime at 𝑛2 ≪ 𝑛
(𝑐)
2 , the non-Born renormalization of individual

scattering amplitudes happens already at |𝐸 −𝐸𝑁 | ∼ 𝐸nB where the interference effects are

still negligible:

𝐸nB =

(︂
𝜆

𝜋

)︂2

≫ ΓB. (7.3)

Note that the energy scale 𝐸nB does not depend on the concentration of impurities. The

interference of scattering events at different impurities comes into play only at |𝐸 − 𝐸𝑁 | ∼

ΓnB, where

ΓnB ∼ |𝐸dip| ∼ 𝑛2 ≪ 𝐸nB. (7.4)

In this energy range the individual scattering amplitudes are already strongly renormalized

62



(suppressed) and take universal value (only for a tube!):

𝜆→ 𝜆0(𝐸) = 𝜋
√︀

|𝐸 − 𝐸𝑁 | (7.5)

which does not depend on the initial “bare” 𝜆. As a result, instead of maximum 𝜌(𝐸)

demonstrates a deep and narrow minimum at 𝐸 − 𝐸𝑁 = 𝐸dip < 0 with a width ΓnB.

For the case of strip the “bare” amplitudes depend on the position of impurities with re-

spect to wave function nodes so that one can distinguish between “strong” (sitting in the

antinodes of wave function) and “weak” (sitting near the nodes of wave function) impurities.

Moreover, scattering amplitude renormalization is nonlinear – scattering at the stronger im-

purities is stronger suppressed. Therefore, at low enough energy |𝐸| ≪ 𝐸nB the scattering

predominantly occurs at “weak” impurities.

The structure of the Van Hove singularity for 𝑛2 ≪ 𝑛
(𝑐)
2 depends on the sign of the scatter-

ing amplitude. For repulsive interaction it is “plateau–minimum–maximum–plateau” (Fig.

2), while for attractive interaction it is “plateau–maximum–minimum–maximum–plateau”

(Fig. 3). Additional maximum below the Van Hove singularity in the case of attractive

interaction is due to the presence of quasistationary states. For a strip, the scattering near

this maximum occurs predominantly at “strong” impurities.

The structures “plateau–maximum–plateau” and “plateau–minimum–maximum–plateau”

can be (very roughly) simulated by the Fano formula (1.1) with 𝑞 → ∞ and 𝑞 ∼ 1, corre-

spondingly (see Fig.11).

Figure 11. Different shapes of 𝜌(𝐸), produced by the Fano formula (1.1). Thin solid line:
𝑞 = 100, broken line 𝑞 = 1, thick solid line 𝑞 = 0.

The correspondence between formula (1.1) and the results of the present study is, how-
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ever, by no means quantitative. We should also stress that, contrary to the prediction of the

Fano theory, an asymmetric splitting of the Van Hove singularity arises at low concentration

of impurities even for positive sign of the scattering amplitude, when the resonant state

does not exist and the Fano scenario is inapplicable. Moreover, in the presence of resonant

states due to attracting impurities the obtained structure “plateau–maximum–minimum–

maximum–plateau” can not be reproduced by the Fano formula (1.1) even on a qualitative

level.

In the leading approximation in small parameter 𝑛2/𝑛
(𝑐)
2 (that corresponds to independent

scattering at different impurities) the resistivity an minimum 𝜌min vanishes, as it is shown in

Figs. 2 and 3. The value of 𝜌min becomes nonzero (tube case – 𝜌min ∝ 𝑛3
2, see Fig. 10) only

if one takes into account the interference of scattering events at different impurities.

In the future publication we are going to consider a more robust approach to the calcu-

lation of resistivity behavior near the minimum provided by the interference of different acts

of scattering. In this work this was done only for tube case with the help with self-consistent

non-Born approximation which is not rigorous. The more robust approach, as in Born case,

will be based on the corresponding one-dimensional problem that was solved in [31, 32].

In Conclusion, our study shows that at low concentration of impurities the single-impurity

non-Born effects lead to splitting of the Van Hove singularities in resistivity of a tube (or,

in general, any other quasi-one-dimensional conductor) and this effect can not be described

in terms of the Fano formula (1.1). The character of the splitting depends on whether the

impurities are attracting or repulsing.
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A Self-consistent calculations: strong Born scattering

Strictly speaking, the concept of the self energy is relevant only in the weak scattering domain

where |𝜀| ≫ 𝜀min (for both 𝜀 > 0 and 𝜀 < 0). However, using the perturbative expressions

(4.33) and (4.4) also in the strong scattering domain |𝜀| ≪ 𝜀min can be helpful for qualitative

understanding of the behaviour of the density of states and resolving the paradox mentioned

in the subsection 4.4.5.

