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Abstract

We investigate the structure of quasiparticle states localized in a core of an Abrikosov vortex in a
clean layered superconductor in the presence of planar defects. It is shown that even a highly trans-
parent defect opens a minigap at the Fermi energy. Its magnitude, Eg ∼ ∆

√
R, exceeds the mean

level spacing for the chiral branch, ω0 ∼ ∆2/EF , already for very small values of the reflection
coefficient off the defect, R ≪ 1 (∆ is the bulk gap). For R ≳

√
∆/EF , formation of the mini-

gap is accompanied by the appearance of subgap states localized along the defect, in accordance
with [A. V. Samokhvalov et al., Phys. Rev. B 102, 174501 (2020)]. The minigap takes its maxi-
mal value for the vortex located right at the defect, decreases with increasing the distance b from
the defect, and closes when kF b ∼ (∆/ω0)

√
R. We also study various configurations of several

planar defects (few crossing planes, stars, periodic structures). Although the minigap remains, a
strong commensurability effect is observed. For two crossing planar defects, the magnitude of the
minigap strongly depends on how close the intersection angle is to a rational fraction of π.
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Реферат

Рассматривается задача о структуре состояний, локализованных в коре вихря Абрикосова в
чистом слоистом сверхпроводнике, расположенного вблизи границы между двумя чистыми
сверхпроводниками. Граница предполагается достаточно прозрачной, с коэффициентом отражения
R ≪ 1, что представляет собой предел обратный стандартному приближению туннельного
гамильтониана, применимому для плохо прозрачных границ.

Показано, что наличие границыприводит к появлениющели в спектре локализованных
в коре вихря низкоэнергетических состояний, которая имеет порядок величины Eg ∼ ∆

√
R,

что уже при очень малых коэффициентах отражения превышает среднее расстояние ω0 ∼
∆2/EF между уровнями киральной ветви спектра (∆ – сверхпроводящаящель). Для относительно
больших величин коэффициента отражения R ≳

√
∆/EF открытие щели сопровождается

образованием подщелевых состояний локализованных вдоль дефекта, что согласуется с работой
[A. V. Samokhvalov et al., Phys. Rev. B 102, 174501 (2020)]. Щель максимальна, когда вихрь
расположен прямо на дефекте, уменьшается по мере увеличения расстояния b до дефекта и
закрывается при kF b ∼ (∆/ω0)

√
R.

Исследовано также обобщение задачи на случай различных конфигураций с несколькими
границами (периодические структуры, пересечение двух линейных границ, «звезда» с несколькими
лучами). Во всех случаях щель в спектре сохраняется, однако в случае пересекающихся
границ возникает сильно выраженный эффект соизмеримости, когда величинащели существенно
зависит от того, насколько хорошо угол пересечения (в единицах полной окружности) аппроксимируется
рациональной дробью.
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Chapter 1

Introduction

It is well known [36] that the superconductors are divided into two types. Type I superconductors

have a sharp transition from the superconducting state to the normal state. The transition occurs at a

certain critical fieldHc, which value depends on the temperature. In the superconducting state, the

magnetic field is completely expelled. This phenomenon is known as the Meissner effect. At low

and high magnetic fields type II superconductors behave similarly to the type I superconductors:

they also can be either in the superconducting state or in the normal state correspondingly. But

unlike type I superconductors, type II superconductors exhibit an intermediate phase: above a

certain lower critical field Hc1 and below an upper critical field Hc2 the superconductor enters a

«mixed state». In this state magnetic field starts to penetrate the material in the form of Abrikosov

vortices, each with quantized flux Φ0 = hc/2e.

In the Abrikosov vortex supercurrent circulates around the core, which can be considered as

a piece of a normal metal with the size of the superconducting coherence length ξ and finite density

of states at the Fermi level. Vorticesmay be pinned by some sort of inhomogeneities: lattice defects,

impurities, etc. Let a transport current flow through the sample. If its density does not exceed a

certain critical value jc and vortices remain pinned, the resistance of the superconducting sample

remains zero. In other cases, vortices move under the action of the Lorentz force: the system enters

the flux flow regime [2]. As the vortex move, the magnetic field changes, giving rise to an electric

field. This results in the Ohmic losses, and the conductivity of the sample becomes finite.

In 2018 at the conference «Localization, Interactions, and Superconductivity»Britton Plourde

reported on an experimental investigation of the properties of superconducting granular aluminum

in magnetic field [37]. More specifically, vortex microwave response was measured at millikelvin

temperatures. It was found that an increase in the number of granules in a given volume results

in an increase in the quality factor of the system. In other words, the granular aluminum exhibits

low-temperature anomalies in flux-flow conductivity.

When the temperatureT dropswell below the superconducting gap∆ and bulk quasiparticle

excitations are frozen out, entropy transfer may take place only in the vortex core. Therefore,

in order to theoretically investigate phenomena similar to those observed in the aforementioned

experiment, one should first study the vortex core structure.

What is the difference between the granular media and ordinary bulk superconductor? In
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the granular media, vortices can be pinned at grain boundaries. And we expect that the presence of

planar defects affects the spectrum of the quasiparticle excitations localized in the vortex core.

In this work we assume that the superconductor is clean: there are no point-like impurities.

Also, in order to simplify the analysis, we consider the case of layered superconductors. Then the

problem of a vortex near a planar defect reduces to the 2D problem of a pancake vortex near a

linear defect. Assuming such a 2D geometry, hereinafter planar defects are referred to as linear

ones.

Caroli, de Gennes, and Matricon (CdGM) [3] calculated the spectrum of excitations local-

ized in the vortex core in the absence of impurities. They obtained that the low-energy spectral

branch is given by a dense set of equidistant levels,

Eµ = µω0, (1.1)

with the level spacing ω0 ∼ ∆2/EF ≪ ∆ and half-integer µ (EF is the Fermi energy and we set

h̄= 1). Equation (1.1) holds in the two-dimensional (2D) case applicable for pancake vortices in

layered superconductors. Account of motion along the vortex (in z direction) broadens each level

Eµ into a zone dependent on the momentum kz. For strongly anisotropic superconductors such a

broadening is small and can be neglected.

The parameter µ in Eq. (1.1) is a half-sum of the angular momenta of the electron and hole

components of the excitation. If one relaxes the constraint µ = Z+1/2 and treats µ as a continuous

variable then the chiral branch can be considered as a gapless fermionic zero mode [4]. Its existence

is protected by topological arguments [5] and physically is related to vanishing of the average order

parameter seen by trapped particles due to 2π winding of its phase [6].

Disorder typically modeled by point-like impurities breaks the axial symmetry of the prob-

lem and leads to mixing of the chiral states. That calls for a statistical description, which has been

extensively studied in the clean (1/τ ≪ ω0) [7], moderately clean (ω0 ≪ 1/τ ≪ ∆) [9, 8, 10, 11],

and dirty (∆ ≪ 1/τ ) [12] limits, where τ is the elastic scattering time. Despite several types of the

spectral statistics have been identified, the coarse-grained DOS averaged over a window larger than

ω0 is still 1/ω0, indicating that the chiral branch in the presence of point-like impurities remains

(quasiclassically) gapless.

When a vortex starts moving driven by an electric current, impurity potential in its core is

being changed with time. This is the origin of the spectral flow along the chiral branch, leading to

the heating of the vortex core and eventually to the energy dissipation. On a quasiclassical level, the

theory of flux-flow conductivity has been developed in Refs. [13, 14, 15]. Peculiar effects related

to spectrum discreteness were studied in Refs. [7, 8, 16, 17, 18, 19].

A different type of imperfections is provided by extended defects, such as columnar defects
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[20, 21, 22]. Those structures have a much more pronounced effect on the chiral branch as they

completely take low-µ excitations out of the game, leading to the formation of the minigap Eg ∼
ω0kF b, where b is the radius of the columnar defect and kF is the Fermi momentum. Other types

of extended defects relevant for vortex pinning and microwave absorption are grain boundaries

[23, 24], twin boundaries [25, 26], anti-phase boundaries [27], etc.

In a recent paper, Samokhvalov et al. [28] considered modification of the vortex-core states

in a clean superconductor in the presence of a sufficiently weak planar defect with the normal-

incidence reflection coefficientR ≪ 1 passing through the vortex center. Solving the Bogolyubov–

de Gennes equation in the quasiclassical approximation, they obtained that the defect breaks the

continuity of the chiral branch and opens a minigap Eg ≫ ω0 in its spectrum, which grows with

the strength of the defect, R. Another prediction of Ref. [28] is the existence of the states localized

along the defect, which appear through a topological transition with increasing R above 1/kF ξ.

The resulting DOS structure in this regime is quite complicated. It is characterized by the minigap

Eg ∼ ∆
√
R for the majority of states and the presence of a number of sub-minigap states referred

to as a “soft gap” in Ref. [28].

