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Abstract

We calculate Josephson critical current Ic of a SAS structure, where A is a thick Anderson insulator,
with thickness L much larger than localization length ξ. Level spacing ∆ξ in localization volume
is considered to be much larger than superconducting gap ∆0. For a one-dimensional as well as
quasi-1D models of Anderson insulator we find asymptotic expressions for the average magnitude
of Josephson current ⟨Ic(L)⟩ for cases L ≪ LM , LM ≪ L ≪ L2

M/ξ and L ≫ L2
M/ξ where

LM = 2ξ ln ∆ξ

∆
.
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Chapter 1

Introduction

1.1 Motivation

Transmission of Cooper pairs through insulating barriers has been studied since the discovery of the

Josephson effect in superconductor-insulator-superconductor (SIS) structures. In band insulators

probability of electron transmission decays exponentially with barrier thickness, with a short decay

length of atomic scale. The situation exists for the cases in which the band insulator is replaced by

the Anderson insulator. In this case, the density of electron states at the Fermi-level is relatively

high and due to strong disorder the electron states are localized.

Particularly interesting results were reported in Ref. [9] where Josephson critical current

was detected up to the thickness of insulating barrier L ≤ 60nm, while localization length ξ is

just few nanometers long; In addition, large subgap conductance GNS was measured in similar

structures of the SAN type [9], together with a rich voltage-dependent structure at subgap voltages

V < ∆/e, where ∆ is superconducting gap in the S terminal. These results demonstrate the

persistence of a superconducting proximity effect (and, therefore, existence of quantum coherence)

on distances much above localization length.

Usually, Josephson critical current via tunnel barrier Ic(L) = IAB
c (L) = # e∆

h̄
σ(L) accord-

ing to classical Ambegaokar-Baratoff relation (here and below we consider zero-temperature limit

for the critical current magnitude). Similar kind of relation is known for short SNS junctions, ac-

cording to Beenakker theory [5]. The key feature of electron transport leading to such a relation is

that tunnelling transmission amplitudes t(L,E) are energy-independent within the relevant energy

scale E ∼ ∆0. For transport via Anderson insulator, it works for relatively short junctions only;

relevant condition will be shown to be L ≤ LM(∆0) = 2ξ ln ∆ξ

∆0
. Here ξ is typical localization

length defined via relation 〈
ln
∣∣∣∣ψ2(x)

ψ2(0)

∣∣∣∣〉 ≈ −x
ξ

(1.1)

for the asymptotic decay of wave-function intensity at long distances x ≫ ξ from its maximum.

∆ξ = (πνAξ)−1 is typical level spacing between single-electron levels within localization volume

Aξ (A is the cross-section), and ν is the density of states. The ratio ∆ξ

∆0
is very large,∼ 102−103 for
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relevant experimental conditions like in Ref. [9]. The length LM(∆0) ∼ (10−15)ξ corresponds to

a typical size of Mott resonant pair [16] of localized eigenstates with energy separation∆0 ≪ ∆ξ.

We will demonstrate the existence of three different types of behavior of Ic(L) for the

lengths L which belong to the regions of short junctions L ≤ LM(∆0), intermediate junctions

with LM(∆0) ≤ L ≤ L2
M(∆)/ξ, and longest junctions with L ≥ L2

M(∆0)/ξ. The major ex-

ponential dependence of the average critical current Ic(L) in all three regions follows the one of

IAB
c (L) and σ(L), as they are proportional to exp(−L/4ξ) for a quasi-one-dimensional model
of the insulator. However, the ratio Ic(L)/IAB

c (L) grows ∝ L in a broad intermediate region

LM(∆) ≤ L ≤ L2
M(∆0)/ξ. For longest junctions with L ≫ L2

M(∆0)/ξ, the ratio Ic(L)/IAB
c (L)

does not depend on L anymore, but it is much larger than unity; however, this surprising result is

valid for extremely low temperatures only.

1.2 Wave function statistics in the Anderson insulator

Strong fluctuations of localized wave-function’s amplitudes were first found by V.Melnikov [14]

who studied statistics via a finite one-dimensional wire. One of immediate results of these fluctu-

ations is that average tunneling conductance through an insulating wire of length L ≫ ξ decays

σ(L) ∝ exp(−L/4ξ) instead of naively expected exp(−L/ξ), with ξ defined as (1.1). From now

on the we will measure lengths in the units of the localization length ξ if not stated otherwise.

Here we follow Ref. [11] in which the phenomenological approach to the problem of probability

distribution of localized wave function was proposed. We will describe the statistics of the tails of

the localized wave functions in terms of the following logarithm:

χ(x) = − ln |ψ(x)|2. (1.2)

An additional minus sign is added so that χ(x) ≥ 0. It was shown in [15] that the statistics of

χ are given by the functional integral. To avoid an accurate analytical treatment of the integral,

it can be shown that for the description of the tails, one can fix the point x0 and the value χ(x0)

so that |ψ(x0)|2 is the global maximum. The normalization delta function can be replaced with
an approximate condition χ(0) > χ(x0). This condition will guarantee that the normalization of

wave functions will be of order one. This allows us to write down an approximate measure for the

functional integral, describing the statistics of χ(x):

dµx0 [χ(x)] ∝ exp

{
−1

4

∫ [
dχ

dx
− sign (x− x0)

]2}
D[χ(x)]. (1.3)
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We can already conclude that the tails on the different sides of the position of the maximum x0

are distributed independently. The action in the exponent of (1.3) leads to the stationary trajectory

described be the Fokker-Planck equation:

∂P

∂r
=
∂2P

∂χ2
− ∂P

∂χ
, (1.4)

where r = |x − x0|. Since we are interested in the solutions for r ≫ 1, we can write down the

asymptotic for of the solution as

P (χ, r) =
1

2
√
πr
f
(χ
r

)
exp

[
−(χ− r)2

4r

]
. (1.5)

Here f(χ/r) is the cutoff factor which takes into account the condition P (χ < 0, r) = 0. The exact

form of the factor f cannot be determined within the discussed approach. Nevertheless, for the

purpose of numerical analysis wewill need a better understanding of its shape. The first observation

is that the maximum value of the distribution function (1.5) at χ = r should not be affected by the

cutoff factor. Furthermore, the function f should not change the shape of the distribution P (χ, r)

at χ > r. All of the mention properties combine in the following expressions:

f(0) = 0, f(x > 1) = 1. (1.6)

This, however, is not enough as the incline near the zero argument is also important. One method

to define it is to consider the following correlation function:

S(ω, L) = ν−2

〈∑
n ̸=m

δ(En − E)δ(Em − E − ω)ψn(−L/2)ψ∗
n(L/2)ψ

∗
m(−L/2)ψm(L/2)

〉
.