For a qualitative description of the density of states at strong scattering the self-consistent

Born approximation can be used. The selfconsistency equation for Σ reads

Σ(𝜀) = − 𝑖

2𝜏0

(︃
1 +

1

𝜋
√︀
𝜀− Σ(𝜀)

)︃
, (A.1)

so that

𝜈(𝜀)

𝜈0
= 1 + Re

{︃
1

𝜋
√︀
𝜀− Σ(𝜀)

}︃
, (A.2)

Σ(𝜀) = − 𝑖

2𝜏0
− 𝜀min𝑌

[︂
1

𝜀min

(︂
𝜀+

𝑖

2𝜏0

)︂]︂
, (A.3)

where 𝑌 (𝑞) is the solution of cubic equation

𝑌 2(𝑌 + 𝑞) + 1 = 0. (A.4)

There is a bifurcation point 𝑞 = 𝑞bi such that for real 𝑞 < 𝑞bi all three solutions of (A.4) are

real while for 𝑞 > 𝑞bi there is one purely real solution and two conjugated complex solutions

(only the latter ones are physically relevant). Near the point 𝑞 = 𝑞bi one can write

𝑌 ≈ 𝑌bi ± 𝑖𝐴
√
𝑞 − 𝑞bi (A.5)

𝑌bi = 21/3, 𝐴 = 22/33−1/2, 𝑞bi = −3 · 2−2/3. (A.6)

Thus, if the parameter 𝑞 were purely real then ImΣ would vanish for 𝜀 < 𝜀bi ≡ 𝑞bi 𝜀min. In

our case, however, 𝑞 has small but finite imaginary part

Im 𝑞 = 𝜋
√
𝜀min ≪ 1. (A.7)
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For 𝜀 > 𝜀bi and |𝜀− 𝜀bi| ≫ Im 𝑞 this imaginary part can be totally neglected and

Σ(𝜀) ≈ −𝜀min𝑌 (𝜀/𝜀min), (A.8)

𝜈(𝜀)

𝜈0
= 1 +

1

𝜋
√
𝜀min

1√︀
(𝜀/𝜀min) + 𝑌 (𝜀/𝜀min)

. (A.9)

On the other side of the bifurcation point, for 𝜀 < 𝜀bi and |𝜀 − 𝜀bi| ≫ Im 𝑞 the Im 𝑞-term

may be taken into account perturbatively:

Σ(𝜀) ≈ −𝜀min𝑌 (𝜀/𝜀min)−
𝑖

2𝜏0
[1 + 𝑌 ′ (𝜀/𝜀min)] , (A.10)

𝜈(𝜀)

𝜈0
= 1 +

1 + 𝑌 ′ (𝜀/𝜀min)

2 [(𝜀/𝜀min) + 𝑌 (𝜀/𝜀min)]
3/2
, (A.11)

where 𝑌 ′(𝑞) ≡ 𝑑𝑌 (𝑞)/𝑑𝑞.

In the narrow vicinity of the bifurcation point, for |𝜀− 𝜀bi| . Im 𝑞 one should keep Im 𝑞

but, on the other hand, one can use expansion (A.6) for 𝑌 (𝑞). As a result, in this range we

obtain

ReΣ(𝜀) ≈ −𝜀min𝑌bi, (A.12)

and

ImΣ(𝜀) ≈ − 𝐴

2𝜏0

[︃
(𝑄2 + 1)

1/2
+𝑄

Im 𝑞

]︃1/2
≈

≈ − 𝐴

2𝜏0
√
Im 𝑞

⎧⎨⎩ (2𝑄)1/2 , 𝑄 > 0, 1 ≪ 𝑄≪ (Im 𝑞)−1,

(−2𝑄)−1/2 , 𝑄 < 0, 1 ≪ |𝑄| ≪ (Im 𝑞)−1.
(A.13)

𝜈(𝜀)

𝜈0
≈ 1

𝜋
√
𝜀min

𝐴 Im 𝑞

2 (𝑞bi + 𝑌bi)
3/2

[︃
(𝑄2 + 1)

