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1 Introduction

1.1 The statement of the problem

In this work, we consider the SIS Josephson junction between diffusive superconductors at
arbitrary temperature T . We consider the tunneling limit but focus on deviations from
the sinusoidal current–phase relation due to small but finite conductance of the interface.
We develop fully self-consistent perturbation theory taking into account difference between
the phases ϕ(x) and χ(x, ω). As a result, we find the second harmonic of the Josephson
relation, i.e., contribution to J(δϕ) of the form sin 2δϕ. In the limit T → Tc, we reproduce
the results by Kupriyanov [1]. At arbitrary temperatures, we revisit the results by Golubov
and Kupriyanov GK [2]. In Ref. [2], the authors employed a conjectured form of solution
which turns out to be only qualitatively correct. As a result, they obtained parametrically
correct answer but with wrong numerical coefficients. Our perturbation theory reproduces
their parametrical results and provides exact numerical coefficients.

We also discuss quantitative difference between the phase of the order parameter and the
phases of the anomalous Green functions that follows from our perturbation theory.

Throughout the paper, we employ the units with ~ = kB = c = 1.

1.2 Motivation

One of the key characteristics of a superconductor is the complex-valued order parameter
∆(r), which is parameterized by its absolute value and phase ϕ(r) [3]. Both parameters
are essential for describing current-carrying states of superconductors. While the absolute
value of the order parameter determines the density of superconducting electrons, the phase
gradient is related to the superconducting condensate velocity. At the same time, more
detailed spectral (i.e., energy-resolved) information about superconductivity in a system is
contained in the anomalous Green function F (r, ω) (here ω is the Matsubara frequency),
with its own absolute value and phase χ(r, ω). The anomalous Green functions and the
order parameter (related by the self-consistency equation) fully describe superconductivity
inside an equilibrium system [4].

The Josephson effect is a prominent example of the physical role of the superconducting
phases [3]. The simplest Josephson system is a planar SIS-type junction (superconductors
S separated by an insulating barrier I). All characteristics of the system depend on a single
coordinate x (normal to the plain interface). Fully self-consistent treatment of the Josephson
effect in the SIS junction requires taking into account difference between the phases of the
order parameter and the anomalous Green function, ϕ(x) 6= χ(x, ω). Although difference
between the two phases is a well-known fact (which is already evident from frequency, or
energy, dependence of χ while ϕ depends only on coordinate) [5–7], it has been taken into
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account in actual calculations mainly numerically [8]. It is interesting to understand for
which systems the phases differ, what is the reason for this, and we also want to understand
the quantitative characteristics of this difference.

At the same time, the SIS junction is the fundamental system for which the Josephson effect
was originally predicted [9, 10], and it has been considered in many various limiting cases. In
the main order with respect to the interface conductance, the Josephson current proportional
to the sine of the order-parameter phase difference between the banks arises, J ∝ sin δϕ. Next
orders with respect to the interface conductance take into account additional effects such
as pair-breaking due to current and the proximity effect between the banks (suppression of
the order parameter near the interface) [11, 12]. These effects influence basic characteristics
of the Josephson current such as the value of the critical current and the current–phase
relation in SIS and more complicated types of Josephson junction (including SNS junctions
with normal metal N as a weak link) [13–15]. As a result, the current–phase relation J(δϕ)

can deviate from the simple sinusoidal form [13, 15].

Anharmonic (nonsinusoidal) Josephson current is also possible in the case of pair-breaking
interfaces [16, 17]. SIS junctions with arbitrary interface transparency have been considered
in the limit of temperature close to the critical one [18, 19]. Therefore, taking an ordinary
SIS contact as the object of study, which is the simplest from theoretical consideration,
developing the apparatus for solving the superconductivity equations, we can find corrections
to the sinusoidal behavior of the current in the Josephson relation.

1.3 The Usadel equations

In this section we write down the basic equations describing the superconductivity of a planar
SIS junction.

SIS-type junction is a system of two superconductors separated by a thin insulating layer
Fig. 1.1.

In the diffusive, or so-called dirty, limit, when the superconducting coherence length ξ is
much larger than the mean free path l, superconductors can be described by the Usadel
equations [20].

In the planar SIS junction all characteristics depend only on the x coordinate (the direc-
tion perpendicular to the boundary (I)). We can eliminate the vector potential by a gauge
transformation, so that all currentcarrying properties of the system are encoded in the phase
gradients. Finally, with the use of Eq. (A.43) we obtain the system of equations for SIS

6



Figure 1.1: Sketch of a planar SIS junction. Two superconductors (S) are separated by
a thin insulating layer (I). At the interface, the order-parameter phase ϕ is discontinuous.
The absolute value of the order parameter, |∆|, is suppressed at x = 0, while at the bulk it
reaches the value ∆0. Both plots are schematic. Due to the spatial symmetry of the problem,
the coordinate dependence |∆(x)| is even while ϕ(x) can be chosen odd. We parameterize
the Josephson current J in the junction by the phase difference δϕ ≡ ϕ(+0)−ϕ(−0) at the
interface.

junction in the angular parameterisation (for more details see Appendix A):

D

2

d2θ

dx2
+ |∆| cos (χ− ϕ) cos θ − ω sin θ − D

2
sin θ cos θ

(
dχ

dx

)2

= 0, (1.1)

D

2

d

dx

(
dχ

dx
sin2 θ

)
= |∆| sin (χ− ϕ) sin θ, (1.2)

|∆| = πλT
∑
|ω|<ωD

ei(χ−ϕ) sin θ, (1.3)

J = 2πν0SDTe
∑
|ω|<ωD

sin2 θ
dχ

dx
= const, (1.4)

where ∆(x) = |∆(x)| eiϕ(x) is the order parameter, f(x, ω) = sin θ(x, ω)eiχ(x,ω) is the anoma-
lous Green function, ω = πT (2n+ 1) is the Matsubara frequency (at temperature T ),
D = vF l/3 is the diffusion constant, vF is the Fermi velocity, λ is the BCS coupling constant,
ωD is the Debye frequency of the superconducting material, e is the charge of electron, ν0
is the density of states at the Fermi level in the normal state, J is the total current flowing
through the junction, and S is the interface area, . The equation (A.43) leads to current
conservation in this system.
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Note that the resulting equations (1.1) and (1.2) are invariant under the following change of
variables:

θ(x)→ θ(−x) (1.5)

χ(x)→ −χ(−x) + const (1.6)

1.3.1 Equality of the phases

In the bulk of the superconductor the angular variable θ and the velocity of the Cooper pairs
dχ/dx do not change, which allows us to find the solution in the form:

θ(x, ω) = const(ω) (1.7)

ϕ(x) = χ(x, ω) = a sgnx+ bx (1.8)

As we can see, deep in the superconductor, the phases of the anomalous Green’s functions
and the phase of the order parameter simply coincide. Thus, the question arises whether this
equality holds identically for any superconducting system? If not, is it possible to provide
quantitative characteristics of this difference.

In 1D, in the case of the presence of the boundary the phases χ and ϕ cannot coincide.
Indeed, we use the continuity equation (1.2) with a source, assuming that χ = ϕ:

dϕ(x)

dx
=

Jω(ω)

sin2 θ(x, ω)
, (1.9)

where Jω depends only on ω. From this formula, we see a rigid relationship between the
condensate velocity dϕ/dx and the value of the angular variable θ(x). In the case when theta
gradients ∇θ have a nonzero component in the direction of the current j (i.e. j · ∇θ 6= 0), a
situation may arise that ϕ is not equal to χ. It is most pronounced in one dimension, and
therefore it is interesting to study the SIS contact.

