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Annotation

This master’s thesis presents a detailed investigation into the
enhancement of superconductivity in two-dimensional systems,
particularly emphasizing the role of multifractality and spin-orbit
coupling. The study is based on the understanding that Anderson
localization and electron-electron interactions can enhance supercon-
ductivity due to the multifractality of electron wave functions.

The primary contribution of this work is the development of a the-
oretical model for multifractally-enhanced superconducting states in
two-dimensional systems in the presence of spin-orbit coupling. Utiliz-
ing the Finkel’stein nonlinear sigma model, we have derived modified
Usadel and gap equations that account for renormalizations due to
the interplay of disorder and interactions. We find energy dependence
of the superconducting spectral gap, which is influenced by multi-
fractal correlations. We have determined the superconducting transi-
tion temperature and the superconducting spectral gap for both Ising
and strong spin orbit couplings. Additionally, we have analyzed meso-
scopic fluctuations of the local density of states in the superconducting
state, finding that spin-orbit coupling reduces the amplitude of these
fluctuations. Finally, this thesis explores the interaction-renormalized
Usadel equation beyond the lowest order limit in interaction con-
stants. Its behavior near the critical temperature is examined.
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Introduction

Superconductivity and Anderson localization are two fundamental quantum
phenomena that continue to attract significant interest.

The concept of Anderson localization, first introduced by P. W. Anderson in
1958 [1], describes the absence of diffusion in a disordered system due to wave
interference. In a disordered medium, an electron can be localized, meaning its
wave function decays exponentially with distance from a given point, instead of
spreading out across the system.

The localization of the wave function is described by its exponential decay
away from a given point:

|ψ(r)|2 ∝ e−|r−r0|/ξloc

where ψ(r) is the wave function at a point r, r0 is the position of the localized
state, and ξloc is the localization length.

On the other hand, quasiparticle interactions in metals play a crucial role in
understanding many-body phenomena such as superconductivity. These interac-
tions can be categorized into different channels based on the spin and orbital
symmetries of the interacting quasiparticles. Given a generic interaction poten-
tial between particles, we can divide these terms into small-frequency momentum
scattering within particle-particle (hole-hole) and particle-hole interactions, or
into spin-singlet and spin-triplet contributions.

Within this research and in accordance with [2], singlet and triplet channels
are terms used to describe the particle-hole interaction channel, which involves
small frequency-momentum transfers between a particle and a hole. In the singlet
channel, the total spin of the two interacting quasiparticles is zero. While in the
triplet channel, the total spin of the two interacting quasiparticles is one.

The particle-particle or Cooper interaction channel refers to the exchange of
small energy and momentum between two particles or two holes. The interaction
leads to the formation of Cooper pairs, which are pairs of quasiparticles with
opposite momenta and spins. 1

1In our research, we examine a pointlike interaction. Despite the potential triplet term in
the Cooper channel, it vanishes for an instantaneous, pointlike interaction due to the Pauli
principle. However, in some materials, spin fluctuations can induce an attractive force in the
triplet channel [3, 4].
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Before we proceed, let us also discuss the importance of spin-orbit coupling in
superconducting materials. Spin-orbit coupling impacts superconductivity in vari-
ous ways. It can induce unconventional superconductivity, modify pairing symme-
try and gap structure, influence vortex behavior, and even give rise to topological
superconductivity (for a review, see [5]). While these effects are interesting and
complex on their own, in this research, we focus solely on the impact of spin relax-
ation on the scaling properties of superconductivity. I emphasize that throughout
this thesis, I exclusively consider s-wave pairing and assume a homogeneous gap
that is independent of direction.

Let’s discuss the various mechanisms of spin relaxation and their effects on
quasiparticle interactions. Spin-orbit coupling introduces an additional term to
the Hamiltonian, see [2]:

Hso = −iασ · [∇(vso(r) + uso(r))×∇],

where the spin-orbit interaction in the absence of impurities is denoted as
vso(r), and uso(r) represents the impurities-induced component. The parameter
α represents the spin-orbit coupling constant, and σ is a Pauli matrix vector that
corresponds to spin-1/2. It should be noted that both terms, uso(r) and vso(r),
contribute to spin relaxation and result in finite spin-flip times. The specific details
of the mechanism can lead to anisotropic spin relaxation, characterized by times
τ
(x)
so , τ (y)so , and τ (z)so for scattering of the x, y, and z components, respectively.