(1.7)

In Ref. [12] the asymptotic expressions for this correlation function were studied using methods

described in the Section 1.2. For the limit ω → 0, the correlation function (1.7) was calculated

exactly in Ref. [12]. This allows to find an accurate leading term in the limit L ≫ 1 with the

correct coefficient:

S(ω → 0, ξ ≪ L) ≈ π7/2

16

e−L/4

L3/2
. (1.8)
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On the other hand, the average in (1.7) can be calculated by implementing the distribution function

(1.5) (see Sec. III of Ref. [12]):

S(ω → 0, L) ≈
L∫

0

dz

+∞∫
0

dχ1

+∞∫
0

dχ2 P (χ1, z)P (χ2, L− z)e−(χ1+χ2). (1.9)

The exponential part of the dependence of (1.9) is not influenced by the form of the cutoff factor

and is e−L/4ξ. The pre-exponent, however, is dependent on the exact form of the cutoff factor. The

same pre-exponent as the one in (1.8) can be achieved if the cutoff factor satisfies the condition

f(x → 0) ∝ x. Under this condition, the main contribution to the integral over z comes from the

ends of the domain of integration. This leads to the estimation

S(ω → 0, L) ≈ f ′(0)
π3/2

2
√
2

e−L/4

L3/2
. (1.10)

By comparing (1.10) to (1.8) we find the estimation for the incline of the function f(x) near x = 0:

f ′(0) ≈ π2

4
√
2
≈ 1.7 (1.11)

Finally, for the numerical analysis we will use the simplest form of f possible, which satisfies all

conditions mentioned above:

f(x) ≈

f
′(0) x, f ′(0)x < 1;

1, f ′(0)x ≥ 1.
(1.12)

1.3 Beenakker’s formula

To compute the current we apply similar methods to those which were first applied for the analysis

of the fluctuations in the critical Josephson current of a short disordered SNS junction (Ref. [5]).

The problem was considered in the dirty limit l ≪ L ≪ ξc, where L is the junction length, l

is the elastic mean free path, and ξc = h̄vF/π∆0 is the superconducting coherence length. The

condition l ≪ L and the general form of the equations derived by the means of a transmission

matrix formalism makes them applicable to the case of the insulator discussed in the present work.

From now on we consider a Q1D problem of single-channel scattering.

For the derivation of the convenient expression, we will start by writing the expression for

the critical current, which results from the Bogoliubov-de Gennes Hamiltonian. As it was shown

8



in Ref. [5],

I(T ) =
2e

h̄
T

+∞∫
−∞

dε ln
(
cosh

ε

2T

)
∂φρ(ε, φ), (1.13)

where φ = φ2 − φ1 is the difference of the superconducting phases and ρ(ε, φ) is the density of

states, which can be expressed as

ρ = − 1

πi
∂ε ln g(ε, φ). (1.14)

After introducing the notations

α(ε) = exp
(
−i arccos ε

∆0

)
, rA(φ) =

∥∥∥∥∥∥e
iφ/2 0

0 e−iφ/2

∥∥∥∥∥∥ , (1.15)

we can write the function g(ε, φ) as the following determinant:

g(E,φ) = det
[
1− α2(E)r∗AŜ(E)rAŜ

∗(−E)
]

(1.16)

and Ŝ(E) is the scattering matrix. Then, we can deform the contour of integration in (1.13) and,

instead of the integral, we get a formula with the summation over the Matsubara frequencies:

I(T ) =
4e

h̄
T
∑
ω>0

∂φ ln g(iω, φ), ω = 2πT (n+ 1/2). (1.17)

In our work, wewill discuss only the case of extremely small temperatures. Taking the limit T → 0,

we come to the following equation:

I(T → 0) =
2e

πh̄

+∞∫
0

dω ∂φ ln g(iω, φ). (1.18)

Next, we consider the case of the single-channel scattering, which gives us the ability to consider

only a 2 × 2 scattering matrix and analyze the expression (1.18). Introducing the elements of the

scattering matrix

Ŝ(E) =

∥∥∥∥∥∥S11(E) S12(E)

S21(E) S22(E)

∥∥∥∥∥∥ , (1.19)

9



we can find the general expression for g(E,φ) by substituting (1.15) and (1.19) into (1.16):

g(E,φ) =

= 1−α2
{
S11(E)S

∗
11(−E)+2 cosφS12(E)S

∗
12(−E)+S22(E)S

∗
22(−E)−α2 det [S(E)] det [S∗(−E)]

}
.

(1.20)

Here we have used that S12 = S21 due to time-reversal symmetry. Substituting into (1.18), gives

the following:

I(T → 0) =
4e

πh̄
sinφ

+∞∫
0

dω α2(iω)
|S12(iω)|2

g(iω, φ)
. (1.21)

In this work we will analyze the critical current for different values of length of the insulating

junction L. Firstly, to determine the regimes stemming from the different values of L, we note that

the function

α2(iω) =
[√

1 + (ω/∆0)2 − (ω/∆0)
]2

(1.22)

is decaying with characteristic scale of∆0. We take into account the fact that the localized states in

the bulk of the insulator have finite lifetime and, subsequently, the complex term in their energies

E−iΓ, where Γ is the level width. The exact value of Γ is dependent on the position of the localized
state. However, to approximate the expression (1.21) averaged over the insulator statistics, ∆0

should be compared to the value of Γtyp which gives the largest contribution to the average value

of the current. It will be shown later in the text that if the average over the realizations of disorder is

taken, the relevant values of the width are Γtyp ∼ ∆ξe
−L. Here we emphasize that the comparison

between∆0 and∆ξe
−L is equivalent to comparison betweenL andLM to underline the importance

of the Mott scale. Now, we can proceed with the approximations for both cases:

1.3.1 Approximation for ∆0 ≪ Γtyp

Here since ∆0 and, as the result, ω is negligible in comparison to the typical values of the level

width, we approximate expression (1.16) by saying that Ŝ(iω) ≈ Ŝ(0).