Although quasiclassical approximation is a standard tool in vortex physics [29], it should

be applied with care. A known issue is a controversy on the presence of a hard gap in a normal

diffusive metal proximitized by a superconductor: While the microscopic approach based on the

Usadel equation predicts a hard gap of the order of the Thouless energy [30, 31, 32], a trajectory-

based approach leads to a soft gap [33]. The origin of the discrepancy can be traced back to the

absence of quantum transitions between trajectories in the quasiclassical treatment. Such transitions

automatically incorporated in the Usadel equation become essential in the low-energy (long-time)

limit and eventually lead to the hard gap formation [34].

In this thesis we consider the effect of weak planar defects on the quasiparticle excita-

tions localized in the vortex core in a clean superconductor (no impurities). Instead of relying on

the quasiclassical approach, we develop a fully quantum-mechanical approach based on the one-

dimensional (1D) nature of the chiral branch. Then the knowledge of exact clean wave functions

[17] allows us to calculate the matrix elements of the defect without assuming it to be small. The

resulting 1D quantum mechanics is solved either in the momentum representation or in the dual

angular representation.

For a single linear defect passing through the vortex center, we reproduce and clarify the

results obtained by the semiclassical trajectory approach [28]. Characterizing the defect strength

by a dimensionless parameter α ∼ (kF ξ)
√
R [for a precise definition, see Eq. (2.18)], we identify

two regimes:

• Weak defects with α ≪
√
kF ξ open a minigap Eg ≈ αω0. In this case the whole spectrum

can be determined analytically.
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Figure 1.1: Positive energy levelsEn for a vortexwith kF ξ = 200 as a function of the dimensionless
defect strength α. One can clearly see a linearly growing gap Eg = ω0α. At α ≳ 20 some pairs
of levels become nearly degenerate and detach from the gapped majority of states. Inset shows the
energy difference between the lowest pair of levels, with the sharp drop indicating the emergence
of the first pair of nearly degenerate subgap states (indistinguishable at the main panel) at α ≃ 20.

• For stronger defects with α ≫
√
kF ξ, the main part of the spectrum is gapped with Eg ≈

αω0, but a number of subgap states appear at energies En < Eg. Those are the “soft-gap”

states of Ref. [28].

This picture is illustrated in Fig. 1.1, where we plot the spectrum of localized states as a function

of α obtained numerically for a vortex with kF ξ = 200. At α = 0 we have an equidistant set

of CdGM levels (1.1). One can clearly see the opening of the gap Eg ≈ αω0 accompanied by

sequential splitting of states with a weaker α-dependence starting at α ≈ 20 ≈
√
2kF ξ. Since the

majority of states are gapped with Eg ≈ αω0, we would like to refer to those new states as subgap

states refraining from using the “soft-gap” terminology.

Inset to Fig. 1.1 shows the differenceE1−E0 between the first two levels. First it decreases

nearly as E1 − E0 ∼ ω0/
√
α due to level crowding above the minigap, with the dashed line being

the exact expression obtained from Eqs. (2.30) and (2.31). However at α ≈ 20 two lowest levels

nearly merge, with the splitting decaying exponentially. This corresponds to an exponentially weak

hybridization of a pair of states localized on both sides of the defect.

We also analyze a number of more complicated configurations of linear defects in the vortex
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core, assuming α ≲
√
kF ξ, where a simple quantum-mechanical description can be developed. In

order to study the robustness of the minigap, we consider a vortex displaced from the linear defect

at a finite distance b. We obtain that the minigapEg(α, b) ≈ (α−kF b)ω0 exists as long as kF b < α.

For several intersecting linear defects, we report on a pronounced commensurability effect, with the

magnitude of the minigap being highly sensitive to the angle between the defects and the fraction

it constitutes with π. The maximal value the minigap can take is again Eg ∼ αω0, whereas for

incommensurate angles it still survives and is bounded from below by Eg ∼
√
αω0. Finally, we

demonstrate that the minigap persists also for periodic structure of linear defects, though its value

decreases with decreasing the period of the defect lattice.

The thesis is organized as follows. In Sec. 2 we map the problem of the excitation spectrum

in the core of a 2D pancake vortex placed near a linear defect to a simple 1D quantum mechanics,

demonstrate gap opening, and determine its dependence on the defect strength and the distance

between the vortex center and the defect. Peculiar incommensurability effects arising at intersecting

multiple defects configurations are analyzed in Sec. 3. Periodic structures of defects are studied

in Sec. 4. While all the above results were obtained for α ≲
√
kF ξ, in Sec. 5 we discuss the

appearance of the subgap states at α ≳
√
kF ξ and relation to Ref. [28]. In Sec. 6 we consider the

effect of the self-consistent determination of the order parameter and show that it can be neglected.

The results obtained are discussed in Sec. 7. Important technical details are relegated to several

Appendixes.

In conclusion of this section, we inform you that based on the results obtained during the

work on this thesis, we wrote an article [1] that was recently published in Physical Review B.
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Chapter 2

Pancake vortex near a linear defect

In this section we consider the case of a linear defect, passing at a distance of b from the vortex

center. The defect is assumed to be weak enough, such that it does not break the superconductor into

two weakly coupled pieces and cannot be described by the tunneling Hamiltonian approximation.

Instead, we model it by a delta-function potential [35, 28]

V (r) =
h̄2κ
m

δ(r1 − b), (2.1)

where r = (r1, r2) andm is the electron’s mass (we assume parabolic dispersion). The strength of

the defect specified by the parameter κ can be conveniently characterized by the normal-incidence

reflection coefficient:

R =
κ2

k2F + κ2
. (2.2)

The defect is weak provided κ ≪ kF and hence R ≪ 1. Below the influence of the defect on the

chiral states will be described by the dimensionless parameter α introduced in Eq. (2.18).

2.1 CdGM states

Here, we summarize relevant information about quasiparticle states localized in the vortex core

in a clean 2D superconductor [3]. They are obtained as eigenstates of the Bogoliubov–de Gennes

(BdG) equation [36]

H(r)Ψ(r) = εΨ(r) (2.3)

for a two-component (particle/hole) wave function Ψ(r). Choosing the vortex order parameter in

the form ∆(r) = |∆(r)|e−iφ, where r and φ are polar coordinates, the BdG Hamiltonian can be

written as

H(r) =

 H ∆(r)

∆∗(r) −H∗

 , (2.4)

where ∆(r) is the superconducting order parameter and H is the single-particle Hamiltonian:

H =
1

2m

(
p− e

c
A
)2

− EF . (2.5)
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Here EF is the Fermi energy and A is the vector potential (that will be neglected assuming strong

type-II superconductivity).

The low-lying spectral branch of this equation given by Eq. (1.1) was obtained by CdGM

[3], who worked in a quasiclassical approximation. The wave function of the µth state valid for all

µ has the form [9]

Ψµ(r) = Ae−K(r)

Jµ−1/2(kF r) e
i(µ−1/2)φ

Jµ+1/2(kF r) e
i(µ+1/2)φ

 , (2.6)

where the envelope e−K(r) with

K(r) =
1

h̄vF

∫ r

0

∆(r′) dr′ (2.7)

decays exponentially at r ≫ ξ, and A is the normalization factor:

A2 =

[
4

kF

∫ ∞

0

e−2K(r) dr

]−1

∼ kF
ξ
. (2.8)

Strictly speaking, the factorA also depends onµ, but this dependence can be neglected forEµ ≪ ∆.

The level spacing ω0 ∼ ∆2/EF ≪ ∆ is determined by the profile of the order parameter

∆(r):

ω0 =

∫∞
0

∆(r)
kF r

e−2K(r) dr∫∞
0
e−2K(r) dr

. (2.9)

2.2 Projection to the chiral branch

Recognition that all low-energy states in the vortex core are exhausted by the CdGM chiral branch

is vital for describing of quasiparticle rearrangement by a weak potential perturbation. For a finite

V (r), it makes it possible to reduce a complicated BdG equation (2.3), which is a matrix differential

equation in 2D, to a much simpler 1D problem by projecting it onto the states of the chiral branch.

In such an approach pioneered in Ref. [9], the BdG Hamiltonian is mapped onto a matrix

Hµν = µω0δµν + Vµν , (2.10)

where Vµν is the matrix element of the potential V (r) in the chiral basis (2.6):

Vµν =

∫
d2rΨ+

µ (r)τ3Ψν(r)V (r), (2.11)

Knowledge of the wave functions in an explicit form (2.6) then allows one to calculate Vµν , thus

obtaining an accurate quantum-mechanical description of the low-energy states in the core, free of
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any approximations, controlled or uncontrolled.