1/2
+𝑄

Im 𝑞

]︃1/2
≈

≈ 1

𝜋
√
𝜀min

𝐴
√
Im 𝑞

2 (𝑞bi + 𝑌bi)
3/2

⎧⎨⎩ (2𝑄)1/2 , 𝑄 > 0, 1 ≪ 𝑄≪ (Im 𝑞)−1,

(−2𝑄)−1/2 , 𝑄 < 0, 1 ≪ |𝑄| ≪ (Im 𝑞)−1.
(A.14)

Here

𝑄(𝜀) = 2𝜏0 (𝜀− 𝜀bi) . (A.15)
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So, as it is easy to check, for |𝑄| ≫ 1 the asymptotics (A.14) overlaps with the results (A.9)

and (A.11).

The above results should not be taken too seriously: the self-consistency equation (A.3)

can not be justified rigorously. However, the qualitative behaviour of the decay rate and the

density of states predicted by (A.13) and (A.14) gives us a reasonable pattern of matching

conflicting results (4.32) and (4.31). Namely, there is a narrow interval |𝜀 − 𝜀bi| . 1/2𝜏0

around certain bifurcation point 𝜀bi (𝜀bi < 0, |𝜀bi| ∼ 𝜀min) where both 𝜈(𝜀) and 𝜏−1(𝜀)

increase with 𝜀 very rapidly, and just this increase explains the parametrically large difference

between the results (4.32) and (4.31).
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B Self-consistent calculations: strong non-Born scatter-

ing

The general (with an account for the non-Born renormalization of the scattering amplitude)

self-consistency equation for the self-energy Σ reads

Σ(𝜀) =
𝑛

𝜋2

⃒⃒
Λ(ren)(𝜀− Σ(𝜀))

⃒⃒2 𝑔(𝜀− Σ(𝜀))

𝜋𝜈0
(B.1)

where Λ(ren) is given by (5.20) and the density of states is determined by formula (A.2). In

the case of strong non-Born effect one can use an asymptotic expression (5.35) and get

Σ(𝜀) = −𝑖𝑛|𝜀− Σ|

(︃
1 +

1

𝜋
√︀
𝜀− Σ(𝜀)

)︃
, (B.2)

Let us first neglect the constant term in 𝑔, then we get

Σ(𝜀) = −𝑖𝑛
𝜋

√
𝜀− Σ*, (B.3)

or

Σ = −𝜀(nB)
min 𝑌, 𝑞 ≡ 𝜀

𝜀
(nB)
min

, (B.4)

𝑌 2 + 𝑞 + 𝑌 * = 0. (B.5)

For real 𝑞 the general structure of solutions for equation (B.5) is as follows:

For 𝑞 > 1/4 there are two complex conjugated solutions:

𝑌1,2 =
1

2
∓ 𝑖

√︂
3

4
+ 𝑞 (B.6)

For 𝑞 < −3/4 there are two real solutions:

𝑌3,4 = −1

2
∓
√︂

1

4
− 𝑞 (B.7)

For −3/4 < 𝑞 < 1/4 all four solutions 𝑌1,2,3,4 are acceptable.
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There is, however, always only one physically relevant solution:

𝑌 (𝑞) =

⎧⎨⎩𝑌4, for 𝑞 < 𝑞bi,

𝑌2, for 𝑞 > 𝑞bi

𝑞bi = −3/4. (B.8)

Thus, the bifurcation energy

𝜀
(nB)
bi = 𝜀

(nB)
min 𝑞bi, (B.9)

and for 𝜀(nB)
bi < 𝜀≪ 𝜀nB we have

1

𝜏(𝜀)
= −2ImΣ(𝜀) = 2

√︂
𝜀
(nB)
min

(︁
𝜀− 𝜀

(nB)
bi

)︁
, (B.10)

𝜈(𝜀)

𝜈0
= 1 + Re

⎧⎪⎪⎨⎪⎪⎩
1

𝜋

√︂
𝜀+ 𝜀

(nB)
min 𝑌2

(︁
𝜀/𝜀

(nB)
min

)︁
⎫⎪⎪⎬⎪⎪⎭ =

= 1 +

√︁
𝜀− 𝜀

(nB)
bi

𝜋
(︁
𝜀+ 𝜀

(nB)
min

)︁ , (B.11)

where we have used the formula

1√
𝑎+ 𝑖𝑏

=

√︃√
𝑎2 + 𝑏2 + 𝑎

2(𝑎2 + 𝑏2)
− 𝑖

√︃√
𝑎2 + 𝑏2 − 𝑎

2(𝑎2 + 𝑏2)
. (B.12)

So, the approximate equation (B.3) leads to the result 1/𝜏(𝜀) ≡ −2ImΣ(𝜀) = 0 for all

𝜀 < 𝜀bi. To determine finite scattering rate in this range we should go beyond and take into

account the first term −𝑖𝑛|𝜀− Σ| on the right hand side of equation (B.2). When doing so

we can, however, substitute the found zero-approximation solution to this correction term.