g(iω, φ)

∣∣∣∣∣
∆0≪Γtyp

≈
[
1− α2(iω)

]2
+ 4α2(iω) |S12(0)|2 sin2(φ/2). (1.23)

10



Here we have used the unitary property to get det
[
Ŝ(0)

]
det
[
Ŝ∗(0)

]
= 1. Using (1.23) in (1.21),

we find

I(T → 0)

∣∣∣∣∣
∆0≪Γtyp

≈ e

πh̄
sinφ

+∞∫
0

dω
|S12(0)|2

1 + ω2/∆2
0 − |S12(0)|2 sin2(φ/2)

. (1.24)

Calculation of the integral over ω in (1.24) yields

I(T → 0)

∣∣∣∣∣
∆0≪Γtyp

≈ e∆0

2h̄

|S12(0)|2 sinφ√
1− |S12(0)|2 sin2(φ/2)

, (1.25)

which is the classical form of the Beenakker’s formula. In this limit, the transmission amplitudes

t = S12 are calculated at zero energy and, therefore, are not dependent on it.

1.3.2 Approximation for ∆0 ≫ Γtyp

In this case the superconducting gap is significantly larger than the typical level width. If the level

width is neglected, however, the resonant scattering on the localized states will be absent and

|S11(Γ = 0)| = |S22(Γ = 0)| = 1, |S12(Γ = 0)| = 0. (1.26)

Since in the numerator of (1.21) a small value |S12(iω)|2 is already present, for the denominator
we can use expressions (1.26). Calculating g(iω, φ) in this limit, we get

g(iω, φ)

∣∣∣∣∣
∆0≫Γtyp

≈
[
1− α2(iω)

]2
. (1.27)

Finally, we substitute (1.27) into (1.21):

I(T → 0)

∣∣∣∣∣
∆0≫Γtyp

≈ e

πh̄
sinφ

+∞∫
0

dω
|S12(iω)|2

1 + ω2/∆2
0

. (1.28)

We wish to use formulas (1.24) and (1.28) for the calculation of the average critical current. How-

ever, averaging in the case ∆0 ≪ Γtyp presents a problem because of the presence of the term

containing |S12(0)|2 in the denominator of (1.24). To make analytical analysis of these two regions
of the parameters possible, we will neglect this term during the calculation in the region∆0 ≪ Γtyp.

Analyzing (1.24), we see that in the limit ∆0 ≪ Γtyp this approach effectively provides the lower

bound for the first Fourier component of the current. We expect this approximation to give a result

which differs from the accurately evaluated asymptotic by the factor of the order of one.

11



Taking all made approximations into account, we can write the expression for the critical current,

which will be used during the calculation of its average value for all regions of the parameters.

Ic(T → 0) ≈ e

πh̄

+∞∫
0

dω
|t(iω)|2

1 + ω2/∆2
0

. (1.29)

Here t(iω) is the transmission amplitude of the resonant scattering.

12



Chapter 2

Calculation of the critical current

In this chapter, we discuss the calculation of the critical current through an SAS structure, in which

two superconducting bulks are connected by a Q1D Anderson insulator. We will use an approxi-

mate expression (1.29) for the calculation of the current. We are interested in the effects caused by

the statistics of the localized wave functions. In order to include them, we to average an integrand

taking into account the distribution (1.5). Throughout this work we denote values averaged over

disorder with angle brackets.

⟨Ic⟩ =
e

πh̄

+∞∫
0

dω

〈
|t(iω)|2

1 + ω2/∆2
0

〉
. (2.1)

Since the distribution (1.5) describes the statistics of the tails of the localized wave function, we

need to express the integrand through localized states. This can be done using the relation between

transmission amplitudes and Green’s functions:

|t(iω)|2 = ν−2
0

∑
n,m

ψn(−L/2)ψ∗
n(L/2)ψ

∗
m(−L/2)ψm(L/2)

(En − iΓn − iω)(Em + iΓm + iω)
, (2.2)

where ν0 = (π∆ξξ)
−1. Here we emphasize the presence of the level widths Γn and Γm. The

necessity of their inclusion will be more transparent as the calculation will progress.

From this expression we can discern two distinct contributions to the current. The first on, which

wewill call the diagonal contribution comes from the terms of the sum (2.2) in which n = m. The

other, non-diagonal contribution, is made of the terms of the sum (2.2) over different localized

states n ̸= m.

Calculation of these terms is immensely different. The most straightforward reason for it is that the

terms in the diagonal contribution depend only on a single energy of the localized state and in the

non-diagonal contribution every term is dependent on two energies.

13



2.1 Diagonal contribution

For the diagonal contribution we can rewrite the expression as follows:

⟨Idiag⟩ =
e

πh̄ν20

+∞∫
0

dω

1 + ω2/∆2
0

〈∑
n

|ψn(−L/2)|2|ψn(L/2)|2

E2
n + (Γn + ω)2

〉
=

=
e

πh̄ν20

∫
dr

+∞∫
−∞

dE
∑
n

δ(rn − r)δ(En − E)

+∞∫
0

dω

1 + ω2/∆2
0

〈
|ψr(−L/2)|2|ψr(L/2)|2

E2 + (Γ + ω)2

〉
=

=
e

πh̄ν20

∫
dr

+∞∫
−∞

dE ν(E, r)

+∞∫
0

dω

1 + ω2/∆2
0

〈
|ψr(−L/2)|2|ψr(L/2)|2

E2 + (Γ + ω)2

〉
. (2.3)

Here for ψn and ψr) we denote wave functions of the localized states which have their center at the

coordinates rn and r respectively.

From now on we assume the density of states to be uniform in the volume of the insulator and to

be not dependent on the energy. Assuming A is the cross-section area of the insulator, substituting

ν = (πA∆ξξ)
−1 from the definition of the localization energy, we come to the following expres-

sion:

⟨Idiag⟩ =
e

πh̄ν0

L/2∫
−L/2

dz

+∞∫
−∞

dE

+∞∫
0

dω

1 + ω2/∆2
0

〈
|ψz(−L/2)|2|ψz(L/2)|2

E2 + (Γl + Γr + ω)2

〉
(2.4)

Here we have taken into account that total level width consists of two contributions Γl and Γr, com-

ing from the processes of the decay of the localized state to the left or to the right lead respectively.