Reduction to the chiral branch is justified, provided the energy scale of the perturbation

Vµν is smaller than the bulk gap (i.e., for disordered superconductors in the clean limit, 1/τ ≪ ∆

[9, 7, 9, 8]). Otherwise, mixing of states that do not belong to the chiral branch cannot be avoided,

which requires the use of more sophisticated techniques (that is the dirty limit,∆ ≪ 1/τ [15, 12]).

The form of the clean eigenfunctions (2.6) suggests [9] switching to a dual representation:

ψ(x) =
∑
µ

ψµe
iµx, (2.12)

with wave functions depending on an angular variable x. In physical terms, this angle describes

Andreev precession of a quasiclassical trajectory in the vortex core [29]. Since angular momenta

are half-integer, wave functions in the angular representation must be 2π antiperiodic:

ψ(x+ 2π) = −ψ(x). (2.13)

In the dual representation, the Hamiltonian given by

H(x, y) =
∑
µν

Hµνe
ixµ−iyν (2.14)

acquires the form

H(x, y) = −iδ(x− y)ω0∂y + V (x, y). (2.15)

Here the first term is due to the abovementioned Andreev precession, whereas the second term is

the integral kernel describing quasiparticle scattering from the potential V (r). For the linear defect

with the potential given by Eq. (2.1), the corresponding kernel is calculated in Appendix A.

In the limit α ≲
√
kF ξ it has the following form:

V (x, y) = iαω0s(x)× 2πδ(x+ y), (2.16)

s(x) = e2ikF b sinx sign(sinx). (2.17)

Here we introduced a convenient dimensionless defect strength α defined as

α =
2h̄2κA2

mkFω0

∼ kF ξ
√
R, (2.18)

where R is the normal-incidence reflection coefficient of the defect [see Eq. (2.2)].

In the limit α ≳
√
kF ξ the width of the delta function in Eq. (2.16) should be taken into

account that leads to the formation of subgap states propagating along the defect, as discussed in
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Sec. 5.

2.3 Spectral equation

In the angular representation, the eigenvalue equation is generally of an integrodifferential form.

However, the fact that the kernel V (x, y) given by Eq. (2.16) contains a delta function δ(x + y)

implies that the corresponding Schrödinger equation for the function ψ(x) takes a simple quasi-

local form:

− i∂xψ(x) + iαs(x)ψ(−x) = (E/ω0)ψ(x), (2.19)

where the effect of nonlocality is the admixture of ψ(−x) to the chiral evolution of ψ(x).
Such a structure of the Schrödinger equation suggests that it can be reduced to a truly local

form by combining ψ(x) and ψ(−x) into a single 2-vector (spinor)

Ψ(x) =

 ψ(x)

ψ(−x)

 , (2.20)

a procedure resembling the Bogoliubov transformation. Hence, one can rewrite Eq. (2.19) as an

eigenvalue equation  −i∂x iαs(x)

iαs(−x) i∂x

Ψ(x) = (E/ω0)Ψ(x) (2.21)

for a certain differential matrix operator.

Due to 2π antiperiodicity of ψ(x) it is sufficient to consider Eq. (2.21) at the interval x ∈
[0, π]. By construction, the spinor Ψ obeys the following constraints at the boundaries of this

interval:

Ψ(0) = ψ(0) |+⟩, Ψ(π) = ψ(π) |−⟩. (2.22)

with

|+⟩ =

1

1

 , |−⟩ =

 1

−1

 . (2.23)

Isolating the first derivative, one can rewrite Eq. (2.21) as an evolutionary equation

∂xΨ(x) =ME(x)Ψ(x) (2.24)

with the x-dependent matrix

ME(x) =

 iE/ω0 αe2ikF b sinx

αe−2ikF b sinx −iE/ω0

 . (2.25)
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Figure 2.1: Energy levels for the vortex right at the defect as a function of its strength α obtained
from Eqs. (2.30) and (2.31). Opening of the minigap Eg(α) ≈ αω0 is clearly seen for α ≫ 1.
Redistribution of the states of the chiral branch is described by the BCS-type coarse-grained DOS
(2.35) shown in the inset.

The solution of the first-order differential equation (2.24) can be written as

Ψ(x) = SE(x)Ψ(0), (2.26)

where SE(x) is a time-ordered matrix exponent:

SE(x) = T exp
[∫ x

0

ME(y)dy

]
. (2.27)

Now using the boundary conditions (2.22) and utilizing the orthogonality of the spinors

(2.23), we arrive at the spectral equation

⟨+|SE(π)|+⟩ = 0, (2.28)

which determines the eigenvalues E for the quasiparticle states in the core of the vortex located

near the planar defect. Unfortunately, for a finite distance between the vortex and the defect (b ̸= 0)

an explicit x dependence of the matrix ME(x) does not allow the T exponent in Eq. (2.27) to be

calculated analytically. The latter can be done only in the case b = 0 (vortex right at the defect),

which is considered below. The general situation is discussed in Sec. 2.5.
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2.4 Vortex right at the defect (b = 0)

In this section we provide an explicit expression for the spectrum and wave functions in the case

of the linear defect passing exactly through the center of the vortex. Although our analysis will be

based on the Schrödinger equation (2.19) in the dual angular representation, it is instructive to give

here also the matrix elements of the defect line in the original momentum representation:

V (0)
µν =

2αω0hµν
π(µ+ ν)

, (2.29)

where hµν = 1 for odd µ + ν and hµν = 0 for even µ + ν. The matrix V (0)
µν can be considered as

a generalization of the Hilbert matrixHij = 1/(i+ j − 1) with i, j = 1, . . . , n to two-side infinite

case i, j = −∞, . . . ,∞.

2.4.1 Exact spectrum and gap opening

At b = 0 the matrixME(x) defined in Eq. (2.25) becomes x independent: ME = i(E/ω0)σ3+ασ1,

with σi being the Pauli matrices. The corresponding transfer matrix SE(x) in Eq. (2.27) is readily

calculated and Eq. (2.28) then provides the energy spectrum. It can be conveniently represented as

E = ω0

√
k2 + α2 sign k, (2.30)

where k is a real number satisfying the following transcendental equation:

α + k cotπk = 0. (2.31)

The number k has the physical meaning of momentum, as it becomes clear from the explicit form

of the wave function (2.36).

Equation (2.31) defines a discrete set of allowed momenta kn(α) placed symmetrically

around zero. For convenience we consider below only positive kn, which we label starting with

n = 0. Though depending on α, each kn belongs to a small window

n+ 1/2 ≤ kn(α) < n+ 1. (2.32)

In the absence of a defect, kn(0) = n + 1
2
is half-integer, thus reproducing the CdGM equidistant

spectrum (1.1).

The main feature of Eqs. (2.30) and (2.31) is the opening of the gap in the excitation spec-
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trum, which grows with the strength of the defect. The exact expression for the gap is given by

Eg(α, 0) = ω0

√
k20(α) + α2. (2.33)

According to Eq. (2.32), the lowest positive momentum k0(α) cannot exceed 1. Therefore we

obtain a linear scaling of the gap in the limit α ≫ 1:

Eg(α, 0) = ω0

[
α +O(α−1)

]
. (2.34)

This linear gap growth can be distinctly seen in Fig. 2.1, where we plot the spectrum as a function

of the defect strength α.

2.4.2 Coarse-grained density of states

The opening of the gap is accompanied by redistribution ofmany levels. In the limitα ≫ 1, approx-

imately α states are strongly perturbed by the defect, and Fig. 2.1 demonstrates “level crowding”

at E above Eg. This effect can be described by the coarse-grained density of states ρ(E), which is

observed by replacing summation over the states by integration over k [justified by the localization

property (2.32)]. As a result, the density of states takes a BCS-type form:

ρ(E) =
1

ω0

Re
E√

E2 − E2
g

, (2.35)

(see inset to Fig. 2.1).

We emphasize that Eq. (2.35) describes gap formation for the states of the chiral branch,

and its magnitude Eg ≈ ω0α is assumed to be much smaller than the bulk superconducting gap∆.

2.4.3 Eigenfunctions

The procedure described in Sec. 2.3 allows us to immediately write an expression for the eigen-

functions. Working for simplicity with positive-energy states (kn > 0) and using Eq. (2.26), we

obtain the wave function as a combination of two counterpropagating waves:

ψn(x) = ψn(0)×

C1e
iknx + C2e

−iknx, 0 < x < π,

C∗
1e

iknx + C∗
2e

−iknx, −π < x < 0,
(2.36)

with the coefficients

C1 =
kn + En/ω0 − iα

2kn
, C2 =

kn − En/ω0 + iα

2kn
. (2.37)
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Figure 2.2: Quasiparticle densities Pn(r1, r2) for low-energy states n = 0, 1, 2, and 5. Left: no
defects, right: vertically-oriented linear defect with α = 20 passing through the vortex center.
Shown is the region with −20 < (kF r1, kF r2) < 20.