Then, instead of (B.5), we arrive at

[𝑌 + 𝑖𝑛(𝑌4(𝑞) + 𝑞)]2 + 𝑞 + 𝑌 * = 0, (B.13)

where we have noted that in the range 𝑞 < 𝑞bi both 𝑞 and 𝑌4(𝑞) are real, and also 𝑞−𝑌4(𝑞) ≡
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𝑌 2
4 (𝑞) is real and negative so that we could write |𝜀− Σ| = 𝜀

(nB)
min 𝑌

2
4 (𝑞). Then

Σ = −𝜀(nB)
min [𝑖𝑛𝑌

2
4 (𝑞) + 𝑌 (𝑞)], (B.14)

where 𝑌 (𝑞) is the solution of (B.5) with complex

𝑞 ≡ 𝑞 − 𝑖𝑛𝑌 2
4 (𝑞). (B.15)

For 𝑞 < 𝑞bi the imaginary part of 𝑞 can be treated perturbatively:

𝑌 (𝑞) ≈ 𝑌4(𝑞) + 𝑖𝑛
𝑌 2
4 (𝑞)

2𝑌4(𝑞)− 1
, (B.16)

and

Σ(𝑞) ≈ −𝜀(nB)
min 𝑌4(𝑞)

{︂
1 + 𝑖𝑛

𝑌 2
4 (𝑞)

𝑌4(𝑞)− 1/2

}︂
(B.17)

1

𝜏(𝜀)
= −2ImΣ(𝑞) = 𝑛𝜀

(nB)
min

(
√︀

1 + 4|𝑞| − 1)3(
√︀
1 + 4|𝑞|+ 2)

8(|𝑞| − |𝑞bi|)
, 𝑞 ≡ 𝜀

𝜀
(nB)
min

< 𝑞bi ≡ −3

4
,

(B.18)

𝜈(𝜀)

𝜈0
= 1 +

1

2[𝑌4(𝑞)− 1/2]
= 1 +

√︁
1
4
+ |𝑞|+ 1

2(|𝑞| − |𝑞bi|)
,

(B.19)

where we have used

𝑌4(𝑞)− 1/2 =

√︂
1

4
+ |𝑞| − 1 =

|𝑞| − |𝑞bi|√︁
1
4
+ |𝑞|+ 1

. (B.20)

In particular, for |𝑞| ≫ 1 the scattering rate grows with |𝜀| while 𝜈(𝜀) saturates:

Σ(𝜖) ≈ −
√︁
𝜀
(nB)
min |𝜀| − 𝑖𝑛|𝜀|, 𝜈(𝜀) ≈ 𝜈0 (B.21)

which is in agreement with (5.39). When 𝑞 approaches 𝑞bi (i.e., 𝜀→ 𝜀
(nB)
bi from below), both
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the scattering rate and the density of states grow:

Σ ≈ −𝜀
(nB)
min

2

{︃
1 +

𝑖𝑛

2

𝜀
(nB)
min

𝜀
(nB)
bi − 𝜀

}︃
,

𝜈(𝜀)

𝜈0
≈ 𝜀

(nB)
min

𝜀
(nB)
bi − 𝜀

. (B.22)

So, the scattering rate reaches its minimum at some 𝜀 = 𝜀
(nB)
dip ≡ 𝜀

(nB)
min 𝑞dip, where

𝑞dip = −21

16
,

1

𝜏(𝜀dip)
=

27

8
𝑛𝜀

(nB)
min (B.23)
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C Evaluation of function 𝐹 (𝜖)

C.1 Case 𝜖 > 0, 𝜆 ≶ 0

For 𝜖 > 0 we have

𝐹 (𝜖) =
2

𝜋

∫︁ 1

0

𝑡1/2(1− 𝑡)−1/2𝑑𝑡

1 + 4𝑡2/𝜖
=

1

𝜋

∮︁
cut [0,1]