1.4 Boundary conditions

The presence of boundary (I) imposes the requirement to set boundary conditions on the
Usadel equations. In our work, we will consider the limit of the tunnel boundary, i.e. when
the transparency of the barrier is low. The boundary conditions in this limit were investigated
in the work of Kupriyanov and Lukichev [21]. For two superconductors (1– left, 2– right)
with Green functions ĝ0,i [for more details see Appendix A] (we will use the notation Gi for
brevity), Eq. (A.19), mean free path li, and Fermi momentum pF,i respectively one can write
[7] :
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(
p2F1

l1G1iP̂G1

)
x

=
(
p2F2

l2G2iP̂G2

)
x
, (1.10)(

l2G2iP̂G2

)
x

= t [G1, G2] , (1.11)

t ≡
〈

(pF )2,x T

(pF )2R

〉
� 1, (1.12)

where n is the vector, perpendicular to the (I) boundary and t is an effective transparency
of the boundary. For the same reasons as in the Usadel equations, among the boundary
conditions there are repeating ones. Excluding them, we obtain:[

l1,2g
2
1,2 (∇− 2ieA)

(
f1,2
g1,2

)]
x

= 2t · g1g2
(
f2
g2
− f1
g1

)
. (1.13)

In angular parameterisation we can rewritten boundary conditions in the following way:

l1∇xθ1 = −2t (sin θ1 cos θ2 − sin θ2 cos θ1 cos (χ2 − χ1)) (1.14)

l2∇xθ2 = 2t (sin θ2 cos θ1 − sin θ1 cos θ2 cos (χ2 − χ1)) (1.15)

l1,2 sin2 θ1,2 (∇χ1,2 − 2eA)x = 2t sin θ1 sin θ2 sin (χ2 − χ1) (1.16)

In SIS contact we suppose the both sides to be from one material, thus l1 = l2 and pF,1 = pF,2.
As we have mentioned before, we can eliminate the vector potential A with the use of gauge
transform. In addition, boundary conditions are invariant under the change of variables
Eqs. (1.5)–(1.6), which allows us to find the solution to the Usadel Eqs. (1.1)–(1.2) in the
following form:

χ(x) = −χ(−x), (1.17)

θ(x) = θ(−x), (1.18)

which means that χ is an odd function, while θ is even. Moreover, by the physical meaning
sin2 θ does play the role the spectral density of the Cooper pairs on the frequency ω and
must be a continuous function of x, therefore θ(x) is also continuous. At the same time,
χ(x) can be discontinuous at the boundary x = 0, which leads to non-zero derivatives at
x = 0 Eqs. (1.14)–(1.16). Finally, we obtain:

d

dx
θ(x = ±0) = ±2t

l
sin θx=0 cos θx=0 (1− cos δχ) , (1.19)

dχ

dx
(x = ±0) =

2t

l
sin δχ, (1.20)

δχ ≡ χ(+0)− χ(−0), (1.21)

where δχ is called a phase jump. In some cases it is convinient to use the alternative form
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of the expression 2t/l:
2t

l
=
gN
σ
, (1.22)

where gN is the conductance of the interface per unit area and σ is the normal-state con-
ductivity of the superconductor material.

In this work we obtain ∆(x), ϕ(x), J from the Usadel equations (1.1)–(1.4) with boundary
conditions (1.19)–(1.20). In our work, we assume that the value of the phase jump δϕ ≡
ϕ(+0) − ϕ(−0) of the order parameter phase ϕ(x) at the boundary is a fixed value of the
model.

1.5 Tunnelling limit

The self-consistent Usadel equations cannot be solved analytically for arbitrary transparen-
cies, but in some limiting cases this can be done approximately. In this work, we solve the
Usadel equations by the perturbation theory with respect to the interface conductance.

In a superconductor, the natural energy scale is the bulk temperature-dependent value of
the order parameter ∆0(T ). It determines the coherence length, which can be written (in
the diffusive limit) as:

ξ(T ) ≡

√
D

2∆0(T )
. (1.23)

This characteristic length follows from the Usadel equations. Indeed, if we divide the equa-
tion (1.1) by the value ∆0, then the multiplier at the second derivative has the meaning of
the square of the length, the scale on which the angular variable and the phase of the order
parameter change. However, it turns out to be indeed the relevant spatial scale on which the
superconducting properties vary, only at temperatures not too close to the superconducting
critical temperature Tc. In the vicinity of Tc, the full set of the Usadel equations reduces
to the Ginzburg–Landau (GL) equation (for more details see Appendix B) written for the
order parameter only. In the course of this reduction, the Matsubara summation in the
self-consistency equation generates a different coherence length, which can be written as:

ξGL(T ) ≡

√
πD

8 (Tc − T )
. (1.24)

Although this GL coherence length arises when considering the T → Tc limit, the resulting
expression can be used at any T . From this point of view, we can say that at T not too close
to Tc, the GL coherence length Eq. (1.24) is of the same order1 as the Usadel coherence length
Eq. (1.23). However, at T → Tc, they are parametrically different since ∆0(T ) ∝

√
Tc − T ,

and ξGL is turns out to be the actual scale for ∆(x) variation.

1In particular, at T = 0 we have ξ(0)/ξGL(0) = 2eC/2/π ≈ 0.85, where C ≈ 0.577 is Euler’s constant
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The boundary conditions (1.19)–(1.20) can be rewritten in terms of the dimensionless variable
z = x/ξ as:

dθ(±0, ω)

dz
= ±α

2
sin 2θ(0, ω) [1− cos δχ(ω)] , (1.25)

dχ(0, ω)

dz
= α sin δχ(ω), (1.26)

where we have defined the dimensionless conductance parameter:

α ≡ 2ξt

l
=
ξgN
σ
. (1.27)

In the tunnelling limit we suppose t, the average transparency of the barrier, to be small.

Due to finite value of α, the proximity effect between the two sides of the Josephson junction
leads to suppression of |∆(x)| in the vicinity of the interface (at nonzero phase difference).
We standardly define the tunneling limit as the regime in which the proximity effect [i.e.,
suppression of |∆(x)|] is weak. This condition implies that α must be small. The exact
condition for the smallness of α will be discussed below in Sec. 2.5.

One more point regarding various interface parameters should be commented here. The
KL boundary conditions (1.19) and (1.20) are valid in the limit of small transparencies of
interface conducting channels, which may be formulated as t � 1. They can be obtained
in the first order with respect to t from the more general Nazarov boundary conditions [22].
We plan to do the perturbation theory with respect to α (staying in the regime of validity
of the KL boundary conditions) but we do not take into account higher-order terms with
respect to t from the Nazarov boundary conditions. This is legitimate since α � t [see Eq.
(1.27)] due to the diffusive limit condition ξ � l.

For example, the next-order term from the Nazarov boundary conditions would lead to
contributions of the order of αt in the right-hand sides of Eqs. (1.19) and (1.20) (and in
the solutions). At the same time, the proximity effect treated within the KL boundary
conditions leads to corrections of the order of α2. Since α2 � αt, the main effect is captured
by the self-consistent theory based on the KL boundary conditions.
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2 Perturbation theory with respect to the interface

conductance: Josephson current

In this section, we carry out perturbation theory in the small parameter α and calculate the
order parameter and the current.

2.1 First order of the perturbation theory

The starting point of our perturbation theory is the solution of the Usadel equations with
the KL boundary conditions at α = 0.

From the boundary conditions (1.25)–(1.26) one can see that dθ(±0)/dz = dχ(±0)/dz = 0.
Therefore, we can try to find the solution in the form:

θ(z) ≡ θ0 = const, (2.1)

χ(z) ≡ χ0(z) =
δϕ

2
sgn z = ϕ0(z). (2.2)

The form of χ(z) from the oddness of the function Eq. (1.17) and the value of the constant
follows from the fact that in the bulk of the superconductor χ(z →∞, ω) = ϕ(z →∞). We
consider the order-parameter phase jump at the interface:

δϕ = ϕ(+0)− ϕ(−0), (2.3)

as the parameter that defines the current-carrying state of the Josephson junction. This
parameter enters the full self-consistent set of equations and determines, in particular, the
strength of the proximity effect between the superconducting banks and the current at any
point of the junction.

To find θ0 one must substitute the solution Eq. (2.1) in the Usadel equation Eq. (1.1):

|∆| cos θ0 − ω sin θ0 = 0. (2.4)

From this equation one can see, that |∆| ≡ ∆0 = const. Therefore, the solution for θ0 and
∆0 has the form:

tan θ0 =
∆0

ω
, (2.5)

∆0 = πλT
∑
|ω|<ωD

sin θ0 = πλT
∑
|ω|<ωD

∆0√
ω2 + ∆2

0

, (2.6)

where the last equation is the standard BCS self-consistency equation. It is known that the
solution of this equation cannot be expressed in a compact form, thus we suppose that we
know ∆0.

12



The next step is to consider α 6= 0. Expanding θ, χ, ∆, and ϕ in powers of α, we get:

θ(z, ω) = θ0(ω) + αθ1(z, ω) + α2θ2(z, ω) (2.7)

∆(z) = ∆0 + α∆1(z) + α2∆2(z) (2.8)

χ(z, ω) =
δϕ

2
sgn z + αχ1(z, ω) + α2χ2(z, ω) (2.9)

ϕ(z) =
δϕ

2
sgn z + αϕ1(z, ω) + α2ϕ2(z, ω) (2.10)

δχ(ω) = δϕ+ α · δχ1(ω) + α2 · δχ2(ω) (2.11)

In case of non-zero current, J 6= 0, the phases χ(z, ω) and ϕ(z) grow linearly in the bulk
of the superconductor, because in the bulk, far from the barrier (I), θ and dχ/dz become
constant. Corrections χ1(2) and ϕ1(2) therefore become large which may seem to create a
problem for our perturbation theory. However, this problem is purely formal because the
quantities that actually enter our perturbation theory are not χ and ϕ themselves but their
derivatives dχ/dz and dϕ/dz as well as their difference χ− ϕ; all those quantities are finite
in the bulk.