The value of the overall factor ψn(0) should be determined from the normalization condition∫ π

−π
|ψn(x)|2 dx/2π = 1. Using the spectral equation (2.31) and assuming ψn(0) positive, we

obtain

ψn(0) =
kn√

(En/ω0)2 + α/π
(2.38)

(the last term in the denominator can typically be safely neglected). One can show that the wave

function acquires a phase shift π(n+ 1
2
) when x is increased by π:

ψn(x+ π) = i(−1)nψn(x), (2.39)

generalizing the same property in the clean case [with plane-wave functions ψn(x) = ei(n+1/2)x] to

arbitrary values of α.

The two-wave structure of the eigenfunction (2.36) has a simple physical interpretation. In

a clean vortex, a low-energy quasiparticle trapped in its core exhibits Andreev precession [29]. In

the angular representation that corresponds to the plane wave eikx. A linear defect passing through

the vortex center can normal-reflect a quasiparticle changing the sign of its momentum: k → −k.
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Interference of such reflected waves is responsible for the formation of the states in the presence

of the defect.

With the obtained structure of wave functions. one can easily compute the overlap of the

nth eigenstate in the presence of the defect, |n⟩, with the momentum eigenstate |µ⟩ for a clean
vortex:

⟨µ|n⟩ = [1 + (−1)n+µ−1/2]αkn

π(k2n − µ2)
√

(En/ω0)2 + α/π
. (2.40)

The state |n⟩ has the largest overlap with the clean state with the same ordinal number n and

momentum µn = n+ 1
2
. One can see that this overlap is always large, bounded by ⟨µn|n⟩ > 2/π.

For the lowest-energy state, limα→∞⟨µ0|0⟩ = 8/3π. It means that for all α the exact state |n⟩ is
very close to the corresponding clean state |µn⟩, with a small admixture of satellites.

It is instructive to visualize reogranization of the quasiparticle states induced by the defect

by looking at their wave functionsΨn(r) in real space. Thewave function of the state |n⟩ is obtained
by expanding over the clean chiral basis:

Ψn(r) =
∑
µ

⟨µ|n⟩Ψµ(r), (2.41)

where the overlap is given by Eq. (2.40). Figure 2.2 shows the quasiparticle density profiles for

low-energy states with n = 0, 1, 2, and 5 without a defect (left column) and in the presence of

a (vertical) defect with α = 20 (right column). The quasiparticle density Pn(r) = Ψ†
n(r)Ψn(r)

shows the probability of finding an excitation (either its electron or hole component) at a given

point. Note that Pn(r) is different from the charge density Ψ†
n(r)τ3Ψn(r), which weights electron

and hole contributions with different signs (τ3 is the Pauli matrix in the Nambu space).

In Fig. 2.2 we see that a linear defect breaks the axial symmetry of Pn(r), which becomes

corrugated in the angular direction. Note however that such a rough feature of the radial structure

of Pn(r) as the peak at kF r ∼ n, where n is the state ordinal number, turns out to be stable.

2.5 Vortex at a distance b from the defect

In this case, the general approach described in Sec. 2.3 is also formally applicable, but since the

matrix ME in Eq. (2.25) contains now all three Pauli matrices, the transfer matrix SE given by

the T exponent (2.27) cannot be evaluated in a closed form and the spectrum cannot be obtained

analytically.

Numerical results for the spectrum evolution as a function of the parameter kF b at fixed α =

10 are represented in Fig. 2.3. The minigap is maximal, Eg ≈ α, when the vortex is located right at

the defect, decreasing with the increase of b in a nearly linear fashion until it closes approximately
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Figure 2.3: Positive energy levels vs. the distance b between the vortex center and the linear defect
of strength α = 10.

at kF b = α.

The phenomenon of the minigap reduction illustrated in Fig. 2.3 can be explained analyti-

cally in the limiting case of (kF b, α) ≫ 1. In this case it is more convenient not to use the spinor

representation (2.19), but to reduce the original quasi-local first order differential equation (2.21)

to the local second-order differential equation. Before doing that, we gauge out the phase factor by

writing ψ(x) = eikF b sinxg(x) and then obtain the Schrödinger equation for the function g(x) at the

interval 0 ≤ x ≤ π:

− g′′(x) + U(x)g(x) = 0 (2.42)

with the potential

U(x) = α2
[
1− (t cosx− ε)2

]
+ iαt sinx (2.43)

and the boundary conditions

g′(0) = α[1− i(t− ε)]g(0), (2.44a)

g′(π) = −α[1− i(t+ ε)]g(π), (2.44b)

following from 2π antiperiodicity of g(x). Here we introduced the dimensionless parameters t =

kF b/α and ε = E/αω0. Equation (2.42) describes quantum-mechanical motion of a particle of
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Figure 2.4: Examples of linear defects intersecting at the vortex center: (a) two lines crossing at
an angle φ, (b) the most symmetric arrangement with n = 3 lines, (c) three-ray configuration.

mass m = 1
2
in the potential U(x) at zero energy. The spectrum of the original problem (ε) is

determined by the requirement that such a zero-energy state exists.

In the limit of large α, the last term in the potential (2.43) can be neglected:

U(x) = α2
[
1− (t cosx− ε)2

]
, α → ∞, (2.45)

and the boundary conditions (2.44) dictate vanishing of g: g(0) = g(π) = 0. The necessary

condition for the existence of a zero-energy state in the potential U(x) is evidently minx U(x) < 0.

Right at the defect, it gives ε > 1, defining the position of the minigap Eg ≈ α. At finite t, the

potential U(x) becomes x-dependent, with the minimal value achieved at x = π, so we expand

around it:

U(x) ≈ α2
[
1− (t+ ε)2 + t(t+ ε)(π − x)2

]
. (2.46)

Vanishing of minx U(x) implies ε > 1− t, thus defining the leading b dependence of the minigap:

εg = 1− t. This quasi-classical estimate can be improved by taking into account quantum motion

that requires minx U(x) < 0 for the zero-energy ground state to exist. In the limit α → ∞, the

potential U(x) is sharp and the size of the ground state is small, justifying the expansion (2.46).

Hence, we have a harmonic oscillator problem with the frequency ω = 2α
√
t (our mass is 1

2
).

However due to the rigid-wall boundary condition, g(π) = 0, the ground state energy is not ω/2

but rather 3ω/2. This gives εg = 1 − t + 3ω/4α2, improving the above quasiclassical estimate

estimate. In dimensional units,

Eg

ω0

≈ α− kF b+
3

2

√
kF b

α
. (2.47)

This formula perfectly explains why the minigap goes slightly above the dashed line α − kF b in

Fig. 2.3 and closes approximately at kF b = α + 3
2
.
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Chapter 3

Intersecting linear defects:

commensurability effect

In the previous section we have considered the case of a single linear defect crossing the vortex

core. Nowwe are going to generalize the problem and consider a number of different configurations

with several linear defects crossing at the vortex center (see Fig. 2.4). This setup corresponds to a

vortex sitting on the border of three or more grains in a granular medium.

3.1 Two intersecting lines

We start with the simplest case of two linear defects intersecting at an angle of φ at the vortex

center, as shown in Fig. 2.4(a). In order to construct the Hamiltonian we need to know matrix

elements from both lines. The matrix element V (0)
µν for the vertical line is given by Eq. (2.29).

One can easily verify that rotation of the line by an angle φ results in the appearance of a phase

factor: V (φ)
µν = V

(0)
µν ei(µ−ν)φ. In the dual angular representation, this translates to the argument shift:

V (φ)(x, y) = V (0)(x+ φ, y + φ). Using Eq. (2.16) with b = 0, we obtain

V (φ)(x, y) = iαω0s(x+ φ)× 2πδ(x+ y + 2φ). (3.1)

where here s(x) = sign(sinx).

As a result, the two-line version of the Schrödinger equation (2.19) takes the form:

− i∂xψ(x) + iα1s(x)ψ(−x)

+ iα2s(x+ φ)ψ(−x− 2φ) = (E/ω0)ψ(x), (3.2)

where we assumed different defect strengths for generality. The main difference from the original

single-line problem (2.19), which allowed for a local representation at the expense of introducing

a two-component spinor (2.20) made of ψ(x) and ψ(−x), is that for the two-line problem such an

approach typically fails. The reason is multiple reflections from the two lines that couple wave
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functions at the following arguments:

± x, ±(x− 2φ), ±(x− 4φ), . . . (3.3)

Whether and where this sequence terminates (mod 2π) depends on commensurability of φ and π:

• If φ = (m/n)π is a rational fraction of π (coprime m and n) then the set (3.3) contains 2n

elements and one can introduce a 2n-component vectorΨmade of ψ taken at the correspond-

ing arguments. In terms of Ψ, Eq. (3.2) becomes local and should be solved at the interval

x ∈ [0, π/n]. That can be done as described in Sec. 2.3.

• If φ is an irrational fraction of π then Eq. (3.2) cannot be brought to a local form.