This means, that the total level width should be written as their sum:

Γ = Γl + Γr. (2.5)

The first detail worth noting is that the integral over ω in (2.4) diverges if Γ = 0. This means that

without taking into account the finite level width the critical current is infinite due to the diverging

single-state resonant scattering. We emphasize here that this is not the case for the non-diagonal

contribution to the critical current due to the finite spacing between levels with different indexes.

This particular behavior of the two contributions justifies their separate consideration. Now we can

finally implement the distribution function (1.5).

As it was described in the section (1.2), the shape of this function in 1D can be justifiably approxi-

mated with the log-normal distribution with an additional cutoff factor. Since the values of the wave
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function is taken at two coordinates, it will require two distribution functions: P (χl, L/2 + z) and

P (χr, L/2− z). Following the definition of χ, wave functions should be replaced as

|ψ(−L/2)|2 −→ e−χl , |ψ(L/2)|2 −→ e−χr . (2.6)

We also need to remember that Γl and Γr are also disorder dependent. To take it into account, we as-

sume level widths to be proportional to the values of the |ψ|2 at the coordinate of the corresponding
lead with the proportionality coefficient being the order of ∆ξ:

Γl ∼ ∆ξ|ψ(−L/2)|2, Γr ∼ ∆ξ|ψ(L/2)|2. (2.7)

Using all described approximations and taking an integral over E in (2.4), lets us write down the

expression which will be used to extract different asymptotic expressions for different values of the

insulator length:

⟨Idiag⟩ =
e

h̄ν0

L/2∫
−L/2

dz

+∞∫
0

dω

1 + ω2/∆2
0

×

×
+∞∫
0

dχldχrP (χl, L/2 + z)P (χr, L/2− z)
e−(χl+χr)

∆ξ(e−χl + e−χr) + ω
(2.8)

Analyzing this expression, we can extract information about the characteristic scale which can be

compared to the length L. Since the characteristic scale of the variable ω is ∆0, we can roughly

compare it with ∆ξe
−χ. Furthermore, the distribution function P (χ, z) has the maximal value at

χ = z and z, in our case, has the characteristic scale L.

2.2 Non-diagonal contribution

For the non-diagonal contribution, similar actions lead to the following result:

⟨Inon−diag⟩ =
2e

πh̄ν20

L/2∫
−L/2

dzAdzB

+∞∫
−∞

dEAdEB

+∞∫
0

dω

1 + ω2/∆2
0

×

× Re
〈
ψzB(−L/2)ψ∗

zB
(L/2)ψzA(L/2)ψ

∗
zA
(−L/2)

(EB − iΓB − iω)(EA + iΓA + iω)

〉
. (2.9)

Here ψzA and ψzB are the wave functions of the bound states with the localization center having

the coordinate zA and zB respectively. In this case, however, we need to take into account the

hybridization of the wave functions. It can be easily done by treating these two states as the Mott
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pair with the following Hamiltonian:

HMott =

∥∥∥∥∥∥EA J

J EB

∥∥∥∥∥∥ . (2.10)

The real wave functions of the Hamiltonian (2.10) are the following linear combinations:

ψ+ = u+ψzA + u−ψzB , ψ− = u∗−ψzA − u∗+ψzB , (2.11)

where

|u±|2 =
1

2

(
1∓ ε−

∆

)
, ∆ =

√
ε2− + 4|J |2, ε± = EB ± EA. (2.12)

Eigenvalues of the Hamiltonian are expressed through the energies of the localized states as

E± =
1

2
(ε+ ±∆). (2.13)

To write down the complete expression for the non-diagonal term, we need to take into account

the fact that the hybridization matrix element J is also dependent on the realization of the disorder.

Since it can be estimated as the product of the overlapping wave functions

J ≈ ∆ξψzA(x)ψzB(x). (2.14)

Here x is some point which lies on the tails of the localized wave functions ψzA and ψzB . Due

to the known property of the log-normal distribution that the product of the independent random

variables, having the log-normal distribution, also has the log-normal distribution. Furthermore,

the probability distribution of the right-hand side of (2.14) is independent on the exact value of the

coordinate x at which we look at the value of the product.

As the result, we can safely assume that the hybridization matrix element J can be parameterized

in the same manner as it was done before, when we had only one localized state. The distribution

function for J , however, will differ. Since, as it was already stated, hybridization can be viewed as

the product of two tails of the wave functions, the cutoff factor in the distribution PJ for J should

be squared. So the parameterization and the distribution function are the following:

PJ(χJ , r) =
1

2
√
πr
f 2
(χJ

r

)
exp

[
−(χJ − r)2

4r

]
, J = ∆ξe

−χJ/2. (2.15)
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For the localized wave functions the parameterization will have the usual form:

|ψzA(−L/2)|2 = e−χ
(l)
A , |ψzA(L/2)|2 = e−χ

(r)
A , |ψzB(−L/2)|2 = e−χ

(l)
B , |ψzB(L/2)|2 = e−χ

(r)
B .

(2.16)

So the correct way to write down the average for the non-diagonal contribution is the following:

⟨Inon−diag⟩ =
2e

πh̄

+∞∫
0

dω

1 + ω2/∆2
0

+∞∫
−∞

dε+dε−

+∞∫
0

dχ
(l)
A dχ

(r)
A dχ

(l)
B dχ

(r)
B dχJ

32π5/2
×

×
L/2∫

−L/2

dzAdzBP (χ
(l)
A , L/2 + zA)P (χ

(r)
A , L/2− zA)P (χ

(l)
B , L/2 + zB)P (χ

(r)
B , L/2− zB)×

× PJ(χJ , |zB − zA|)Re
ψ−(−L/2)ψ∗

−(L/2)ψ+(L/2)ψ
∗
+(−L/2)

(E− − iΓ− − iω)(E+ + iΓ+ + iω)
, (2.17)

where we also need to use the expressions from (2.11) to (2.16).

2.3 Short contact (L≪ LM )

In this section we start the calculation of the Josephson current and consider the case of the contact

much shorter than the Mott scale.

2.3.1 Diagonal term

Let us calculate the diagonal contribution for the lengths much shorter than the Mott scale. The

first step is to substitute (1.5) into (2.8):

⟨Idiag(L)⟩ =
e

h̄ν0

+∞∫
0

dω

1 + ω2/∆2
0

+L/2∫
−L/2

dz√
(L/2− z)(L/2 + z)

+∞∫
0

dχldχr

4π
× (2.18)

× f

(
χl

L/2 + z

)
f

(
χr

L/2− z

)
e−χl−χr

ω +∆ξ[e−χl + e−χr ]
exp

[
−(L/2 + z − χl)

2

4(L/2 + z)
− (L/2− z − χr)

2

4(L/2− z)

]
.