Our goal is to find the answer for J up to the α2 order. The current given by Eq. (1.4)
contains dχ/dz ∼ α [i.e. dχ0/dz = 0]; so, in order to obtain the answer up to α2, it is
sufficient to find θ1, ∆1, and χ2:

J =
2πν0DTSe

ξ

∑
|ω|<ωD

(
α sin2 θ0

dχ1

dz
+ α2 sin2 θ0

dχ2

dz
+ 2α2 sin θ0 cos θ0θ1

dχ1

dz

)
. (2.12)

We start with calculating θ1 and ∆1. In the first order of the perturbation theory, equations
for θ1 and ∆1 separate from equations for χ1 and ϕ1, the pair-breaking term (dχ/dx)2 in Eq.
(1.1) should be dropped out, and cos(χ− ϕ) should be substituted by 1.

The Usadel equation (1.1) and the boundary condition (1.25) up to the first power in α have
the form:

d2θ1
dz2

+
∆1(z)

∆0

cos θ0 −
θ1

sin θ0
= 0, (2.13)

dθ1(±0)

dz
= ±1

2
(1− cos δϕ) sin 2θ0. (2.14)

The boundary condition (2.14) can be included into Eq. (2.13) by emploing the Dirac delta
function:

d2θ1
dz2

+
∆1(z)

∆0

cos θ0 −
θ1

sin θ0
= sin 2θ0 (1− cos δϕ) δ(z). (2.15)

We can solve this linear system with the help of the Fourier transformation (with respect to
z):

13



f(k) ≡
∞̂

−∞

f(z)e−ikzdz; f(z) =

∞̂

−∞

f(k)eikz
dk

2π
. (2.16)

In the Fourier space we find

θ1(k) =
sin θ0 cos θ0
k2 sin θ0 + 1

[
∆1(k)

∆0

− 2 (1− cos δϕ) sin θ0

]
(2.17)

In the first order of the perturbation theory, the real part of the self-consistency equation
(1.3) yields:

∆1(k) = πλT
∑
|ω|<ωD

θ1(k, ω) cos θ0(ω). (2.18)

The answer for ∆1 can be written in terms of ∆0 without any explicit information on ωD

and λ. The bulk self-consistency equation (2.6) can be written as

1

λ
=
πT

∆0

∑
|ω|<ωD

sin θ0. (2.19)

Substituting this expression for λ into Eq. (2.18), we can rewrite the latter equation in the
form

πT
∑
|ω|<ωD

(
∆1

∆0

sin θ0 − θ1 cos θ0

)
= 0. (2.20)

Substituting Eq. (2.17) into Eq. (2.20) we obtain the correction to the order parameter
∆1(k):

∆1(k)

∆0

∑
ω

k2 sin2 θ0 + sin3 θ0
k2 sin θ0 + 1

= −2 (1− cos δϕ)
∑
ω

sin2 θ0 cos2 θ0
k2 sin θ0 + 1

. (2.21)

Since all the sums in this equation converge, we can extend the limits of summation to
infinity, formally putting ωD = ∞. We introduce the following notation for the relevant
class of sums:

Ln(k, T ) ≡ 2πT

∆0

∑
ω>0

sinn θ0
k2 sin θ0 + 1

. (2.22)

Using the definition of Eq. (2.22) one can easily rewrite the answer for ∆1(k) in the following
form:

∆1(k, T )

∆0(T )
= −2 (1− cos δϕ)

L2(k, T )− L4(k, T )

k2L2(k, T ) + L3(k, T )
(2.23)

The next step is to find χ1 and ϕ1. This can be done by using the linearized form of the
continuity equation (1.2), the imaginary part of the self-consistency equation (1.3), (A.42),
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and the boundary condition (1.26) for the velocity of the Cooper pairs:

d2χ1

dz2
sin2 θ0 = (χ1 − ϕ1) sin θ0, (2.24)∑

|ω|<ωD

(χ1 − ϕ1) sin θ0 = 0, (2.25)

dχ1(±0)

dz
= sin δϕ. (2.26)

This system has trivial solution of the form:

χ1(z, ω) = ϕ1(z) = z · sin δϕ , (2.27)

which follows from the homogeneity of the system of equations.

This formula tells us that in the main order with respect to the interface conductance, the
Josephson relation have the standard form J ∝ sin δϕ:

J = 2πν0DTSe
∑
ω

sin2 θ0 · α sin δϕ ∝ sin δϕ. (2.28)

Moreover, χ1(z, ω) = ϕ1(z) are continuous functions at z = 0, unlike χ0(z, ω) = ϕ0(z) =

(δϕ/2) sgn z. Therefore, χ1(+0, ω)− χ1(−0, ω) = δχ1(ω) = 0.

Expanding Eq. (1.26) up to α2, we obtain

dχ2(±0)

dz
= 0, ∀ω. (2.29)

This boundary condition implies that in order to calculate J (which can be done at z = 0),
we do not actually need to calculate χ2(z). To find the current up to the α2 order, we thus
only need ∆1 and θ1 [see Eq. (2.12)]. We know θ1 and ∆1 from Eqs. (2.17),(2.23), thus we
are able to find the current:

J =
2πν0DTSe

ξ

∑
|ω|<ωD

(
α sin2 θ0

dχ1

dz
+ α2θ1

dχ1

dz
sin 2θ0

)
. (2.30)

First of all, due to current conservation (1.4), we can calculate the current at any point. It is
convinient to do that at the interface z = 0. Secondly, here we can use well-known relations:

2ν0De
2 = σ, (2.31)

2πT

∆0

∑
ω>0

sin2 θ0 =
2πT

∆0

∑
ω>0

∆2
0

∆2
0 + ω2

=
π

2
tanh

(
∆0

2T

)
. (2.32)

Finally, one can see that the sums in the Eq. (2.30) converge, which allows us to extend
the limits of summation to infinity, formally putting ωD =∞. Therefore, the answer for the
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current can be written in the following form:

J =
π∆0

2eRN

tanh

(
∆0

2T

)
sin δϕ

(
1 + α

∑
ω>0 θ1(z = 0) sin 2θ0∑

ω>0 sin2 θ0

)
, (2.33)

where RN is the resistance of the junction 1/GN = 1/ (gNS). To find the under the bracket
one has to use Eq. (2.17):

2πT

∆0

∑
ω>0

θ1(k) sin 2θ0 = −4 (1− cos δϕ)
2πT

∆0

∑
ω>0

sin2 θ0 cos2 θ0
k2 sin θ0 + 1

[
L2(k, T )− L4(k, T )

k2L2(k, T ) + L3(k, T )
+ sin θ0

]
=

= −4 (1− cos δϕ)

[
(L2(k, T )− L4(k, T ))2

k2L2(k, T ) + L3(k, T )
+ L3(k, T )− L5(k, T )

]
. (2.34)

Thus, the answer for the current can be expressed like:

J = J0 sin δϕ [1− 4α (1− cos δϕ)V (T )] , (2.35)

J0 =
π∆0

2eRN

tanh

(
∆0

2T

)
, (2.36)

where V (T ) is the positive constant, which depends on the temperature T , of the form:

V (T ) ≡ coth

(
∆0

2T

) ∞̂

−∞

dk

π2

[
(L2(k, T )− L4(k, T ))2

k2L2(k, T ) + L3(k, T )
+ L3(k, T )− L5(k, T )

]
. (2.37)

Indeed, to obtain the sum in the current Eq. (2.33) one should apply the inverse Fourier
transfomation on Eq. (2.34). The positiveness of the constant follows from the fact, that
L3(k, T )− L5(k, T ) ≥ 0, ∀k.