𝑧1/2(1− 𝑧)−1/2𝑑𝑧

1 + 4𝑧2/𝜖
= Re

{︃
𝑧
1/2
0 (1− 𝑧0)

−1/2

2𝑧0/𝜖

}︃
=

=

√
𝜖

2
Im
{︀
(1 + 4𝑖/

√
𝜖)−1/2

}︀
=

√
𝜖

(︃√︀
1 + 4/𝜖− 1

2(1 + 4/𝜖)

)︃1/2

≈

⎧⎨⎩ 1, for 𝜖≫ 1,

𝜖3/4/2, for 𝜖≪ 1,

(C.1)

where 𝑧0 = 𝑖
√
𝜖/2 is the position of the integrand’s pole in the upper half-plane of complex

𝑧. Note that the result (C.1) is valid for either signs of 𝜆, the only necessary requirement

being 𝜖 > 0.

C.2 Case 𝜖 < 0, 𝜆 > 0 (repulsion)

𝐹 (𝜖) =
1

𝜋

∮︁
cut [0,1]

𝑑𝑧

(1 + 2𝑧/
√︀
|𝜖|)2

√︂
𝑧

1− 𝑧
= 2𝑖

|𝜖|
4

(︂
𝑑

𝑑𝑧

√︂
𝑧

1− 𝑧

)︂
𝑧=−

√
|𝜖|/2

=

=
𝑖|𝜖|
4

(︃
1√︀

𝑧(1− 𝑧)3

)︃
𝑧=−

√
|𝜖|/2

= (2/
√︀
|𝜖|+ 1)−3/2 ≈

⎧⎨⎩ 1, for |𝜖| ≫ 1,

2−3/2|𝜖|3/4, for |𝜖| ≪ 1,
(C.2)

C.3 Case 𝜖 < 0, 𝜆 < 0 (attraction)

As in the case of cylinder, to avoid divergency, for general 𝜖 < 0 we have to take into account

the imaginary part of 𝜀qs(𝜉𝑖), so that for 𝜆 < 0 and 𝜀 < 0 𝐹 is a function of two dimensionless

variables. It can be rewritten in a form

𝐹 (𝜖, 𝜆) =
1

𝜋

∫︁ 1

0

𝑡1/2(1− 𝑡)−1/2𝑑𝑡

(1− 2𝑡/
√︀

|𝜖|)2 + 4𝑡2𝜆2/|𝜖|
≈

≈ 1

𝜋

|𝜖|
4

∫︁ 1

0

𝑡1/2(1− 𝑡)−1/2𝑑𝑡

(
√︀

|𝜖|/2− 𝑡)2 + |𝜖||𝜆|2/4
, (C.3)
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where the second term in the denominator was substituted by its value at resonance: 4𝑡2𝜆2/|𝜖| →

𝜆2. Since |𝜆| ≪ 1 it is possible to write

1

(
√︀

|𝜖|/2− 𝑡)2 + |𝜖|𝜆2/4
≈ 2𝜋√︀

|𝜖||𝜆|
𝛿(
√︀

|𝜖|/2− 𝑡), (C.4)

and get for −4 < 𝜖 < 0

𝐹 (𝜖, 𝜆) ≈
√︀
|𝜖|

|𝜆|

(︃ √︀
|𝜖|

2−
√︀

|𝜖|

)︃1/2

. (C.5)

On the other hand, for 𝜖 < −4 we can simply put 𝜆 = 0 and obtain

𝐹 (𝜖, 0) =
1

2𝜋

∮︁
𝑑𝑧

(1− 2𝑧/
√︀
|𝜖|)2

√︂
𝑧

1− 𝑧
=

=
|𝜖|3/4

(
√︀
|𝜖| − 2)3/2

(C.6)

Both the results (C.5) and (C.6) are not applicable in the narrow vicinity of 𝜖 = −4,

namely, for |𝜖+ 4| . |𝜆|. In this range we should write

𝐹 (𝜖) ≈ 𝑢

2𝜋

∫︁ 1

0

𝑑𝑡(︀
1 + 𝑢−4

8
− 𝑡
)︀2

+ 𝜆2

1√
1− 𝑡

=

=
𝑢

𝜋𝜆2

∫︁ 1

0

𝑑𝑧

1 +
(︁

𝑧2

|𝜆| +
𝑢−4
8|𝜆|

)︁2 ≈ 𝑢

𝜋|𝜆|3/2
Φ

(︂
𝑢− 4

8|𝜆|

)︂
, (C.7)
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D Evaluation of function 𝐹 (𝜖, 𝜆)