In the case where impurities-induced contribution is the main source of spin-
orbit coupling and the sample is two-dimensional, see [6], the description of the
spin-orbit coupling (in momentum space) can be expressed as the random term
uso(p × p′), where p and p′ represent the momenta before and after scattering,
respectively. Note that since p and p′ lie in a plane of a superconductor, only the
σz component survives and leads to a finite scattering time

1/τ (z)so = πν⟨uso(p× p′)2⟩, 1/τ (x)so = 1/τ (y)so = 0.

Thus, in this case, one gapless triplet mode corresponding to Sz = 0 is imple-

mented. At length scales much larger than the spin-orbit length L(imp)
so =

√
Dτ

(z)
so ,

where D is the diffusion coefficient and τ
(z)
so is the relaxation time for the z-

component, the massive triplet modes become effectively frozen. We would like
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to emphasize that the pathway leading to one gapless triplet mode is not sin-
gular. Another significant pathway is the so-called Ising spin-orbit coupling [7],
particularly relevant for transition metal dichalcogenides (TMDs) – ultra-thin su-
perconductors. These materials have recently been widely studied experimentally.
To underscore the potential of a multifractal mechanism amplifying superconduc-
tivity in TMDs, we refer to the instance of a single massless mode as the Ising
spin orbit.

On the other hand, if intrinsic spin-orbit coupling is important, it can result
in finite values for 1/τ

(x,y)
so through the D’yakonov-Perel’ (DP) spin relaxation

mechanism [8]. The DP mechanism operates based on the concept that the spin
of a carrier rotates around an effective magnetic field determined by the carrier’s
momentum, which arises from the spin-orbit interaction. When the carrier under-
goes scattering due to impurities or phonons, its momentum changes, altering the
direction of the effective magnetic field. If these scattering events occur frequently
enough, the carrier’s spin can become randomized, leading to spin relaxation. The
relaxation rates for the triplet modes are determined by 1/τ

(x,y,z)
so ∼ ∆2

soτ , where
∆so represents the spin-orbit splitting and τ is the momentum relaxation time.
As a result, the triplet modes, whether diffusons or cooperons, are suppressed at
length scales L≫ L

(DP )
so = vF/∆so.

Summing up, we are considering a spin-orbit interaction that is weak enough
to preserve the symmetry of the gap (s-wave), but strong enough that the critical
length LTc

∼
√
D/Tc, where Tc is the superconductor critical temperature, is

significantly larger than min(L
(imp)
so , L(DP )

so ). While it is recognized that spin-orbit
coupling can result in mixed singlet and triplet pairings, see [9], in the clean limit,
we propose that in the presence of disorder, the unconventional pairing compo-
nent will be disrupted following a similar mechanism described by the Abrikosov-
Gorkov theory. Furthermore, we adopt a perspective in which the broadening of
the quasiparticle spectrum caused by disorder significantly outweighs the splitting
induced by spin-orbit interaction, i.e. τ∆so ≪ 1. Therefore, we do not anticipate
any lifting of spin degeneracy or triplet pairing.

When the aforementioned spin relaxation mechanisms compete, different regimes
can arise. Let’s discuss which cases are realized based on the strength of the spin-
orbit interaction. There are two characteristic lengths associated with the spin-
orbit interaction, L(imp)

so and L
(DP )
so , and the length scale associated with super-

conductivity LTc
. If LTc

≪ min(L
(imp)
so , L

(DP )
so ), we effectively have a spin rotation
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symmetric case where all modes can be treated as gapless. If LTc
lies in the range

L
(imp)
so ≪ LTc

≪ L
(DP )
so , only the Sz = 0 triplet mode remains gapless. Finally, if

LTc
≫ L

(DP )
so , all triplet modes are suppressed.