The answer for the current given by Eq. (2.35) contains not only the standard part of the
Josephson relation, J0 sin δϕ, but also the second harmonic (sin 2δϕ with positive coefficient)
and a negative correction to the first harmonic:

J = J0 [sin δϕ (1− 4αV (T )) + 2αV (T ) sin 2δϕ] (2.38)

Below we present results in the limiting cases of T = 0 and T → Tc.
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2.2 Solvable temperature cases

2.2.1 T → 0

In the T → 0 limit, the sums of the form Eq. (2.22) can be replaced by the integrals

Ln(k, 0) =

∞̂

0

1

(w2 + 1)
n−1
2

1

k2 +
√
w2 + 1

dw (2.39)

There is a relationship between the sum of Ln and the sums with lower indices:

Ln+1(k, T ) =
2πT

∆0

∑
ω>0

sinn+1 θ0
k2 sin θ0 + 1

=
2πT

∆0

∑
ω>0

(k2 sin θ0 + 1− 1) sinn θ0
k2 (k2 sin θ0 + 1)

=
1

k2
[Ln(0, T )− Ln(k, T )]

(2.40)

Therefore, to calculate the sums at an arbitrary n, we use the following identity:

Ln+1(k, T ) =
n−2∑
j=0

(−1)j

k2j+2
Ln−j(0, T )− (−1)n

k2n−2
L2(k, T ). (2.41)

In the T → 0 limit the integrals of the form Eq. (2.39) for k = 0 can be calculated:

Ln(0, 0) =

√
πΓ
(
n−1
2

)
2Γ
(
n
2

) . (2.42)

The sum L2(k, 0) can also be evaluated and has the form:

L2(k, 0) =


1√

1− k4

[
π

2
− arctan

(
k2√

1− k4

)]
, |k| ≤ 1

1

2
√
k4 − 1

ln

∣∣∣∣k2 +
√
k4 − 1

k2 −
√
k4 − 1

∣∣∣∣ , |k| ≥ 1

. (2.43)

Then we obtain:
L3(k, 0) =

π

2k2
− L2(k, 0)

k2
,

L4(k, 0) =
1

k2
− π

2k4
+
L2(k, 0)

k4
,

L5(k, 0) =
π

4k2
− 1

k4
+

π

2k6
− L2(k, 0)

k6
.

(2.44)

Plugging the obtained expressions into Eq. (2.23), we find ∆1(k) and θ1(k) [see Fig. 2.1]. We
are unable to find the inverse Fourier transformation of ∆1(k) analitically. In this work we
find ∆1(z) numerically. Figure 2.2 illustrates the correction to the order parameter ∆1(z)/∆0

in the coordinate space at T = 0. Since ∆1 is proportional to 2(1−cos δϕ), the plot is shown
without this factor. As one can see, the result of calculations is in line with the expectations
shown schematically in Fig. 1.1.
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Figure 2.1: The plot of θ1(k, ω) and ∆1(k) in the Fourier space at T = 0 without the factor
2(1− cos δϕ).

Δ1(z)/2Δ0(1 - cos δφ)

-6 -4 -2 2 4 6
z

-0.4

-0.3

-0.2

-0.1

Figure 2.2: ∆1(z)/∆0 plot at T = 0 without factor 2(1−cos δϕ). The correction to the order
parameter is negative and the order parameter is most strongly suppressed in the vicinity of
the interface.
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At the same time, the current (2.35) in determined by V (T ) containing an integral with the
Ln sums, see Eq. (2.37). Although we are not able to calculate the integral in Eq. (2.37) at
T = 0 analytically, we can do it numerically obtaining:

V (0) ≈ 0.272 .

In the T → 0 limit, the characteristic length scale becomes ξ(0). At the same time, since
ξ(0) ∼ ξGL(0), we can write the answer with the help of the same definition for GD(T ) as:

J =
π∆0(0)

2eRN

{[1− 0.93γ(0)] sin δϕ+ 0.46γ(0) sin 2δϕ} , (2.45)

γ(T ) ≡ GN

GD(T )
, (2.46)

where GD(T ) = σS/ξGL(T ) is the diffusive conductance of the superconductor on the length
ξGL(T ).

2.2.2 T → Tc

In this limit, ∆0 becomes small and has the form [23] (for more details see Appendix B):

∆0 =

√
8π2Tc(Tc − T )

7ζ(3)
. (2.47)

Therefore, we have to keep only the leading orders in ∆0 in Eq. (2.23), Eq.(2.37) [i.e. one
has to neglect higher orders/powers of sin θ0 ≈ ∆0/ω in the sums Eq. (2.22)]:

∆1(k)

∆0

= −2 (1− cos δϕ)
1

k2 + L3(k, T )/L2(k, T )
, (2.48)

V (T ) =
2Tc
π2∆0

∞̂

−∞

dk
L2(k, T )

k2 + L3(k, T )/L2(k, T )
. (2.49)

In these formulas, we may neglect the k dependence in the Ln sums putting k = 0. Indeed,
in the T → Tc limit, we have ω ∼ Tc and ∆0 � Tc, hence sin θ0 ≈ ∆0/ω � 1 and
L3/L2 ∼ ∆0/Tc � 1. From Eq. (2.48) we see that ∆1(k) varies on the scale of k ∼

√
∆0/Tc.

At the same time, the Ln sums, Eq. (2.22), vary on the scale of k ∼
√
Tc/∆0 �

√
∆0/Tc.
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We thus obtain:

∆1(k)

∆0

= − 2 (1− cos δϕ)

k2 + 7ζ(3)∆0/π3Tc
⇒ ∆1 (z)

∆0

= −π (1− cos δϕ) ·
exp

{
− [56ζ(3)(1−T/Tc)]1/4

π
|z|
}

[56ζ(3) (1− T/Tc)]1/4
,

(2.50)

V (T ) =

√
π3Tc

28ζ(3)∆0

=
π

2

[
1

56ζ(3) (1− T/Tc)

]1/4
. (2.51)

Thus, the current Eq. (2.35) has the form:

J =
π∆2

0(T )

4eRNTc

{[
1−
√

2γ(T )
]

sin δϕ+
γ(T )√

2
sin 2δϕ

}
. (2.52)

2.3 Discussion of the results

Equations (2.35),(2.45),(2.52) are the main results of this work. In the limit T → Tc, Eq.
(2.35) reduces to Eq. (2.52) and reproduces the result by Kupriyanov [1]. The answer (2.35)
for arbitrary T and its T → 0 limit, Eq. (2.45), are new results.

The Josephson relation with the second harmonic in the SIS tunnel junction at arbitrary T
was previously derived by Golubov and Kupriyanov [2]. In their paper, the Usadel equations
(1.1)–(1.3), (1.19), and (1.20) were solved in the coordinate space. The authors employed a
conjecture for the form of the solution to the full self-consistent problem2 . On the contrary,
our perturbation theory allows systematic rigorous calculation of the solution. The results
of Ref. [2] for the Josephson current turn out to be parametrically correct but with wrong
numerical coefficients in front of γ corrections. Our theory provides exact values of the
coefficients.

2.4 Role of self-consistency

While self-consistency for the order parameter is inherent in our calculations, it may be
instructive to discuss its role, considering what changes if the self-consistency is neglected
and we simply put ∆ = ∆0. Below, we discuss how this would change the results for the
Josephson current J .

2In Ref. [2], the perturbation theory was developed in the coordinate space. Two issues indicate that the
presented form of solution is not rigorous (we call it “conjectured”). (i) In Eq. (31) of Ref. [2], the order
parameter and the quantity parameterizing the Green functions are expanded in the system of decaying
exponents. The system does not form a full basis in the functional space, which means that actually only
a certain class of functions is considered. (ii) Equation (34) in Ref. [2] is obtained from Eqs. (32) and (33)
according to the procedure described below Eq. (33). This procedure leads to equality between two sums
running over different quantities (ω and Ω). In order to obtain Eq. (34), one should equate term-by-term
the elements of these different sums. This assumption also implies a certain conjecture about the form of
solution.
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Neglecting self-consistency implies putting ∆1(k) = 0 in Eq. (2.17). Following step-by-step
the algorithm described above in subsection (2.1), one would then obtain

V (T ) = coth

(
∆0

2T

) ∞̂

−∞

dk

π2
(L3(k, T )− L5(k, T )) . (2.53)

Neglecting self-consistency thus leads to dropping out the first term under the integral in
Eq. (2.37).

In the limit of low temperatures, T → 0, neglecting self-consistency makes the result for the
numerical coefficient V , Eq. (2.53), valid only by the order of magnitude. Indeed, for the
frequencies ω ∼ ∆0, we have sin θ0 ∼ 1, which means that the Ln sums defined in Eq. (2.22)
are all of the same order and vary on the scale of k ∼ 1. Therefore, both the terms under
the integral in Eq. (2.37) are of the same order. Numerical calculations in the limit T → 0

give for Eq.(2.53) the answer:
V (T ) = 0.152. (2.54)

In the case of approaching the critical temperature, T → Tc, self-consistency begins to play
a major role. Indeed, in this limit, we have sin θ0 � 1, hence the Ln sums are of the
order of (∆0/Tc)

n−1 and vary on the scale of k ∼
√
Tc/∆0 � 1. Substituting this into

the integral in Eq. (2.37), one finds that the first term (which is due to self-consistency)
gives a contribution of the order of

√
Tc/∆0 [see the answer for V (T ) for T → Tc limit,

Eq. (2.51)], while the (L3 − L5) term gives a contribution of the order of
√

∆0/Tc �√
Tc/∆0. The major role of self-consistency in this case is expectable since in the T → Tc

limit, the Usadel equations reduce to the GL equations (for more details see Appendix B or
[24]) , so all information about spatial variations of superconducting characteristics inside
the superconducting banks must be encoded in the ∆(x) function. Neglecting this spatial
dependence would mean neglecting the corrections due to finite interface conductance, which
is the main effect considered in this paper.