(2.19)
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Condition L ≪ LM in terms of the integral means ω ≪ ∆ξe
−χl,r . After we neglect ω in the

denominator, we can easily calculate an integral over this variable:

⟨Idiag(L≪ LM)⟩ ≈ ∆0

∆ξ

π

2

e

h̄ν0

+∞∫
0

dω

1 + ω2/∆2
0

+L/2∫
−L/2

dz√
(L/2− z)(L/2 + z)

+∞∫
0

dχldχr

4π
×

× f

(
χl

L/2 + z

)
f

(
χr

L/2− z

)
e−χl−χr

e−χl + e−χr
exp

[
−(L/2 + z − χl)

2

4(L/2 + z)
− (L/2− z − χr)

2

4(L/2− z)

]
.

(2.20)

Themain contribution to the initial integral over z comes from the ends of the integration limits. We

can estimate the integral over z by cutting out the ends of the integration interval at z ∼ −L/2+ δ

and z ∼ L/2 − δ, where δ ∼ 1. Due to the symmetry of the problem, contributions from the two

ends are equal. For this reason, we will take the integrand at z ∼ −L/2 + 1 (left lead) twice.

⟨Idiag(L≪ LM)⟩ ≈ ∆0

∆ξ

π
e

h̄ν0

1√
L

+∞∫
0

dχldχr

4π
×

× f
(χl

1

)
f
(χr

L

) e−χl−χr

e−χl + e−χr
exp

[
−χ

2
l

4
− (L− χr)

2

4L

]
. (2.21)

It is important to note that the relevant value for the variables are χl ≤ 1 and χr ≤ L. Thus, we

can expand the cutoff factor f(χr/L) near zero:

f
(χr

L

)
≈ f ′(0)

χr

L
(2.22)

and f ′(0) can be approximated as (1.11).

Since χl determines the value of Γ it may seem that in the case of the short contact, the level width

is of the order of∆ξ as there are no other limiting conditions for Γ. This, however, is not the case.

As we will see in the Section 2.4.2, the correct approximation for the longer contact requires the

assumption L ≫ LM . This is due to the fact that for the long contact the relevant values of z are

of the order of L, but not too close to the superconducting leads.

Since the convergence of the integral over χl is mainly determined by the exponent e−χl and f(x ≥
1) = 1, we put f(χl) = 1. An integral over χr is convergent in the limit of L → +∞, meaning

that the main order approximation is

⟨Idiag(L≪ LM)⟩ ≈ f ′(0)C1∆0
e

h̄

e−L/4ξ

(L/ξ)3/2
≈ 7.8∆0

e

h̄

e−L/4ξ

(L/ξ)3/2
. (2.23)
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Here

C1 =
π

4

+∞∫
0

dχldχr χr
e−χl−χr/2

e−χl + e−χr
exp

[
−χ

2
l

4

]
≈ 4.5 (2.24)

Since we had to cut the integration limits at arbitrary value, this approximation does not provide

an exact coefficient.

Nonetheless, from (2.23) we can see the effect of the insulator statistics: the exponential factor

e−L/4, which serves as evidence of the fact that the main contribution to the average critical current

comes from rare events.

2.3.2 Non-diagonal term

One option to evaluate the non-diagonal contribution is to study the integral (2.17). In this case,

however, this process can be avoided.

As it was mentioned before, the non-diagonal contribution is finite even for the case of Γ = 0. This

means that for the estimation of the non-diagonal contribution in the case of the short contact we

can put level width equal to zero. This can only be implemented in the case L≪ LM : for the long

contact the energy dependence of the electron transmission amplitudes is strong due to the presence

of Mott resonant pairs. Now we have all required tools to calculate the non-diagonal contribution

for the short contact. The average in (2.9) can be easily expressed through the correlation function

(1.7) as follows:

ν−2
0

〈∑
n ̸=m

ψn(−L/2)ψ∗
n(L/2)ψ

∗
m(L/2)ψm(−L/2)

(En − iω)(Em + iω)

〉
=

=

∫
dEAdEB

(EA + EB − iω)(EB + iω)
S(EA, L) = −

∫
dEA

2πi

2iω − EA

S(EA, L) =

+∞∫
−∞

dy
2πω

ω2 + y2
S(2y, L).

(2.25)

As the result, the non-diagonal contribution can be expressed as the following integral:

⟨Inon−diag(L≪ LM)⟩ ≈ e

πh̄

+∞∫
0

dω

1 + ω2/∆2
0

+∞∫
−∞

2πω dy

y2 + ω2
S(2y, L) (2.26)

In the limit L ≪ LM the energy scale ω ∼ ∆0 which gives the main contribution to the integral

is much smaller than the relevant values of y. Thus, we implement the limit representation of the
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delta function

lim
ω→0

2πω

ω2 + y2
= 2π2δ(y). (2.27)

By inserting the asymptotic expression (1.8) and performing the trivial remaining integration over

ω, we come to the following result:

Inon−diag(L≪ LM) ≈ π11/2

16
∆0

e

h̄

e−L/4

L3/2
≈ 33.9∆0

e

h̄

e−L/4

L3/2
. (2.28)

The non-diagonal contribution happens to be of the same order for the case of the short contact.

2.3.3 Final result

To find the resulting critical current, we need to sum the two contributions (2.23) and (2.28):

⟨Ic(L≪ LM)⟩ ≈ 41.7∆0
e

h̄

exp (−L/4ξ)
(L/ξ)3/2

. (2.29)

Here we, once again, emphasize that the methods used to find this approximation do not provide

the correct coefficient. Nevertheless, we can compare with the exact result calculated using the

sigma-model approach [20] in the limit ξ ≪ L ≪ LM . The exact result for the current has the

following form:

⟨Iexact(ξ ≪ L≪ LM)⟩ = e

h̄
∆0

π3/2

2

exp (−L/4ξ)
(L/ξ)3/2

K2 [sin(φ/2)] sinφ. (2.30)

Here

K(x) =

π/2∫
0

dθ√
1− x2 sin2 θ

. (2.31)

The sigma-model approach also allows to find the normal conductivity for L≫ ξ [20]:

⟨σexact(ξ ≪ L)⟩ = π5/2

4

e2

h̄

exp (−L/4ξ)
(L/ξ)3/2

. (2.32)

Direct comparison of (2.32) and (2.30) shows that for L≪ LM the Ambegaokar-Baratoff relation

takes holds. The comparison of (2.30) and (2.29), however, shows that the coefficient in (2.29) is

∼ 6 times larger than the one in the exact result.
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2.4 Long contact (LM ≪ L≪ L2
M )

In this section, we carry out the calculation for the critical current in for the case when length is

much larger than the Mott Scale. However, as we will see, an upper bound L≪ L2
M exists.