The simplest is the case of two perpendicular lines (φ = π/2), when the Schrödinger

equation reduces to a local form in terms of a 4-component vector Ψ. Its analysis performed in

Appendix B.1 allows us to determine the spectrum at arbitrary α1 and α2 by solving the transcen-

dental equation (B.7) similar to Eq. (2.31). In the limit of strong defects, the minigap is given by

Eg = ω0

√
α2
1 + α2

2.

Although the same analysis can be formally done for any rationalφ/π = m/n, the transcen-

dental spectral equation becomes more and more complicated. However, the asymptotic behavior

of the minigap at large αi can be obtained in a closed form, as it does not rely on the knowledge of

momenta. We calculate it in Appendix B.2, arriving at the following asymptotic expression:

Eg = ω0

√
α2
1 + α2

2 − 2α1α2 cos(π/n), (3.4)

which depends only on the denominator n of φ/π.

For an arbitrary crossing angle φ, Eq. (3.2) should be solved numerically. In the symmetric

case α1 = α2 = α, the results are presented in Fig. (3.1), which shows the ratio Eg/αω0 as a

function of φ for various values of the defect strength α. Figure (3.1) has a number of remarkable

features:

(i) The appearance of peaks at commensurate angles φ = (m/n)π, which become more pro-

nounced and sharper with increasing α.

(ii) The presence of a nearly constant nonzero background for “not very rational” angles well

described by the empirical formula Ebg
g /αω0 ≈ 2/

√
α.

(iii) Independence of the peak height (once resolved) on the numeratorm.

This picture is consistent with the minigap asymptotics (3.4) with the the following limiting
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Figure 3.1: Normalized minigap energy Eg/αω0 for two identical intersecting lines as a function
of the crossing angle φ [see Fig. 2.4(a)] for different values of the defect strength α.

dependence:

lim
α→∞

Eg(φ)

αω0

= 2 sin
(π
2
popcorn

φ

π

)
. (3.5)

Here popcorn(x) is the Thomae’s function (also referred to as the popcorn function), which takes

zero value for irrational x and 1/n for rational x = m/n (withm and n coprime). Dashed lines in

Fig. 3.1 are drawn with the help of Eq. (3.5) along a number of the principal peaks of the Thomae’s

function.

Equation (3.5) predicts that peak heights at commensurate angles, Eg[(m/n)π] ∼ αω0/n,

grow linearly with the defect strength α. However due to the presence of a finite background

Ebg
g ∼

√
αω0, only peaks with n ≲ √

α can be actually resolved. We emphasize that the energy

scale Ebg
g ≈ 2

√
αω0 also grows with α, but as a square root (this growth can be accidentally

overlooked in Fig. 3.1, where Eg is normalized by α). Hence the value of 2
√
αω0 provides a lower

bound for the minigap at arbitrary angles.

In order to qualitatively understand the origin of the background minigap energyEbg
g and its

α dependence, we recall that the minigap at a commensurate angle φ = (m/n)π can be written as

Eg =
√
λ2min + k20 ω0. In physical terms, λmin and k0 (which both are functions of α and n) provide

the contributions of the potential and kinetic energy to the minigap, respectively. Here λmin =

λ(q1) is the minimal positive eigenvalue of the matrix iR in Appendix B.2, which determines the
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gap asymptotics via Eg = λminω0 [cf. Eq. (3.4)]. The parameter k0 is the first positive solution

of the transcendental spectral equation, in an explicit form given by Eq. (2.31) for one line and

(B.7) for two perpendicular lines. One can easily show that limα→∞ k0(α) = 1 for one line and

limα→∞ k0(α) = 2 for two perpendicular lines. Thus we see that k0 grows with the denominator of

φ/π and it is natural to assume that limα→∞ k0(α) ∼ n. Now comparing the decreasing potential-

energy contribution λmin = λ(q1) ∼ α/nwith the increasing kinetic-energy contribution k0 ∼ nwe

obtain that they become comparable at n ∼
√
α, whenEg just coincides with obtained background

minigap level Ebg
g . We believe the above arguments qualitatively explain the relevance of the

kinetic energy in the background minigap formation and provide an estimate for its magnitude.

3.2 Several intersecting lines

For completeness, we also discuss the case of the most symmetric configuration of n identical

lines of strength α intersecting at the vortex center at the angle of φ = π/n [see Fig. 2.4(b)]. The

Schrödinger equation, which now takes into account scattering from n lines, may be brought to a

local form by introducing a 2n-component vector Ψ in the same manner as described above. The

asymptotic minigap behavior at α ≫ 1 can be obtained by the method developed in Appendix B.2.

After some algebra, we obtain

Eg = αω0 ×

1, n odd,

1/ cos(π/2n), n even.
(3.6)

Surprisingly, the minigap remains of the order of αω0 regardless of the number of intersect-

ing lines. The fact that it does not scale with a naive estimate of “the overall defect strength” nα

is a consequence of destructive interference of waves multiply scattered from different defects. At

the same time, periodicity of the structure ensures that the minigap is not destroyed completely but

remains finite withEg ≈ αω0. Addition of any imperfections would spoil this picture and suppress

Eg, presumably not completely but at least to the level of
√
αω0.

3.3 Three rays

Finally we address the three-ray configuration depicted in Fig. 2.4(c), which mimics a contact

of three grains. All half-line defects are assumed to have the same strength per unit length, α.

The vortex center is located at the rays’ intersection point. The matrix elements of the ray defect

V (r) ∝ δ(r1)θ(r2) are different from those of the linear defect V (r) ∝ δ(r1) and are calculated

in Appendix A.3. In the angular representation they become essentially non-local [Eq. (A.11)].
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symmetric

distorted

Figure 3.2: Normalized minigap Eg/αω0 in the three-ray configuration [see Fig. 2.4(c)] as a func-
tion of α. Upper line: symmetric star with all angles 2π/3; lower line: distorted star with one
ray rotated by 0.2 rad. Inset: energy levels En vs. n in the symmetric (blue points) and distorted
(orange boxes) configurations at α = 20.
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This makes it impossible to obtain an analytic solution, and we perform numeric analysis in the µ

representation [Eq. (A.12)].

We consider two configurations, symmetric with the angles between the rays equal 2π/3

and distorted with the angles 2π/3 and 2π/3±0.2, and study the spectrum as a function of the defect

strength α. The results for the corresponding minigaps are shown in Fig. 3.2. In the symmetric case

we obtain a linear scaling Eg ≈ αω0, whereas the minigap in the distorted geometry is suppressed,

growing approximately as
√
α for large α.

The fact that already a small rotation of one ray by an angle 0.2 leads to a significant minigap

suppression, which becomes more pronounced in the limit α → ∞, is fully consistent with the

commensurability effect for two intersecting lines discussed in Sec. (3.1): For rational angles with

significantly small denominators, the minigapEg ∼ αω0. Otherwise, destructive interference from

different lines suppresses it to a background level of Ebg
g ∼

√
αω0.

Inset to Fig. 3.2 shows the spectrum En (its positive part) vs. ordinal number n for the

symmetric (blue circles) and distorted (orange boxes) configurations at α = 20. Although the

energy E0 of the lowest level (and thus the minigap) in the distorted case is already significantly

reduced compared to αω0, only few levels visibly change their position compared to the symmetric

case. Therefore, the coarse-grained density of states will still have a BCS singularity (2.35) at

E = αω0, with a small fraction of “subgap states” with E < αω0.
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Chapter 4

Periodic structures of defects

4.1 Square arrays of linear defects

Keeping in mind connection to granular systems, we consider here a square grid of potential lines

with the period a and the vortex center at one of the grid nodes. One can ask whether destructive

interference from different lines can suppress and/or totally destroy the minigap.

The matrix elements of the grid Vµν can be calculated following the procedure described in

Secs. 2.2 and 3.1. The resulting minigap obtained numerically is shown in Fig. 4.1 (for α = 20 and

kF ξ = 200). It reaches its asymptotic value Eg =
√
2αω0 [see Eq. (3.4)] at a ≫ ξ and gradually

decreases with the decrease of the lattice period. Nevertheless, Eg remains of the order of αω0 in a

broad range of a/ξ, with a visible suppression at a < ξ/4. Thus, we conclude that the phenomenon

of the minigap opening is observed for periodic structures as well, provided that the lattice period

much exceeds the Fermi wavelength.

4.2 Approximating defect line by point defects

It was mentioned in the Introduction that the minigap does not appear in the presence of point-like

impurities. On the other hand, a linear defect can be formally considered as a dense pack of weak

point-like impurities. To study a crossover from the linear defect to such an array of point-like

defects, we consider the following model potential:

V (r) =
h̄2κa
m

∑
n

δ(r1)δ(r2 − na). (4.1)

When its period a vanishes, it reproduces the linear defect potential (2.1).