We thus conclude that taking into account self-consistency in our problem is necessary in
order to obtain quantitatively and qualitatively correct results.

2.5 Applicability conditions of the perturbation theory

The condition of weak proximity effect, which we assumed when developing our perturbation
theory, can be formulated according to Eq. (2.8) as

α
|∆1(z = 0)|

∆0

� 1. (2.55)

In the Fourier representation, the result for ∆1 is given by Eq. (2.23). At T not too close to
Tc, this yields |∆1(z = 0)| ∼ ∆0, so that the condition becomes α � 1. At the same time,
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at T → Tc, Eq. (2.50) demonstrates that |∆1(z = 0)|/∆0 ∼
√
Tc/∆0(T ) ∼ (1− T/Tc)−1/4.

Summarizing, at all temperatures, the condition of smallness of α can be written as

α�
(

1− T

Tc

)1/4

. (2.56)

Note that the α parameter itself depends on T in the vicinity of Tc as α ∝ (1 − T/Tc)−1/4

[see the definition of ξ(T ), Eq. (1.23), and Eq. (2.47)].

Alternatively, condition (2.56) can be written as γ(T ) � 1, where γ(T ) is defined by Eq.
(2.46). The limiting results for the Josephson current, Eqs. (2.52) and (2.45), confirm that
this is indeed the condition of smallness of the corrections to the Josephson relation.
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3 Second-order perturbation theory for the phases

3.1 Arbitrary temperatures perturbation theory

As we have shown in Eq. (2.27) in the first order of the perturbation theory, the phases
χ1(z, ω) and ϕ1(z) are the same at all frequencies. In this section, we show that the second-
order perturbation theory yields χ2(z, ω) 6= ϕ2(z).

We start the second-order perturbation theory by expanding Eqs. (1.2), (A.42), and (1.26)
up to α2. Thus, we obtain:

sin2 θ0
d2χ2

dz2
+ 2

dθ1
dz

cos θ0 sin δϕ = χ2 − ϕ2, (3.1)∑
|ω|<ωD

(χ2 − ϕ2) sin θ0 = 0, (3.2)

dχ2(±0)

dz
= 0. (3.3)

Before doing the basic calculations, we will calculate the helper functions χ(0)
2 (z, ω) and

ϕ
(0)
2 (z). By definition, these functions satisfy the Eqs. (3.1), (3.2), are continuous at any z

and vanish in the bulk. The equations for these functions have the form:

sin2 θ0
d2χ

(0)
2

dz2
+ 2

dθ1
dz

cos θ0 sin δϕ = χ
(0)
2 − ϕ

(0)
2 , (3.4)∑

|ω|<ωD

(
χ
(0)
2 − ϕ

(0)
2

)
sin θ0 = 0. (3.5)

The system is linear, thus it can be solved via Fourier transformation. The Fourier trans-
formation of Eq. (3.4) gives:

χ
(0)
2 (k) =

1

k2 sin θ0 + 1

[
ϕ
(0)
2 (k) + 2ikθ1(k) cos θ0 sin δϕ

]
. (3.6)

(we omit the ω argument of χ(0)
2 , ϕ(0)

2 , θ1, and θ0 for brevity). Substituting Eq. (3.6) into
Eq. (3.5), we find:

ϕ
(0)
2 (k) =

i

kL2(k)
· 2πT

∆0

∑
ω>0

θ1(k) sin 2θ0
k2 sin θ0 + 1

sin δϕ. (3.7)

Since the sum in this equation converge, we can extend the limits of summation to infinity,
formally putting ωD =∞.

Our actual problem for finding χ2 and ϕ2, defined by Eqs. (3.1)–(3.3), is more compli-
cated than the one for χ(0)

2 and ϕ(0)
2 due to two circumstances. First, current conservation,

Eq. (1.4), leads to nonzero correction to the velocity of the Cooper pairs in the bulk, i.e.,
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dϕ2/dz 6= 0 at z → ∞, which leads to delta-functional singularity in the Fourier transfor-
mation of χ2 and ϕ2. Since χ = ϕ in the bulk, it is possible to solve the system of equations
for

φ2(z, ω) ≡ χ2(z, ω)− ϕ2(z), (3.8)

from which the singularity drops out. Second, χ2 can be discontinuous at z = 0, with a (yet
unknown) phase jump δχ2(ω), see Eq. (2.11), which leads to a singularity in Eq. (3.1):

sin θ0
d2φ2

dz2
+ sin θ0

d2ϕ2

dz2
+ 2

dθ1
dz

cos θ0 sin δϕ = φ2 + δχ2δ
′(z) sin θ0. (3.9)

The Fourier transformation of Eq. (3.9) gives:

φ2(k) =
ik

k2 sin θ0 + 1
[(ikϕ2(k)− δχ2) sin θ0 + 2θ1 cos θ0 sin δϕ] . (3.10)

The self-consistency equation (3.2) in the Fourier space have the form:∑
|ω|<ωD

φ2(k) sin θ0 = 0. (3.11)

Finally, due to discontinuity at z = 0, the derivative of χ2 contains the delta-functional
contribution δχ2δ(z). The boundary condition (3.3) contains only one-sided limits at z = 0,
so in order to write Eq. (3.3) in the Fourier space, we have to subtract from the Fourier
transform the singularity due to the phase jump δχ2δ(z):

lim
z→0

 ∞̂

−∞

dk

2π
ikφ2(k)eikz − δχ2δ(z)

 = 0. (3.12)

The system of Eqs. (3.10), (3.11), and (3.12) determines φ2(z, ω) and δχ2(ω). In order to
find these functions, we employ an algorithm similar to the one used in the case of θ and ∆.
First, we substitute Eq. (3.10) into Eq. (3.11) and then find ikϕ2(k) and φ2(k). We still do
not know δχ2(ω) but we can find it from Eq. (3.12).

From the self-consistency equation (3.11) we find the connection between ϕ2(k) and δχ2:

k2ϕ2(k) =
ik

L2(k)
· 2πT

∆0

∑
ω>0

θ1 sin 2θ0
k2 sin θ0 + 1

sin δϕ− ik

L2(k)
· 2πT

∆0

∑
ω>0

δχ2 sin2 θ0
k2 sin θ0 + 1

. (3.13)

Here we define the phase functional F [δχ2](k):

F [δχ2] (k) ≡ 2πT

∆0

∑
ω>0

δχ2 sin2 θ0
k2 sin θ0 + 1

. (3.14)

Using Eqs. (3.10), (3.6), (3.7), and the definition of the phase functional, Eq. (3.14), we

24



obtain:

k2ϕ2(k) = k2ϕ
(0)
2 (k)− ikF (k)

L2(k)
, (3.15)

φ2(k) = χ
(0)
2 (k)− ϕ(0)

2 (k) +
ik sin θ0

k2 sin θ0 + 1

F (k)

L2(k)
− ikδχ2 sin θ0
k2 sin θ0 + 1

. (3.16)

The next step is to use the boundary condition (3.12). Substituting there Eq. (3.16), we
obtain:

δχ2

2
√

sin θ0
=

∞̂

−∞

dk

2π

[
ik
(
χ
(0)
2 − ϕ

(0)
2

)
− k2 sin θ0
k2 sin θ0 + 1

F (k)

L2(k)

]
. (3.17)

This can be transformed as:

δχ2

2
√

sin θ0
=
dχ

(0)
2 (z = 0)

dz
− dϕ

(0)
2 (z = 0)

dz
−

∞̂

−∞

F (k)

L2(k)

dk

2π
+

∞̂

−∞

1

k2 sin θ0 + 1

F (k)

L2(k)

dk

2π
. (3.18)

Below for brevity we denote dχ(0)
2 (z = 0)/dz by χ′(0)2 (0), and similar notation is used for ϕ(0)

2 .

Now, we multiply Eq. (3.18) by 2πT sin2 θ0/∆0 and sum over ω > 0. Then by definition of
L2, see Eq. (2.22), we have

πT

∆0

∑
ω>0

δχ2 sin3/2 θ0 −
∞̂

−∞

F (k)
dk

2π
=

2πT

∆0

∑
ω>0

sin2 θ0

χ′(0)2 (0)− ϕ′(0)2 (0)−
∞̂

−∞

F (k)

L2(k)

dk

2π

 .