2.4.1 Diagonal term

Let us now consider the case of the lengths larger than the Mott scale. We start by calculating an

integral over ω in (2.8):

+∞∫
0

dω

1 + ω2/∆2
0

1

ω + Γ
=

∆0

2

πΓ + 2∆0 ln(∆0/Γ)

Γ2 +∆2
0

. (2.33)

The integration results in two terms in the numerator: πΓ and 2∆0 ln(∆0/Γ). As we will see in this

section, in the limit of L ≫ LM the main contribution to the integral comes from the integration

domain which corresponds the values of level width Γ ∼ ∆ξe
−
√
L.

This fact allows us to compare the two terms in the numerator of the right-hand side of (2.33).

Doing so leads to the conclusion that the term πΓ dominates for the values of L which satisfy the

condition LM ≪ L ≪ L2
M , which we will call the case of the long contact. On the other hand,

the term 2∆0 ln(∆0/Γ) dominates in the case of L≫ L2
M , which we will call the case of the very

long contact.

To calculate the integral (2.8) in the limit LM ≪ L≪ L2
M , as it was mentioned, we leave only the

term πΓ in the numerator of the right-hand side of (2.33). The integral now looks as follows:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=
π2

2

e

πh̄ν0

+L/2∫
−L/2

dz√
(L/2− z)(L/2 + z)

+∞∫
0

dχldχr

4π
×

×∆0∆ξ[e
−χl + e−χr ]e−χl−χr

∆2
0 +∆2

ξ [e
−χl + e−χr ]2

f

(
χl

L/2 + z

)
f

(
χr

L/2− z

)
exp

[
−(L/2 + z − χl)

2

4(L/2 + z)
− (L/2− z − χr)

2

4(L/2− z)

]
.

(2.34)

The main complication arising in the calculation of the integral is that the dependence on χl and χr

is present in the denominator, making integrals over these variables non-Gaussian. One method to

circumvent this difficulty involves the calculation of the integral over z first. Following the steps

described in Appendix A, we come to (A.9), which gives an expression for the critical current in
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the form of the integral:

〈
Idiag(LM ≪ L≪ L2

M)
〉
= 2π5/2[f ′(0)]2∆0

e

h̄

e−L/4

L3/2

+∞∫
0

dχ+
χ+ e

−χ2
+/L√

4 + e2χ+(∆0/∆ξ)2
. (2.35)

Here χ+ = (χl + χr)/2. From (2.35) it is clear that main contribution to the integral comes

from χ+ ∼
√
L. This fact confirms the statement made before about typical values of the width

satisfying the condition Γ ∼ ∆ξe
−
√
L.

One final step is to calculate the integral over χ+ in the limit of LM ≪ L≪ L2
M , which yields the

following result:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=
π5/2

4
[f ′(0)]2∆0

e

h̄

exp (−L/4ξ)√
L/ξ

[
1− e−L2

M/(4ξL)
]
≈

≈ 12.6
exp (−L/4ξ)√

L/ξ

[
1− e−L2

M/(4ξL)
]
. (2.36)

Here we once again emphasize the exponential factor e−L/4ξ, which is a notable effect of the insu-

lator statistics. Factors ξ were restored where needed. Comparing this result to (2.23) we can see

that these formulas share the same exponential factor, but the pre-exponential factors are different.

2.4.2 Non-diagonal term

This time, level widthsΓ cannot be neglected, so we have to calculate the integral (2.17). This is due

to the fact that for L≫ LM the dependence of the transmission amplitudes on energy is important.

Let the localization centerB be located to the right of the localization centerA, or simply zB > zA.

Due to the invariance of the right-hand side of (2.17) to change of indexes A ↔ B, imposing the

constraint zB > zA gives exactly one half of the initial value.

After that, we neglect the terms e−χ
(r)
A and e−χ

(l)
B as they are exponentially smaller than the terms

e−χ
(l)
A and e−χ

(r)
B . In the numerator of the (2.17) after ψ± are expressed through ψzA and ψzB only

one term does not have exponentially small factors in this case. This approximation, when applied

to the numerator, has the form

ψ−(−L/2)ψ∗
−(L/2)ψ+(L/2)ψ

∗
+(−L/2) ≈ −|u+|2|u−|2|ψzA(−L/2)|2|ψzB(L/2)|2. (2.37)

22



At this point it is clear that the non-diagonal term for the case of the long contact is negative. For

the next step, we can calculate an integral over ε+:

Re
+∞∫

−∞

dε+{
1
2
(ε+ −∆)− iΓ− − iω

}{
1
2
(ε+ +∆) + iΓ+ + iω

} =
4π(Γ+ + Γ− + 2ω)

∆2 + (Γ+ + Γ− + 2ω)2
. (2.38)

The sum Γ+ + Γ− has a very simple form:

Γ+ + Γ− = (|u+|2 + |u−|2)
[
|ψzA(−L/2)|2 + |ψzA(L/2)|2 + |ψzB(−L/2)|2 + |ψzB(L/2)|2

]
≈

≈ |ψzA(−L/2)|2 + |ψzB(L/2)|2. (2.39)

The integrals over variables χ(r)
A and χ(l)

B can be trivially taken using the normalization of the prob-

ability distribution. Since, as the result, these variables will be excluded from the equation, without

any ambiguity we can omit indexes l and r for the remaining variables χ(l)
A and χ(r)

B . The result can

be simplified

⟨Inon−diag⟩ = − 4e

πh̄

+∞∫
0

dω

1 + ω2/∆2
0

+∞∫
−∞

dε−

+∞∫
0

dχAdχBdχJ

8π3/2

L/2∫
−L/2

dzA

L/2∫
zA

dzB×

× P (χA, zA + L/2)P (χB, zB − L/2)PJ(χJ , zB − zA)×

× 4π

(
1−

ε2−
ε2− + 4∆2

ξe
−χJ

)
e−(χA+χB) [e−χA + e−χB + 2ω/∆ξ]

(∆/∆ξ)2 + [e−χA + e−χB + 2ω/∆ξ]
2 . (2.40)

The further analytical treatment of the integral (2.40) is difficult. However, the performed ap-

proximations make it possible to study these integrals numerically with a reasonable precision.