The energy spectrum obtained numerically is shown in Fig. 4.2. It demonstrates a distinct

transition between the gapped and gapless phases taking place at kFa = π. One can provide the

following qualitative explanation of this phenomenon. For a point-like defect, an incident wave

is scattered in all directions, whereas the linear defect acts like a mirror. If kFa < π, the waves

reflected from adjacent point-like defects are coherent and interfere with each other: the lattice acts

like a diffraction grating. Otherwise, the waves reflected from adjacent point defects are incoherent,
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Figure 4.1: Minigap in the case of the square lattice of linear defects as a function of the ratio of the
lattice period a to the superconducting coherence length ξ. Defect strength α = 20, kF ξ = 200.

Figure 4.2: Positive energy levels for a 1D lattice of point-like impurities (4.1) as a function of the
lattice period a. Defect strength α = 10.
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and no minigap opens.
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Chapter 5

Region α ≫
√
kF ξ:

Subgap states and “soft gap” of Ref. [28]

Having analyzed various defect configurations, nowwe come back and revisit the simplest case of a

single defect line passing through the vortex center. On one hand, there is a sufficiently transparent

derivation of the matrix element V (x, y) leading to the delta-function expression (2.16). The re-

sulting quantummechanics studied in Sec. 2.4 is rather simple and does not contain any knowledge

of the parameter kF ξ. On the other hand, Fig. 1.1 obtained using the exact matrix elements Vµν , in

accordance with Ref. [28], clearly demonstrates the existence of a different regime at α ≳
√
kF ξ,

with a number of states sequentially splitting off the majority of gapped states. In the language of

quasiclassical trajectory analysis of Ref. [28], appearance of those states is associated with a topo-

logical transition in the phase space. They correspond to special trajectories, which do not precess

but are aligned along the defect. Below we discuss how this effect can be understood in terms of

the quantum mechanics developed in Sec. 2.4.

Amechanism responsible for the breakdown of a simple picture discussed in Sec. 2 is smear-

ing of the delta function δ(x + y) in Eq. (2.16) for the matrix element V (x, y). This formula was

obtained from the exact expression (A.8) by neglecting the envelope factor e−2K . If it is not ne-

glected, the delta function in Eq. (A.9) will acquire a finite width of the order of 1/ξ, and the

delta function δ(x + y) in Eq. (2.16) will be smeared by an x-dependent amount of 1/kF ξ| sinx|.
Since kF ξ ≫ 1, this smearing is typically small except for very small angles |x| ≲ x∗, where

x∗ = 1/
√
kF ξ. Hence, at x, y ∼ x∗ the matrix element V (x, y) should be considered as an integral

kernel, while outside of this interval it can be approximated by the delta-function form (2.16).

Sequential splitting off the subgap state taking place at α ≳
√
kF ξ corresponds to the

appearance of new types of eigenstates of the Hamiltonian−i∂x + V , which are localized either at

x ∼ x∗ or at |x − π| ∼ x∗. The fact that their energy is smaller than αω0 indicates that the wave

functions of these states have an imaginary momentum and decay exponentially away from the

mentioned vicinities of 0 and π. The exponentially small energy difference between these states

seen in the inset to Fig. 1.1 is a consequence of exponentially weak hybridization of the states at 0

and at π.

Figures 5.1(a) and 5.1(b) provide the snapshots of the quasiparticle density Pn(r) for the

32



(a) (b) (c) (d)

(e) (f)

0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Quasiparticle densities Pn(r1, r2) for the states shown in Fig. 1.1 at α = 30: (a), (b)
lowest pair of subgap states [which can be considered as symmetric and antisymmetric combina-
tions of the states localized to the left (c) and to the right (d) of the linear defect], (e), (f) next two
states. Shown is the region with −100 < kF r1 < 100 and −300 < kF r2 < 300 for (a)–(d), and
−20 < (kF r1, kF r2) < 20 for (e) and (f). Vortex size is specified by kF ξ = 200.

pair of lowest-energy subgap states at α = 30. These states are clearly aligned along the linear

defect and can be considered as symmetric and antisymmetric combinations of the states localized

to the left and to the right from the defect, as shown Figs. 5.1(c) and 5.1(d). At the same time, Figs.

5.1(e) and 5.1(f) show the quasiparticle density for the third and fourth positive-energy states at

α = 30. Note that they look pretty similar to the pair of lowest-energy states in Figs. 2.2(e) and

2.2(f). It means that the behavior of the majority of the states is almost insensitive to the existence

of the subgap states and still can be described by the simple theory developed in Sec. 2. Such a

situation is consistent with separation of the phase space into two regions reported in Ref. [28].

To conclude this section, we emphasize that though our fullymicroscopic quantum-mechanical

analysis confirmed the existence of subgap states propagating along the defect at α ≳
√
kF ξ, their

description in terms of the developed formalism is rather complicated. We believe the trajectory-

based approach [28] is more suitable for this purpose.
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Chapter 6

Effect of ∆(r) distortion

In our consideration above, the profile of the order parameter,∆(r), was assumed to be unchanged

by the linear defect. The same approximation was used in Ref. [28]. However, since the order

parameter should be determined self-consistently, modification of the quasiparticle spectrum does

have an impact on∆(r) (in particular, it loses its axial symmetry). Deformation of the order param-

eter, in turn, affects the quasiparticle states, which therefore should be determined self-consistently.

However, such a procedure is rather complicated and in a non-uniform vortex geometry is nearly

intractable. Nevertheless, it often happens that a direct effect of a perturbation is more important

that the accompanying effect of ∆(r) modification.

Assuming this is also the case for our problem with a linear defect, we can treat the effect of

∆(r) distortion perturbatively. We take the quasiparticle states obtained above for the clean order

parameter ∆0(r) and substitute them to the self-consistency equation to obtain the next iteration

for the order parameter, ∆1(r). Then the difference δ∆(r) = ∆1(r) − ∆0(r) is considered as a

perturbation in the BdG equation (2.3) and the correction to the minigap ∆Eg is obtained.

This procedure is performed in Appendix C. We obtain that for α > 10 the minigap shift

nearly saturates at∆Eg ≈ 0.1× 4πgA4/k2F , where g is the BCS coupling constant. Using a model

dependence of the vortex order parameter, ∆(r) = ∆0r/
√
r2 + ξ2, we obtain for α > 10

∆Eg

ω0

≈ 0.5 ν0g, (6.1)

where ν0 is the normal-state DOS at the Fermi level. In the BCS theory, the dimensionless coupling

constant ν0g < 1. Since the minigap grows with α as Eg = αω0, we conclude that the distortion

of the order parameter does not have a significant effect on the quasiparticle excitation spectrum.
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Chapter 7

Discussion and conclusion

In this publication, we report on extensive studies of the quasiparticle states localized in the pan-

cake vortex in a clean 2D superconductor in the presence of one or several linear defects (that

corresponds to a vortex in a layered 3D superconductor with planar defects).

In the configuration with one linear defect passing through the vortex center, we identify

two different regimes separated by α ∼
√
kF ξ. For sufficiently weak defects with α ≲

√
kF ξ,

the spectral problem can be solved exactly. The spectrum is characterized by a minigap growing

as Eg = αω0 for α ≫ 1 and the BCS-type DOS (2.35) above the minigap. The wave functions

in this regime are localized in the angular momentum (µ) representation and delocalized in the

dual angular representation. In the quasiclassical description it means that a trajectory exhibits the

standard Andreev precession weakly modulated by scattering off the linear defect. For stronger

defects with α ≳
√
kF ξ, the majority of states are still gapped with Eg = αω0; however, a number

of subgap states emerges with E < Eg. These states are localized either to the left or to the

right from the defect and hence are delocalized in the µ representation. The pairs of subgap states

sequentially split off the bulk states with increasing α, as shown Fig. 1.1. Hence, for a single line

we reproduce and confirm the prediction of Ref. [28].

We also analyzed reorganization of the chiral states in a number of more complicated ge-

ometries with linear defects. Here we assumed α ≲
√
kF ξ, such that complications due to for-

mation of subgap states do not appear and the problem can be mapped onto a sufficiently simple

quantum mechanics.

We considered a configuration with the vortex center located at a finite distance b from the

linear defect. Such a configuration cannot be realized at equilibrium since the vortex prefers to

minimize its potential energy and chooses to sit right at the defect. However, such a situation can

take place in the presence of a depinning force or as a dynamic state under microwave absorption.

We find that the minigap decreases with the growth of b and closes at b ≈ α/kF .

A vortex pinned at the intersection of two linear defects demonstrates a peculiar commen-

surability effect, when the minigap essentially depends on how close is the angle φ between the

defects to a rational of π. For perfect matching, the minigapEg ≈ αω0, while in the most frustrated

case the minigap still exists but at a smaller background level of Eg ≈
√
αω0 (see Fig. 3.1).