(3.19)

The left-hand side turns to zero after integration of the phase functional, Eq. (3.14), over k.
At the same time, in the right-hand side we have a contribution:

∞̂

−∞

F (k)

L2(k)

dk

2π
=

∑
ω>0 χ

′(0)
2 (0) sin2 θ0∑

ω>0 sin2 θ0
− ϕ′(0)2 (0) . (3.20)

We denote:

V0 ≡
∑

ω>0 χ
′(0)
2 (0) sin2 θ0∑

ω>0 sin2 θ0
. (3.21)

Substituting this result into Eq. (3.18), we obtain:

δχ2

2
√

sin θ0
= χ

′(0)
2 (0)− V0 +

∞̂

−∞

1

k2 sin θ0 + 1

F (k)

L2(k)

dk

2π
. (3.22)

In order to calculate V0, we consider the Fourier transform of ϕ′2(z) and employing Eq. (3.15)
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we get:

ikϕ2(k) = ikϕ
(0)
2 (k) +

F (k)

L2(k)
+ βδ(k), (3.23)

where β is an unknown coefficient. Since ϕ2(z) is a continuous function at z = 0 and
ϕ′2(0) = 0 due to the boundary condition (3.3), we obtain:

0 = ϕ
′(0)
2 (0) +

∞̂

−∞

F (k)

L2(k)

dk

2π
+

β

2π
. (3.24)

From equation (3.20) we find:
β = −2πV0. (3.25)

Finally, due to the current conservation, we can consider the current in the bulk where
θ1 = 0. Employing Eq. (2.35), we obtain [also see the expansion for the current up to α2,
Eq. (2.12)]:

J0 sin δϕ [1− 4α (1− cos δϕ)V (T )] = J0

(
sin δϕ+ α

dϕ2(z →∞)

dz

)
. (3.26)

Expressing dϕ2(z =∞)/dz with the help of Eq. (3.23), we obtain:

V0 = −dϕ2(z →∞)

dz
= 4V (1− cos δϕ) sin δϕ . (3.27)

The answer for the phases χ2 and ϕ2 thus reads [see Eq. (3.10) for the connection between
ikχ2(k) and ikϕ2(k)]:

ikχ2(k) = ikχ
(0)
2 (k) +

1

k2 sin θ0 + 1

F (k)

L2(k)
+
δχ2 · k2 sin θ0
k2 sin θ0 + 1

− 2πV0δ(k) , (3.28)

ikϕ2(k) = ikϕ
(0)
2 (k) +

F (k)

L2(k)
− 2πV0δ(k) . (3.29)

The inverse Fourier transformation gives the derivatives dχ2/dz and dϕ2/dz, from which
we can find χ2(z, ω) and ϕ2(z), respectively. Even without explicit implementation of this
algorithm, we can make sure that χ2 6= ϕ2. Indeed, if we assume that χ2 = ϕ2, then Eq.
(3.22) immediately simplifies to the form:

dχ
(0)
2 (z = 0, ω)

dz
= V0, (3.30)

which cannot be satisfied since both χ
(0)
2 (z, ω) and its derivative at z = 0 have nontrivial

dependence on ω (as witnessed, for example, by numerical calculations). This proves that
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χ2 6= ϕ2. Moreover, this result is a consequence of Eq. (3.1), which contains dθ1/dz that
plays the role of the nonzero source in this equation.

3.1.1 Bulk behavior

The final step is to find out, how does χ2(z, ω) behave in the bulk, where we have supposed
it to be equal to ϕ2(z). From Eqs. (3.28) and (3.29), one can see that in the bulk, the phases
χ2 and ϕ2 are equal and vary linearly as:

χ2(z →∞, ω) = a sgn z + bz, (3.31)

with constant coefficients a and b. Our goal now is to find them.

Since χ2(k) is an odd function, we can write:

χ2(z) =

∞̂

−∞

dk

2π
eikzχ2(k)

∞̂

−∞

dk

2π
(cos kz + i sin kz)χ2(k) =

∞̂

−∞

dk

2π

sin kz

k
ikχ2(k). (3.32)

Substituting here the relation:

sin kz

πk
→
z→∞

sgn(z)δ(k) (3.33)

and employing Eq. (3.28), we find:

a =
1

2

(
lim
k→0

ikχ
(0)
2 (k) +

F (0)

L2(0)

)
, b = −V0. (3.34)

The constant a can be found with the use of Eq. (3.6), and in terms of the sums defined in
Eq. (2.22), it acquires the form:

a = 2 (1− cos δϕ) sin δϕ

[
(L2 − L4)

2 + L3 (L3 − L5)

L2L3

+
F

L2

]
k=0

. (3.35)

Both constants a and b do not depend on ω, which shows that χ2 = ϕ2 in the bulk.

3.2 Numerical results for T = 0

Equation (3.22) can be solved numerically, and we present the results of this procedure in
the case of T = 0 in Figs. 3.1 and 3.2. Both the figures confirm that χ 6= ϕ. From Fig.
3.1, we see that δχ2(ω) is an alternating function, which could be inferred from Eq. (3.2) at
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Figure 3.1: δχ2(ω) plot at T = 0 without factor 4(1− cos δϕ) sin δϕ. Interestingly, the curve
crosses the abscissa very close to the ω = ∆0 point (see the inset, the difference of the point
of intersection from 1 may be due to the error of the numerical method). While this may be
a hint to an exact property, we do not have a proof for that.

z = ±0. Indeed, due to the continuity of corrections ϕ1(z) and ϕ2(z), we obtain:∑
ω

δχ2(ω) sin θ0 = 0. (3.36)

The sum can turn to zero only if δχ2(ω) changes its sign.

From the plot Fig. 3.2 we see how the phases χ2(z, ω) and ϕ2(z) depend on z in a nonlinear
manner (such nonlinear dependence was discussed in Ref. [13] in the case of SNS junction).
χ2(z, ω) and ϕ2(z) become equal in the bulk and change linear with the slope −V0(T ).
The overall nonlinear spatial dependence of the phases corresponds to increased velocity of
the superconducting condensate in the vicinity of the interface. This compensates for the
interface suppression of the order parameter (see Fig. 2.2) and, hence, of the condensate
density (due to the proximity effect between the superconducting banks) in order to provide
position-independent Josephson current throughout the system.
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Figure 3.2: χ2(z) plot at different ω without factor 4(1− cos δϕ) sin δϕ. Since χ2 is an odd
function, nonzero values χ2(z = 0) 6= 0 signify that this function is discontinuous at z = 0.
At z → ∞, all the curves become linear. Interestingly, this linear dependence of the form
a sgn z + bz crosses the z axis very close to z = 1 (see the inset, the difference of the point
of intersection from 1 may be due to the error of the numerical method). While this may be
a hint to an exact property, we do not have a proof for that. The figure demonstrates that
δχ2 changes nonmonotonically as the function of ω: the curve for ω = 7∆0 is lower than for
ω = 3∆0, but higher than for ω = 0.7∆0 (this correlates with the result of Fig. 3.1). In the
ω →∞ limit, the χ2(z, ω) curves converge to ϕ2(z).
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4 Conclusions and results

We have considered the Josephson effect in a planar diffusive SIS-type junction at arbitrary
temperature T and constructed fully self-consistent perturbation theory with respect to the
dimensionless conductance parameter α� 1, which is the ratio of the interface conductance
to the conductance of the superconducting material on the coherence length. We have
presented analytical analysis of two orders of the perturbation theory.

The first order of the perturbation theory provides correction ∆1 to the absolute value of the
order parameter, see Eq. (2.23) and Fig. 2.2. In the coordinate space, ∆(z) is suppressed
in the vicinity of the interface. Knowledge of ∆1 makes it possible to find θ1. In its turn, θ1
provides the answer for the Josephson current up to the α2 order, which contains not only
the standard part J(δϕ) ∝ sin δϕ but also a (negative) correction to the first harmonic and
the second harmonic sin 2δϕ (with a positive amplitude). We further analyze the general
answer given by Eq. (2.35), in two limiting cases, see Sec. 2.2.1 and 2.2.2. In the T → Tc

limit, we reproduce the result by Kupriyanov [1], while our results in the T → 0 limit (as well
as in the case of arbitrary temperature) are new. Although the same problem at arbitrary
temperature has been considered before in Ref. [2], the corrections to the Josephson relation
obtained there were only parametrically correct due to a conjectured form of solution. Our
theory provides rigorous solution, which results in exact numerical coefficients.