Numerical calculations of the integrals (2.40) and (2.34) shows that for L ≫ LM the diagonal

contribution dominates over the non-diagonal one. An example of the numerical calculation for

∆0 = 10−3∆ξ is shown in the Fig. (2.1). In the region LM ≪ L ≪ L2
M/ξ the error caused by

neglecting the non-diagonal term does not exceed 10%.

2.4.3 Final result

The resulting expression for the critical current with a good accuracy is just equal to ⟨Idiag(L)⟩:

〈
I(LM ≪ L≪ L2

M/ξ)
〉
=
π5/2

4
[f ′(0)]2∆0

e

h̄

exp (−L/4ξ)√
L/ξ

[
1− e−L2

M/(4ξL)
]
≈

≈ 12.6
e

h̄
∆0

exp (−L/4ξ)√
L/ξ

[
1− e−L2

M/(4ξL)
]
. (2.41)
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Figure 2.1: Solid black line: Numerical calculation for the ratio of the contributions to the critical
current: Numerically evaluated (2.40) divided by the numerically evaluated (2.34). The values are
taken for ∆0 = 10−3∆ξ. Length L is measured in ξ. The dashed vertical black line is drawn at L
corresponding Mott Scale LM ≈ 13.8.

Here we have restored the dimensional factors ξ.

2.5 Very long contact (L≫ L2
M )

In this section we finalize the calculation of the critical current by discussing the final case in which

the contact length is much larger than the Mott scale squared.

2.5.1 Diagonal term

Finally, we can discuss the results in the region when the length of the insulator length is much

larger than the Mott scale squared. As in the previous cases, we need to evaluate the integral (2.8)

in the limit L≫ L2
M . As in the case of the long contact, we will start by taking an integral over ω

as in (2.33). However, in the currently discussed limit, we use that 2∆0 ln(∆0/Γ) ≫ πΓ and leave

only the second term in the numerator of the right-hand side of (2.33). This yields the following

expression:

〈
Idiag(L≫ L2

M)
〉
=

e

h̄ν0

+L/2∫
−L/2

dz√
(L/2− z)(L/2 + z)

+∞∫
0

dχldχr

4π
ln
[

∆0/∆ξ

e−χl + e−χr

]
e−χl−χr×

× f

(
χl

L/2 + z

)
f

(
χr

L/2− z

)
exp

[
−(L/2 + z − χl)

2

4(L/2 + z)
− (L/2− z − χr)

2

4(L/2− z)

]
. (2.42)
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To evaluate the integral, first, we calculate an integral over z by repeating the steps from (A.1) to

(A.6) as it was done for the case LM ≪ L ≪ L2
M . This leads to the expression which contains

only integrals over χl and χr:

〈
Idiag(L≫ L2

M)
〉
=

1

2
√
π
[f ′(0)]

2 e

h̄ν0
sinφ

e−L/4

L3/2
×

×
+∞∫
0

dχldχr ln
[

∆0/∆ξ

e−χl + e−χr

]
(χl + χr)e

−(χl+χr)/2 exp
[
−(χl + χr)

2

4L

]
. (2.43)

The expression can be simplified by switching to the variables χ+ and χ−:

〈
Idiag(L≫ L2

M)
〉
=

4√
π
[f ′(0)]

2 e

h̄ν0

e−L/4

L3/2

+∞∫
0

dχ+χ+

+χ+∫
−χ+

e−χ+(L+χ+)/Ldχ− ln
[

eχ+

2 cosh(χ−)

]
.

(2.44)

The integral over χ+ and χ− is convergent in the limit L −→ ∞, which means that the leading

term has the following form:

〈
Idiag(L≫ L2

M/ξ)
〉
= [f ′(0)]

2
C2∆ξ

e

h̄

e−L/4ξ

(L/ξ)3/2
, (2.45)

where

C2 = 2
√
π

+∞∫
0

dχ+χ+

+χ+∫
−χ+

e−χ+dχ− ln
[

eχ+

2 cosh(χ−)

]
≈ 18.7 (2.46)

and the approximation for f ′(0) was derived in (1.11). In (2.45) the dimensional factors ξ have

been restored.

2.5.2 Non-diagonal term

In case of the very long contact the situation with the non-diagonal contribution is similar to the

one described in the Section 2.4.2. Although, in the limit L ≫ L2
M conducting precise numerical

analysis (2.40) is complicated, it is certain that the non-diagonal contribution is not larger than the

diagonal one. Indeed, the initial expression (2.1) is positive, while the expression (2.40), which is

applicable for L≫ LM , (and, subsequently, L≫ L2
M ) is negative.
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2.5.3 Final result

As the result, we conclude that in the limit L≫ L2
M the main contribution is the diagonal one:

〈
Ic(L≫ L2

M/ξ)
〉
= [f ′(0)]

2
C2∆ξ

e

h̄

exp (−L/4ξ)
(L/ξ)3/2

≈ 54.0∆ξ
e

h̄

exp (−L/4ξ)
(L/ξ)3/2

. (2.47)

The constant C2 was defined in (2.46). Here we emphasize the fact that the resulting expression

(2.45) is not proportional to the superconducting gap ∆0.
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Chapter 3

Summary of the results and conclusions

In the present work we have calculated the critical Josephson current through an SIS contact. It

was shown for all cases that the exponential decay exp (−L/4ξ) is present. The existence of three
different regimes was demonstrated. Values of the critical current in these regimes only differ by

the pre-exponential function.

The crossover between ⟨Ic(ξ ≪ L≪ LM)⟩ and ⟨Ic(LM ≪ L)⟩ can be studied numerically. The
comparison of the approximations (2.41) and (2.29) to the numerical integration of the diagonal

contribution with added non-diagonal one is shown on the Fig. 3.1. From the figure it can be con-

cluded that both approximations work reasonably well for the regions in which they were derived.