The phenomenon of the minigap opening survives in the presence of a periodic structure
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of linear defects, even if the period a is smaller than the coherence length. For a square lattice of

equal defects, the minigap Eg ∼ αω0, unless the a becomes comparable to the Fermi wavelength.

Having considered various types of linear defects, we conclude that the effect of gap open-

ing is quite robust. This observation has obvious consequences for vortex behavior in a granular

media. Vortices pinned at grain boundaries are expected to have a minigap typically scaling with

the boundary strength α as Eg ≈ αω0. This effect will manifest itself at low temperatures T < Eg

in the exponential suppression of heat capacity and flux-flow conductivity, as well as in a threshold

behavior of optical conductivity. Low-temperature anomalies in flux-flow conductivity have been

recently reported in granular aluminum [37]. Although this material belongs to the dirty case, we

believe that the qualitative conclusion on the gap opening in granular systems remains valid in the

presence of disorder and therefore can explain the experimental finding of Ref. [37].

Our analysis of the electronic states in the vortex core is applicable for highly transparent

defects with the reflection coefficient R ≪ 1, corresponding to the inequalities α ≪ kF ξ and

Eg ≪ ∆. In this limit the defect perturbation effectively redistributes only α lowest states, without

admixing the states of continuous spectrum. Therefore, we can access neither the Josephson vortex

regime (realized in the tunneling limit with T ≪ 1) nor the crossover from the Abrikosov to the

Josephson vortex. Nevertheless, one can argue that the subgap states localized along the defect

are presumably important for the transition from the Abrikosov to the Josephson vortex [38] with

increasing the defect strength α. In particular, our conclusion that modification of the order pa-

rameter is not important for obtaining the minigap (see Sec. 6) might be modified if those gliding

states are taken into account.

Finally, we mention that the developed theory can be easily generalized to the case of linear

defects in clean p-wave superconductors. We expect the zero-energy Majorana bound state [39]

will survive gap opening and will facilitate transport across the gap.
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Appendix A

Kernel V (x, y) in the angular representation

A.1 General expression

In the chiral basis, the matrix elements of a generic potential perturbation are given by Eq. (2.11).

Taking the wave functions from Eq. (2.36) and tracing over the Nambu space, we obtain

Vµν = A2

∫
d2r e−2K(r)ei(ν−µ)φwµν(kF r)V (r), (A.1)

where

wµν(z) = Jµ−1/2(z)Jν−1/2(z)− Jµ+1/2(z)Jν+1/2(z). (A.2)

Now we transform the matrix Vµν to the angular representation according to Eq. (2.14).

Summation over momenta is done with the help of the Jakobi-Anger identity

eiz sin θ =
∑
n

Jn(z)e
inθ, (A.3)

leading to ∑
µν

ei(ν−µ)φwµν(kF r)e
ixµ−iyν = 2i sin

x− y

2
eikFRxy(r), (A.4)

where

Rxy(r) = r[sin(x− φ)− sin(y − φ)]. (A.5)

In terms of the Descartes coordinates, r1 = r cosφ and r2 = r sinφ, R(r) is given by

Rxy(r) = r1(sinx− sin y) + r2(cosx− cos y). (A.6)

Hence, the general expression for the kernel V (x, y) valid for any potential V (r) takes the form

V (x, y) = 2iA2 sin
x− y

2

∫
d2r e−2K(r)eikFRxy(r)V (r). (A.7)

The factor sin[(x−y)/2] reflects 2π antiperiodicity of wave functions in the angular representation
[see Eq. (2.13)].
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A.2 Kernel for the linear defect

For the linear defect with V (r) given by Eq. (2.1), the coordinate r1 coincides with b. It then

remains to integrate over the coordinate r2 along the defect:

V (x, y) = iαω0kF e
ikF b(sinx−sin y) sin

x− y

2

×
∫ ∞

−∞
dr2 e

−2K
(√

r22+b2
)
eikF r2(cosx−cos y), (A.8)

where we expressed the prefactor in terms of the dimensionless defect strength α introduced in Eq.

(2.18).

Expression (A.8) is still an exact matrix element V (x, y) for the linear defect, without any

approximations. As far as we are interested in rearrangement of low-energy states by a not very

strong defect (αω0 ≪ ∆), one can further simplify V (x, y). In this case, only clean states with

momentaµ ∼ α are involved. Sowemay replace the exponent e−2K(r), which decays exponentially

at r ∼ ξ, by 1. Then, the integral in the second line of Eq. (A.8) produces the following delta

function:

2πδ[kF (cos y − cosx)]) =
2π[δ(x− y) + δ(x+ y)]

kF | sinx|
. (A.9)

The first term in the right-hand side does not contribute due to vanishing of the factor sin[(x−y)/2]
in Eq. (A.8), while the second term yields the matrix element (2.16).

A.3 Kernel for the half-line defect

In this Appendix we calculate the matrix element in the angular representation, V (x, y), for a half-

line terminating at the vortex center and specified by the potential V (r) = (h̄2κ/m)δ(r1)θ(r2),

with θ(r2) being the step function. The matrix element V (x, y) can be written as V line(x, y)/2 +

δV (x, y), where V line(x, y) is the matrix element of the linear defect given by Eq. (2.16) with

s(x) = sign(sinx), and the difference is defined as [cf. Eq. (A.8)]

δV (x, y) =
i

2
αω0kF sin

x− y

2

×
∫ ∞

∞
dr2 sign r2 e−2K(r2)eikF r2(cosx−cos y). (A.10)

Neglecting the factor e−2K(r2) as it was done for the linear defect in Appendix A.2, one gets

1/[kF (cosx − cos y)] for the integral in the second line of Eq. (A.10). Hence we obtain the the
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matrix element of the half-line:

V (x, y) =
iαω0

2

[
s(x)× 2πδ(x+ y)− 1

2 sin[(x+ y)/2]

]
. (A.11)

Making Fourier transform, we obtain matrix elements in the original momentum representation [cf.

Eq. (2.29)]:

Vµν = αω0

[
hµν

π(µ+ ν)
− i

2
δµ+ν signµ

]
. (A.12)
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Appendix B

Two intersecting lines

B.1 Spectrum for two perpendicular lines

The quasi-local Schrödinger equation for two perpendicular lines passing through the center of the

vortex is given by Eq. (3.2) with φ = π/2. Similar to the single-line treatment in Sec. 2.3, the

Schrödinger equation can be brought to a local form by arranging ψ(±x) and ψ(±(x−π)) into the
vector

Ψ(x) =


ψ(x)

ψ(−x)
ψ(x− π)

ψ(−x+ π)

 . (B.1)

It is sufficient to consider the evolution of Ψ(x) at the interval x ∈ [0, π/2], since its various

components then span the whole circle [0, 2π]. The 2π antiperiodicity of the wavefunction imposes

the following constraints on Ψ at the beginning and at the end of the interval [0, π/2]:

Ψ(0) =


a

a

−b
b

 , Ψ(π/2) =


c

d

d

c

 . (B.2)

Here ψ(0) = a, ψ(π) = b, ψ(π/2) = c and ψ(−π/2) = d.

The evolution of Ψ can be written as

∂xΨ(x) =MEΨ(x) (B.3)

with

ME =


iE/ω0 α1 0 −α2

α1 −iE/ω0 −α2 0

0 −α2 iE/ω0 −α1

−α2 0 −α1 −iE/ω0.

 (B.4)
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The vectors at the edges of the interval are related by the transfer matrix:

Ψ(π/2) = SE(π/2)Ψ(0), (B.5)

which becomes just a trivial matrix exponent sinceME is x independent: SE(π/2) = exp(MEπ/2).

After some algebra, we obtain

SE(π/2) = cos(kπ/2) +
sin(kπ/2)

κ
ME, (B.6)

where k =
√
(E/ω0)2 − α2

1 − α2
2. Processing now the constraints (B.2), we arrive at the following

equation for the allowed momenta k:

(k2 − α1α2) cos πk + (α1 + α2)k sin πk + α1α2

k2
= 0. (B.7)

This equation generalizes Eq. (2.31) to the two-line case and reduces to the latter if either α1 or

α2 goes to zero. For given α1 and α2, transcendental Eq. (B.7) defines a discrete set of momenta

kn(α1, α2) > 0, which we label starting with n = 0, as in Sec. 2.4. The spectrum is then given by

En = ω0

√
α2
1 + α2

2 + k2n(α1, α2), (B.8)

where kn are defined by Eq. (B.7).

In the limit of strong defects (α2
1 + α2

2 ≫ 1), k0 ≈ 2 and the minigap takes the form

Eg = ω0

√
α2
1 + α2

2. (B.9)

B.2 Minigap asymptotics for φ = π/n

A common feature of the one-line case considered in Sec. 2.4 and the two-perpendicular-line case

analyzed in Appendix B.1 is that finding the asymptotic behavior of the minigap is much easier

than determination of the whole spectrum. While the latter requires calculating discrete momenta

by solving a transcendental spectral equation, those are not needed to compute the asymptotics.