Our perturbation theory also provides solutions for the superconducting phases of the anoma-
lous Green functions and of the order parameter, χ and ϕ, respectively. In the zeroth order,
the phases are equal constants corresponding to the standard main-order solution for the
Josephson effect in tunnel junctions. In the first order, the phases are still equal but acquire
the linear part which describes finite velocity of the superconducting condensate at each
point of the superconductors. Finally, in the second order, we find that χ 6= ϕ. We present
the plot of χ2(z, ω) at different Matsubara frequencies and of ϕ2(z) at T = 0 in Fig. 3.2.
We also illustrate the frequency dependence of the phase jumps δχ2(ω) at T = 0 in Fig. 3.1
(note that the phase jumps δϕ2 are absent by definition).

The overall spatial dependence of the phases is nonlinear, corresponding to increased velocity
of the superconducting condensate in the vicinity of the interface. This compensates for the
interface suppression of the order parameter and, hence, of the condensate density (due
to the proximity effect between the superconducting banks) in order to provide position-
independent Josephson current throughout the system, see Fig. 1.1.
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A The Usadel equations

In this appendix, we give a brief description of the equations describing superconductivity,
as well as some important definitions and properties of the Usadel equations.

One of the key characteristics describing superconductivity in solids are the Green’s func-
tions, which are defined as follows:

G (1; 2) ≡ −
〈
Tτψ↑(1)ψ†↑(2)

〉
, i = (ri, τi), i = 1, 2, (A.1)

G̃ (1; 2) ≡
〈
Tτψ

†
↓(1)ψ↓(2)

〉
, (A.2)

F (1; 2) ≡ 〈Tτψ↑(1)ψ↓(2)〉 , (A.3)

F̃ (1; 2) ≡ −
〈
Tτψ

†
↓(1)ψ†↑(2)

〉
, (A.4)

where ψ, ψ† are the annihilation/creation operators of the electron respectively, r is the
coordinate of the electron in the Cooper pair, τ is the time, and Tτ is the time ordering
operator .

In order to obtain these Green functions one must write Gorkov equations [25]:

[
iωσ̂z +

1

2m
∇2

r1
+ µ+ i∆̂ (r1)

]
Ĝω = δ (r1 − r2) , (A.5)[

iωσ̂z +
1

2m
∇2

r2
+ µ+ i∆̂T (r2)

]
ĜT
ω = δ (r1 − r2) , (A.6)

∆ (r) = igT
∑
|ω|<ωD

Fω (r, r) , (A.7)

Ĝ ≡

(
G F

F̃ G̃

)
, ∆̂ ≡

(
0 ∆

∆∗ 0

)
, (A.8)

where µ is the chemical potential, m is the mass of the electron, ω = πT (2n + 1), n ∈ Z
are Matsbara frequencies, g – BCS coupling constant, ∆ is the orer parameter, and T is the
temperature.

Analyzing SIS contact using this set of equations is a daunting task. Therefore, it is necessary
to make a number of approximations.

It is convinient to change variables with the use of Wigner transformation:

R ≡ r1 + r2
2

, r ≡ r1 − r2, (A.9)

f (R,p) ≡
∞̂

−∞

f (R, r) e−iprdr, (A.10)

p ≈ n

(
pF +

X

vF

)
, (A.11)
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where R is the coordinate of the center of mass of the Cooper pair, p is the relative momen-
tum of the electron in Cooper pair, pF , vF are Fermi momentum and velocity respectively.
The first approximation lies in the fact that the Fermi wave length λF is much less that
the coherence length ξ – the scale of R at which the Green functions changes. This means
that the relative motion of electrons in a pair is much faster than the movement of the pair
itself as a whole. Therefore, one should consider derivatives on R in the Gorkov Eqs. (A.5)–
(A.6) to be small. This approximation allows one to derive semiclassical superconductivity
equations, called the Eilenberger equations [26]:

vFn∇Rĝ (R,n) + [ω̂, ĝ (R,n)] = 0, (A.12)

ω̂ ≡ ωσ̂z + ∆̂ (R) +
1

2τ

ˆ
dn

4π
ĝ (R,n) , (A.13)

ĝ (R,n) ≡ 2i

∞̂

−∞

dX

2π
Ĝ (R,n, X) , (A.14)

∆ (R) = π ν0g︸︷︷︸
λ

T
∑
|ω|<ωD

ˆ
dn

4π
fω (R,n) , (A.15)

ĝ2 = 1, (A.16)

g̃ = −g, (A.17)

where ν0 is the density of states at the Fermi level in the normal state, τ is the mean free
time (we consider a superconductor with impurities). The combination ν0g = λ is called
BCS coupling constant.

In the diffusive, or so-called dirty, limit, when the superconducting coherence length ξ is
much larger than the mean free path l, superconductors can be described by the Usadel
equations [20]. The Usadel equations is the approximation of Eilenberger Eqs. (A.12)–
(A.17) that uses the fact in very dirty superconductors all directions of the momentum p

are equal, which means that the Green function Eq. (A.14) is close to isotropized one Eq.
(A.19):

ĝ (R,n) = ĝ0 (R) + nĝ1 (R,n) , |g1| � g0 (A.18)

ĝ0 (R) ≡
ˆ
dn

4π
ĝ (R,n) . (A.19)
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The Usadel equations have the following form:

D (−i∇) [ĝ0 (−i∇) ĝ0] +
[
Ω̂, ĝ0

]
= 0, (A.20)

∆ (r) = πλT
∑
|ω|<ωD

f0 (r, ω) , (A.21)

Ω̂ ≡

(
ω ∆

∆∗ −ω

)
(A.22)

ĝ20 = 1, (A.23)

where D = vF l/3 is a diffusion constant and l is the mean free path.

In order to include a magnetic field with the vector potential A one should replace −i∇ by
P̂ ≡ −i∇− eA [σ̂z, . . . ], where e is the charge of the electron.

A componentwise representation of the Usadel equations gives:

D∇
[
g∇g + f∇f̃ + 2ieAff̃

]
− f̃∆ + f∆∗ = 0, (A.24)

D

2

[
g (∇− 2ieA)2 f − f∇2g

]
+ g∆− ωf = 0, (A.25)

D

2

[
g (∇+ 2ieA)2 f̃ − f̃∇2g

]
+ g∆∗ − ωf̃ = 0, (A.26)

D∇
[
g∇g + f̃∇f − 2ieAff̃

]
− f∆∗ + f̃∆ = 0, (A.27)

g2 + ff̃ = 1, (A.28)

∆ (r) = πλT
∑
|ω|<ωD

f (r, ω) . (A.29)

Here we omit 0 index for brevity, supposing that f, f̃ , g are isotropized.

The system of Eqs. (A.24)–(A.29) is overflowing. Indeed, one can easily see that from so-
called normalisation condition Eq. (A.28) it follows that Eqs. (A.24) and (A.27) coincide
up to sign. Less trivial fact is that Eq. (A.26) follows from Eqs. (A.24)–(A.25). Indeed, one
can multiply Eq. (A.25) by f̃ and subtract from it multiplied by f Eq. (A.26) and obtain
(A.24). We can also use the symmetries of the Green functions with respect to the reversal
of the frequency ω sign:

− g∗−ω = gω; f ∗−ω = f̃ω. (A.30)

Thus, the Usadel equations have the form:

D

2

[
g (∇− 2ieA)2 f − f∇2g

]
+ g∆− ωf = 0, (A.31)

g2 + |f |2 = 1, (A.32)

∆ (r) = πλT
∑
|ω|<ωD

f (r, ω) . (A.33)
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For a complete description of superconductivity, it is also necessary to add a relation for the
current and Maxwell equation:

j = πiν0DTe
∑
|ω|<ωD

(f (∇+ 2ieA) f ∗ − f ∗ (∇− 2ieA) f) , (A.34)

∇×∇×A = 4πj. (A.35)

The Usadel equations can be rewritten in more convinient form with the use of so-called
angular parameterisation [6, 7]:

g = cos θ, f = eiχ sin θ, (A.36)

∆ = |∆| eiϕ, (A.37)

where χ is the anomalous Green function f phase, θ – angular variable, and ϕ is the order
parameter phase. In this parameterisation the Eqs. (A.31), (A.33), (A.34) have the form:

D

2
∇2θ + |∆| cos (χ− ϕ) cos θ − ω sin θ − D

2
sin θ cos θ (∇χ− 2eA)2 = 0, (A.38)

D

2
∇
(
(∇χ− 2eA) sin2 θ

)
= |∆| sin (χ− ϕ) sin θ, (A.39)

|∆| = πλT
∑
|ω|<ωD

ei(χ−ϕ) sin θ, (A.40)

j = 2πν0DTe
∑
|ω|<ωD

sin2 θ (∇χ− 2eA) . (A.41)

One of the consequences of the Usadel equations is the continuity equation for the current
[18, 24, 27, 28]. Indeed, due to |∆| ∈ R+, therefore from Eq. (A.40):

0 =
∑
|ω|<ωD

sin (χ− ϕ) sin θ. (A.42)

The next step is to sum Eq. (A.39), which does play the role of the continuity equation with
the source for spectral component of the current (∇χ− 2eA) sin2 θ, over ω. From current
relation (A.41) we obtain:

∇j = 0 (A.43)
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B The limit of temperatures close to critical. The

Ginzburg-Landau equation.