D.1 Case 𝜖 < 0, 𝜆 > 0 (repulsion)

Here

𝐹 (𝜖) =
1

2𝜋

∮︁
𝑧−1/2(1− 𝑧)−1/2𝑑𝑧

(1 + 2𝑧/
√︀

|𝜖|)2
= 𝑖

|𝜖|
4

(︃
𝑑

𝑑𝑧

√︃
1

𝑧(1− 𝑧)

)︃
𝑧=−

√
|𝜖|/2

=

=
𝑖|𝜖|
4

(︂
−1

2

)︂(︃
1− 2𝑧√︀
𝑧(1− 𝑧)3

)︃
𝑧=−

√
|𝜖|/2

=
|𝜖|1/4(1 +

√︀
|𝜖|)

(2 +
√︀
|𝜖|)3/2

≈

⎧⎨⎩ 1, for |𝜖| ≫ 1,

2−3/2|𝜖|1/4, for |𝜖| ≪ 1,

(D.1)

D.2 Case 𝜖 < 0, 𝜆 < 0 (attraction)

As in the case of cylinder, to avoid divergency, for general 𝜖 < 0 we have to take into account

the imaginary part of 𝜀qs(𝜉𝑖), so that for 𝜆 < 0 and 𝜀 < 0 𝐹 in (??) is a function of two

dimensionless variables (see (5.65)). It can be rewritten in a form

𝐹 (𝜖, 𝜆) =
1

𝜋

∫︁ 1

0

𝑡−1/2(1− 𝑡)−1/2𝑑𝑡

(1− 2𝑡/
√︀

|𝜖|)2 + 4𝑡2𝜆2/|𝜖|
≈

≈ 1

𝜋

|𝜖|
4

∫︁ 1

0

𝑡−1/2(1− 𝑡)−1/2𝑑𝑡

(
√︀

|𝜖|/2− 𝑡)2 + |𝜖||𝜆|2/4
, (D.2)

where the second term in the denominator was substituted by its value at resonance: 4𝑡2𝜆2/|𝜖| →

𝜆2. Since |𝜆| ≪ 1 it is possible to write

1

(
√︀

|𝜖|/2− 𝑡)2 + |𝜖|𝜆2/4
≈ 2𝜋√︀

|𝜖||𝜆|
𝛿(
√︀

|𝜖|/2− 𝑡), (D.3)

and get for −4 < 𝜖 < 0

𝐹 (𝜖, 𝜆) ≈ 1

|𝜆|

√︃ √︀
|𝜖|

2−
√︀

|𝜖|
, (D.4)

On the other hand, for 𝜖 < −4 we can simply put 𝜆 = 0 and obtain

𝐹 (𝜖, 0) =
1

2𝜋

∮︁
𝑑𝑧

(1− 2𝑧/
√︀

|𝜖|)2

√︃
1

𝑧(1− 𝑧)
=

=
|𝜖|1/4(

√︀
|𝜖| − 1)

(
√︀
|𝜖| − 2)3/2

(D.5)
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The results (D.4) and (D.5) are not applicable in the narrow vicinity of 𝜀 = −4, namely, for

|𝜀+ 4| . |𝜆|. In this range we should write

𝐹 (𝜖, 𝜆) ≈ 1

𝜋

∫︁ 1

0

𝑡−1/2(1− 𝑡)−1/2𝑑𝑡

(1− 𝑡+ (|𝜖| − 4)/8)2 + 𝜆2
≈ 1

𝜋|𝜆|3/2
Φ

(︂
|𝜖| − 4

8|𝜆|

)︂
, (D.6)

Φ(𝑎) =

∫︁ ∞

∞

𝑑𝜑

(𝜑2 + 𝑎)2 + 1
= Im

{︂
𝜋√
𝑎+ 𝑖

}︂
= 𝜋

(︃√
𝑎2 + 1− 𝑎

2(𝑎2 + 1)

)︃1/2

≈

≈

⎧⎪⎨⎪⎩
𝜋

2𝑎3/2
, for 𝑎 > 0, 𝑎≫ 1,

𝜋

|𝑎|1/2
, for 𝑎 < 0, |𝑎| ≫ 1,

(D.7)

———————————————
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