This observation immediately leads to the following criterion for the minigap determination: It is

the first positive solution of

detME = 0, (B.10)

where the matrixME governs chiral evolution of Ψ [see Eqs. (2.24) and (B.3)]. Equation (B.10)

also holds for any rational φ/π when the vector Ψ is finite.

In the case φ = π/n, the vector Ψ has 2n components. We arrange them according to
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Eq. (3.3) and obtain the matrix ME . In general, ME is a symmetric matrix with the following

properties: (i) its main diagonal contains ±iE/ω0 in alternating order, (ii) its 1-diagonal contains

α1 and α2 in alternating order, with the elements (2, 3) to (n+1, n+2) having an additional minus

sign, (iii) the element (1, 2n) equals−α2, (iv) other elements not related by the symmetry are zero.

The structure is illustrated by the n = 4 example (here ε = E/ω0):

ME =



iε α1 0 0 0 0 0 −α2

α1 −iε −α2 0 0 0 0 0

0 −α2 iε −α1 0 0 0 0

0 0 −α1 −iε −α2 0 0 0

0 0 0 −α2 iε −α1 0 0

0 0 0 0 −α1 −iε α2 0

0 0 0 0 0 α2 iε α1

−α2 0 0 0 0 0 α1 −iε


.

Using determinant properties, the minigap equation (B.10) can be equivalently written as

det(ε+ iR) = 0, (B.11)

where is a unit matrix and

R =



0 α1 0 0 0 · · · 0 α2

−α1 0 α2 0 0 0 0

0 −α2 0 α1 0 0 0

0 0 −α1 0 α2 0 0

0 0 0 −α2 0 0 0
... . . . ...

0 0 0 0 0 0 α1

−α2 0 0 0 0 · · · −α1 0


.

This matrix is diagonalized in the momentum representation by a two-site modulated plane wave

ua = w(−1)aeiqsa with a = 1, . . . , 2n. Solving for the modulation depth w, we obtain the spectrum

of the matrix iR:

λ2(qs) = α2
1 + α2

2 − 2α1α2 cos(2qs). (B.12)

Momentum quantization is influenced by a “wrong sign” of the top-right matrix element of R that
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results in qs = (s− 1/2)(π/n) with s = 1, . . . , 2n. Thus, Eq. (B.11) yields

n∏
s=1

[E2 − λ2(qs)] = 0. (B.13)

The minimal positive solution of this equation is evidently E = λ(q1), leading to the minigap

asymptotics (3.4).

The same analysis can be repeated for angles φ = (m/n)π with m ̸= 1. Position of plus

and minus signs in front of α1 and α2 in the matrixME will be different, but the matrix R will be

exactly the same.
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Appendix C

Effect of ∆(r) distortion

In this Appendix, we estimate the effect of ∆(r) modification on the quasiparticle spectrum. We

perform the analysis in the simplest case of a sufficiently weak defect, 1 ≪ α ≪
√
kF ξ, when

the subgap states localized along the defect discussed in Sec. 5 do not appear and simple quantum

mechanics developed in Sec. 2 applies. The zero-temperature limit is assumed.

C.1 Perturbative correction to ∆(r)

According to the self-consistency equation [36], the order parameter is given by the sum over

quasiparticle states:

∆(r) = g
∑
n

un(r)v∗n(r) tanh(En/2T ), (C.1)

where g is the BCS coupling constant, T is temperature, and summation goes over positive energies,

En > 0. In Eq. (C.1), u and v are the particle and hole components of the wave function.

Following the approach discussed in Sec. 6, we are going to determine the first approxima-

tion to the order parameter,∆1(r), taking the wave functions in the presence of the linear defect but

calculated with the clean ∆0(r). Since the states of the chiral branch exhibit strong modification

by the defect, we expect that they give the leading contribution to δ∆(r) = ∆1(r)−∆0(r). Hence,

we will replace the latter by δ∆(r) = ∆ch
1 (r)−∆ch

0 (r), where the right-hand side contains only the

contribution of the chiral branch to the self-consistency equation (C.1). Replacing then u and v by

the components of the real-space wave function (2.41), and we obtain at zero temperature:

∆ch
1 (r) = gA2e−2K(r)

∑
n

∑
µ,ν

⟨µ|n⟩⟨n|ν⟩Jµ−1/2(kF r)Jν+1/2(kF r)e
i(µ−ν−1)φ, (C.2)

where n labels the states in the presence of the defect and the overlaps ⟨µ|n⟩ are given by Eq. (2.40).
In order to obtain the correction to the order parameter, δ∆(r), one should subtract the

chiral-branch contribution in the clean (α = 0) case, leading to

δ∆(r) = ∆ch
1 (r)−∆ch

1 (r)
∣∣
α=0

. (C.3)

44



Figure C.1: Angular harmonics of the chiral-branch contribution to the order parameter∆ch
1 given

by Eq. (C.4) as a function of the distance from the vortex center. The defect strength α = 10. The
black curve represents γ0(r) in the clean case, see Eq. (C.6).

It is convenient to present Eq. (C.2) as a sum over angular harmonics:

∆ch
1 (r) = gA2e−2K(r)e−iφ

∞∑
m=−∞

γm(r)e
imφ. (C.4)

Here, themth harmonic of the order parameter γm(r) can be represented as a sum of contributions

from the overlaps with the nth state: γm(r) =
∑

n γmn(r), where

γmn =
∑
µ

⟨µ|n⟩⟨n|µ−m⟩Jµ−1/2(kF r)Jµ−m+1/2(kF r). (C.5)

In the clean case, only the zero harmonic is present, and the summation over µ and n can

be easily carried out:

γ0(r)
∣∣
α=0

=
kF r

2

[
J2
0 (kF r) + J2

1 (kF r)
]
. (C.6)

In the presence of the defect, nonzero harmonics appear. Due to the π-shift symmetry of the

wave functions [Eq. (2.39)] odd harmonics vanish: γ2k+1(r) = 0. The profiles of several lowest

harmonics are shown in Fig. C.1.
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C.2 Back action on the spectrum

Here we calculate the shift of the minigap due to the modification of the order parameter δ∆(r)

given by Eq. (C.3). It can be obtained by treating the emerging correction to the BdG Hamiltonian

(2.4) by the first-order perturbation theory:

∆Eg =

∫
drΨ†

0(r)

 0 δ∆(r)

δ∆∗(r) 0

Ψ0(r), (C.7)

whereΨ0(r) is the wave functionwith the lowest positive energyEg(α) [see Eqs. (2.33) and (2.41)].

The shift of the minigap can be decomposed into the contributions due to the distortion of

the zero-harmonic profile of the order parameter and due to its axial symmetry distortion by higher

harmonics:

∆Eg = ∆E0
g +∆E ̸=0

g . (C.8)

The expressions for these contributions can be written in the terms of the order parameter harmonics

introduced in Eq. (C.5) as

∆E0
g =

4πgA4

k2F

∫ ∞

0

dz z e−4K(z/kF )γ00(z)×
[
γ0(z)− γ0(z)

∣∣
α=0

]
. (C.9)

and

∆E ̸=0
g =

4πgA4

k2F

∫ ∞

0

dz z e−4K(z/kF )
∑
m ̸=0

γm0(z)γm(z). (C.10)

The integrals above can be calculated numerically for different values of the parameter α.

It turns out that the m = 0 contribution (C.9) converges at small distances, therefore, the factor

e−4K(r) can be omitted and ∆E0
g appears to be independent of kF ξ:

∆E0
g =

4πgA4

k2F
c0(α), (C.11)

where the coefficient c0(α) should be determined numerically. On the other hand, Eq. (C.10) has

a logarithmic divergency at large distances, and the factor e−4K(r) provides an infrared cutoff at

z ∼ kF ξ:

∆E ̸=0
g =

4πgA4

k2F
c1(α) ln kF ξ, (C.12)

where the coefficient c1(α) should be determined numerically.

Figure C.2 represents the shift of the minigap∆Eg for several values of the defect strength

α, as well as its contributions from zero (∆E0
g ) and nonzero (∆E ̸=0

g ) harmonics. The calculations

were performed at kF ξ = 500. We see that the growth of ∆Eg nearly saturates for α > 10 at the
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total

zero harmonic

nonzero harmonics

Figure C.2: The shift of the minigap ∆Eg for several values of the defect strength α obtained
numerically for kF ξ = 500. The total value of the shift is depicted by brown circles. Orange
squares and blue diamonds represent the contributions from the zero (∆E0

g ) and nonzero (∆E ̸=0
g )

harmonics of the order parameter, correspondingly.

value of c0 + c1 ln kF ξ ≈ 0.1.
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