In the limit T → Tc, the order parameter ∆ becomes small in comparison with Tc, which
makes it possible to simplify the Usadel equations. This appendix is a short paragraph that
contains the main ideas of this derivation. For more details see [24].

Before obtaining the equations describing the behavior of the system in this limit, let us find
the characteristic scales at which the physical quantities in this system change.

We start from the Usadel equations (A.38), (A.39) and the self-consistency equation (A.40),
which can be rewritten in the following form [24]:

|∆| ln
(
Tc
T

)
= πT

∑
ω

(
|∆|
|ω|
− sin θei(χ−ϕ)

)
, (B.1)

where the summation limits are already infinite.

Consider a homogeneous solution of this system of equations in a case of non-zero current
J . The velocity of the Cooper pairs is:

p = ∇ϕ− 2eA. (B.2)

In T → Tc limit we have to keep only the leading orders in ∆ in Eq. (A.38), from which one
can obtain:

|∆| − ωθ − D

2
p2θ

ω>0
= 0⇒ θ =

|∆|
ω + D

2
p2
. (B.3)

The direct substitution of this result in the self-consistency equation (B.1) gives us :

(
1− T

Tc

)
=
∞∑
n=0

(
1

n+ 1
2

− 1

n+ 1
2

+ D
4πTc

p2

)
= ψ

(
1

2
+

D

4πTc
p2
)
− ψ

(
1

2

)
, (B.4)

where ψ is the digamma function.

Due to Tc − T � Tc, therefore expanding digamma function in Eq. (B.4) with respect to
Dp2/Tc we obtain the order of the scale ξc at which the physical quantities in this system
change:

Dp2

Tc
∼ 1− T

Tc
⇒ ξc =

1

p
∼
√

D

Tc − T
∼ ξGL(T ). (B.5)

Here we have shown, that in the limit T → Tc angular variable θ and the order parameter
∆ changes on the scale ξGL(T ). Based on this, we can now directly derive the Ginzburg-
Landau equation from the Usadel equations. Without loss of generality, we will consider a
system with zero vector potential A = 0. In order to derive Ginzburg-Landau equation it is
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convinient to use The Usadel equation in the form Eq. (A.31):

D

2

[
g∇2f − f∇2g

]
+ g∆− ωf = 0, (B.6)

g2 + |f |2 = 1. (B.7)

In T → Tc limit ∆� Tc, which allows us to expand Green functions f, g with respect to ∆

up to 3rd order:

f = f0 + f1 + f2 + f3 + o
(
|∆|3

)
, (B.8)

g = g0 + g1 + g2 + o
(
|∆|2

)
. (B.9)

The expansion is carried out up to those orders when the gradient terms begin to influence,
which will make it possible to monitor the contribution of various inhomogeneities of the
system to the order parameter. With the use of Eq. (B.5) one can see that |∇θ| ∼ θ/ξGL.
With the help of this fact after a direct substitution of expansions Eqs. (B.8)–(B.9) we
obtain:

f =
∆

|ω|
+

D

2ω2
∇2∆− ∆ |∆|2

2ω2 |ω|
, (B.10)

g =
|ω|
ω
− |∆|

2

2ω |ω|
. (B.11)

The next step is to substitute the obtained Green functions f , g in the self-consistency
equation, which has the form:

∆ ln

(
Tc
T

)
= πT

∑
|ω|<ωD

(
∆

|ω|
− f

)
. (B.12)

Substituting f , Eq. (B.10), into Eq. (B.12), we obtain:

∆

(
1− T

Tc

)
=

7ζ (3)

8π2T 2
c

∆ |∆|2 − πD

8Tc
∇2∆. (B.13)

This is the Ginzburg-Landau equation. It can be rewritten in more compact form (here we
will again bring the vector potential back into consideration):

ξ2GL (∇− 2ieA)2 ∆ + ∆−∆
|∆|2

∆2
0

= 0, (B.14)

ξ2GL(T ) ≡ πD

8 (Tc − T )
, (B.15)

|∆0|2 ≡
8π2T 2

c

7ζ (3)

(
1− T

Tc

)
, (B.16)
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where ξGL is the Ginzburg-Landau correlation length and ∆0 is the bulk order parameter.
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C Numerical analysis of the second order perturbation

theory for phases

In this appendix, our goal is to tell about the main idea of the numerical method for solving
the integral equation Eq. (3.22) and, therefore, obtaining phases from it as a function of z.

The idea of the method is based on several factors. First, with the help of numerical inte-
gration, we managed to understand how the quantity χ′(0)2 (0, ω) is distributed depending on
ω at T = 0. It turns out that the following equalities hold (due to χ2 ∝ 4 sin δϕ(1− cos δϕ)

we omit this factor in all formulas containing F , χ2, ϕ2, χ
(0)
2 , ϕ(0)

2 for brevity)

χ
′(0)
2 (0, ω = 0) ≈ 0.15, (C.1)

ϕ
′(0)
2 (0) ≈ 0.319, (C.2)

V0 ≈ 0.272. (C.3)

Therefore, from Eq. (3.20) we see, that

∞̂

−∞

F (k)

L2(k)

dk

2π
≈ 0.05 . χ

′(0)
2 (0, ω = 0), V0. (C.4)

This inequality allows us to look at the phase functional F in the equation Eq. (3.22) as a
small correction and solve it iteratively (i.e., first put F = 0, find the phase jumps δχ2, and
then find F , etc.).

Second, if the phase jumps δχ2 are calculated incorrectly, this will significantly affect the rate
of decrease of the phase functional F . Indeed, using the equation Eq. (3.36) we understand
that the phase functional, Eq. (3.14), must decay at infinity faster than 1/k2 for k � 1.
If this is not the case, then the integral in the equation Eq. (3.22) will converge, but will
give parametrically incorrect values, which will worsen the numerical scheme. Therefore,
it is very important to ensure that the equality Eq. (3.36) was carried out. For this, it
is necessary to consider at the iteration step the constant V0 in the integral equation also
changing. If the circuit converges, then the V0 value obtained like this will simply approach
its theoretical value.
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iteration value
V

[1]
0 0.297115
V

[2]
0 0.268929
V

[3]
0 0.272768
V

[4]
0 0.272190

V
[th]
0 0.272193

Table C.1: The table of V0(T = 0) for different iterations. As we can see, the numerical
scheme very quickly approaches the theoretical value of V0, which is one of the indirect proofs
of its convergence.

δχ2
[1]

δχ2
[2]

δχ2
[3]

δχ2
[4]

2 4 6 8 10
ω/Δ0

-0.3

-0.2

-0.1

δχ2/4(1 - cos δφ)sin δφ

Figure C.1: δχ2(ω) plot for T = 0 for different iterations of the numerical scheme. As can
be seen from the graph, the numerical scheme converges very quickly at low frequencies.

Thus, the numerical scheme has the form

δχ
[i+1]
2

2
√

sin θ0
= χ

′(0)
2 (0)− V [i+1]

0 +

ˆ

R

dk

2π

1

1 + k2 sin θ0

F [i](k)

G(k)
, (C.5)

V
[i+1]
0

∞̂

0

dω sin3/2 θ0 =

∞̂

0

dω sin3/2 θ0χ
′(0)
2 (0) +

∞̂

0

dω sin3/2 θ0

ˆ

R

dk

2π

1

1 + k2 sin θ0

F [i](k)

G(k)
,

(C.6)

F [0](k) ≡ 0. (C.7)

This scheme gives for V0 the following values for 4 iterations (see Tab. C.1). Below we also
show the plots for δχ2(ω), Fig. C.1, and for F (k), Fig. C.2, for different iterations, which
shows a good convergence of the scheme.
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F[1]

F[2]

F[3]

2 4 6 8 10
k

-0.10

-0.08

-0.06

-0.04

-0.02

F(k)/4(1 - cos δφ)sin δφ

Figure C.2: F (k) plot for T = 0 for different iterations of the numerical scheme. As can be
seen from the graph, the numerical scheme converges very quickly.
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