However, (2.41) and (2.29) are not of the same order at L = LM . In fact, at L = LM (2.41) is

much larger than (2.29).

As it was mentioned in the Sections 2.3 and 2.4.2, for different values of length, different parts of

the integration over the coordinate of the localized state z are relevant. Here we remind that for

L ≪ LM the main contribution was given by the ends of the interval and for L ≫ LM it was

given by large intervals of z. Such qualitative shift in the behaviour of the integral, caused by the

resonant scattering, may cause such abrupt shift in behavior of the current.

ForL≫ L2
M the numerical analysis is complicated. Also, the limit of the very long contact presents

less interest as it involves experimentally unreachable values of length.

The fact that the coefficient in (2.29) is several times larger that the exact answer (2.30) also re-

quires discussion. The most probable explanation is the fact that used evaluation methods for the

short contact did not allow to find an exact coefficient. Furthermore, the largest contribution to the

current through the short contact comes from the configurations in which the localization center is

close to one of the superconducting leads. Such situations are beyond the scope of the approxima-

tion discussed in the Section 1.2.

The final detail worth mentioning is that for LM ≪ L ≪ L2
M and L ≫ L2

M , we observe breaking

of the Ambegaokar-Baratoff relation.
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Figure 3.1: Solid black line: Sum of (2.28) and numerically calculated (2.34). Dashed red line:
approximation (2.41). Dashed green line: approximation (2.29). The values are taken for ∆0 =
10−3∆ξ. Length L is measured in ξ. The vertical dashed line corresponds to the Mott scale LM ≈
13.8
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Appendix A

Calculation of the integrals for the critical

current

Here we will discuss the first steps to calculate the integral (2.34). The first one is to move from

the integration of one variable z to integration over two variables zl = L/2 + z and L/2− z. The

constraint zl + zr = L is take into account by insertion of the corresponding delta function. This

brings us to the following expression:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=
π2

2

e

πh̄ν0

L∫
0

dz
√
zlzr

+∞∫
0

dχldχr

4π
δ(zl + zr − L)×

× ∆0∆ξ[e
−χl + e−χr ]e−χl−χr

∆2
0 +∆2

ξ [e
−χl + e−χr ]2

f

(
χl

zl

)
f

(
χr

zr

)
exp

[
−(zl − χl)

2

4zl
− (zr − χr)

2

4zr

]
. (A.1)

Next, we use the integral representation for the delta function, introducing the new variable of

integration p. As the result, (A.1) takes the form

〈
Idiag(LM ≪ L≪ L2

M)
〉
=

=
π

8

e

πh̄ν0

+∞∫
−∞

dp

2π

{ ∏
j=l,r

L∫
0

dzj√
zj

+∞∫
0

dχj f

(
χj

zj

)
exp

[
−(zj − χj)

2

4zj
+ ip(zj − L/2)

]}
×

× ∆0∆ξ[e
−χl + e−χr ]e−χl−χr

∆2
0 +∆2

ξ [e
−χl + e−χr ]2

. (A.2)

These two actions lead to the separation of the large exponents. In order to proceed, we need to

take into account the condition L ≫ LM , which is valid for both long and very long contacts. It

allows us to change the upper limit of the integration over zj to +∞. This is due to the fact that

χj ∼ LM and the integral over zj is convergent on large zj ∼ L. This means that the integral over

z converges on the broad scale of z. This situation is opposite to the one discussed in the Section

2.3. In this limit we also can expand the cutoff factor near zero. After these actions are performed,
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the integrals over zl and zr can be calculated as

L∫
0

dzj√
zj
f

(
χj

zj

)
exp

[
−(zj − χj)

2

4zj
+ ip(zj − L/2)

]
≈

≈ f ′(0)χj

+∞∫
0

dzj

z
3/2
j

exp
[
−(zj − χj)

2

4zj
+ ip(zj − L/2)

]
=

= 2
√
πf ′(0)e−ipL/2 exp

[χj

2

(
1−

√
1− 4pi

)]
. (A.3)

Substitution of this result into (A.2) yields the following expression for the critical current:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=
π2

2
[f ′(0)]2

e

πh̄ν0

+∞∫
0

dχldχr
∆0∆ξ[e

−χl + e−χr ]e−χl−χr

∆2
0 +∆2

ξ [e
−χl + e−χr ]2

×

×
+∞∫

−∞

dp

2π
e−ipL exp

{
1

2
(χl + χr)

(
1−

√
1− 4pi

)}
. (A.4)

The integral over p can be easily calculated by deforming an integration contour in the complex

plane so that it goes along the branch cut:

+∞∫
−∞

dp

2π
e−ipL exp

(
−χl + χr

2

√
1− 4pi

)
=

(χl + χr)

2
√
π

exp
[
−(χl + χr)

2

4L

]
e−L/4

L3/2
. (A.5)

Now we are left only with integrals over χl and χr:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=

√
π

4
[f ′(0)]2

∆0

∆ξ

e

h̄ν0

e−L/4

L3/2
×

×
+∞∫
0

dχrdχr
[e−χl + e−χr ]e−(χl+χr)/2

α2 + [e−χl + e−χr ]2
(χl + χr) exp

[
−(χl + χr)

2

4L

]
(A.6)

Here we have introduced α = ∆0/∆ξ. Let us now consider the remaining double integral. The

natural change of variables is χ± = (χl ± χr)/2 and leads to

+∞∫
0

dχrdχl
(e−χl + e−χr)e−χl/2−χr/2

α2 + [e−χl + e−χr ]2
(χl + χr) exp

[
−(χl + χr)

2

4L

]
= (A.7)

= 8

+∞∫
0

dχ+

+χ+∫
−χ+

dχ−
χ+ cosh(χ−)

α2e2χ+ + 4 cosh2(χ−)
e−χ2

+/L ≈ 4π

+∞∫
0

dχ+
χ+√

4 + e2χ+α2
e−χ2

+/L. (A.8)
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Assembling the total expression for the critical current in the case of the long contact, we come the

following formula:

〈
Idiag(LM ≪ L≪ L2

M)
〉
=
π5/2

4
[f ′(0)]2

e

h̄
∆0

e−L/4

L3/2

+∞∫
0

dχ+
χ+ e

−χ2
+/L√

4 + e2χ+(∆0/∆ξ)2
. (A.9)
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