Note also that the system can exhibit different localization regimes depending
on the presence and type of spin-orbit relaxation. In the absence of spin-orbit
coupling, it is in a weak-localization regime. When spin-orbit coupling suppresses
relaxation in all directions, the system enters a weak anti-localization regime.
Finally, when only one triplet mode is gapless, the system exists in a regime
where the conductivity remains nearly constant with changes in sample size. Let
us now return to the interplay of disorder and interaction in 2D superconductors.

Initially, it was believed that non-magnetic disorder does not affect the s-wave
superconducting order parameter, a concept known as the “Anderson theorem”
[10, 11, 12]. However, this paradigm later shifted to view superconductivity and
disorder as antagonists due to Anderson localization [1]. Strong localization was
predicted to suppress superconductivity [13, 14, 15, 16]. A similar destruction of
superconductivity was predicted due to the Coulomb interaction at weak disorder
[17, 18, 19, 20, 21, 22, 23]. The experimental discovery of the superconductor-to-
insulator transition [24] has further stimulated interest in the effects of disorder
on superconducting correlations in thin films (see Refs. [25, 26, 27] for a review).

Recently, there has been a paradigm shift in our understanding of supercon-
ductivity. Predictions made in Refs. [28, 29] suggest that Anderson localization
can lead to an enhancement of the superconducting transition temperature, Tc, for
systems near the Anderson transition (e.g., in three dimensions). This mechanism
is based on the multifractal behavior of wave functions - a well-known companion
of Anderson localization - that leads to an enhancement of effective attraction be-
tween electrons. This mechanism operates in the absence of long-ranged Coulomb
repulsion. Later, the multifractal enhancement of Tc was predicted for systems in
the regime of weak localization (or anti-localization), which is relevant for weakly
disordered superconducting films [30, 31]. These analytical predictions have been
further tested by numerical computations for the disordered attractive Hubbard
model on a two-dimensional lattice [32, 33, 34]. Recently, an observed increase
in Tc with increasing disorder in monolayer niobium dichalcogenides [35, 36] has
been suggested as a demonstration of the multifractal-enhancement mechanism.

One approach to characterizing the multifractally-enhanced superconducting
state involves studying the mesoscopic fluctuations of the local density of states
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[37, 38]. This could potentially be very promising due to (i) the numerous re-
ported tunneling spectroscopy data on point-to-point fluctuations of the local
density of states in thin superconducting films [39, 40, 41, 42, 43, 44], and (ii) a
qualitative agreement between the theory [45] developed for temperatures T > Tc

and experiments on the local density of states in the normal phase of disordered
superconducting films.

However, there are examples of superconducting thin films and two-dimensional
systems with broken spin rotational symmetry due to the presence of spin-orbit
coupling. This includes systems such as single atomic layers of Pb on Si [46],
SrTiO3 surfaces [47, 48], LaAlO3/SrTiO3 interfaces [49, 50], and MoS2 flakes
[51, 52, 53]. Moreover, the existence of Ising-type spin-orbit coupling is antici-
pated in monolayer niobium dichalcogenides, where multifractal enhancement of
superconductivity has been measured [35, 36]. This necessitates the development
of a theory that can account for the multifractal enhancement of superconductiv-
ity in two-dimensional systems with spin-orbit coupling.

In this work, we extend the theory of the multifractal superconducting state
developed in Ref. [37] to thin films with spin-orbit coupling. Similar to Ref. [37],
our focus is on the case of weak short-ranged electron-electron interaction 2. We
consider an intermediate disorder strength where the renormalization group anal-
ysis for the normal state predicts a parametrically enhanced Tc compared to the
conventional Bardeen-Cooper-Schrieffer (BCS) result [30]. Using the Finkel’stein
nonlinear sigma model, we derive the Usadel equation and the equation for the
spectral gap function. These equations are modified due to the interplay of disor-
der and interactions at scales shorter than the superconducting coherence length.
We solve these equations for the cases of Ising-type and strong spin-orbit cou-
plings. In the Ising case, a single triplet diffusive mode remains effective at long
length scales, while in the strong spin-orbit coupling case, all triplet modes are
suppressed. In both cases, we determine the superconducting transition temper-
ature and investigate the energy dependence of the spectral gap function at low
temperatures (T ≪ Tc) and near the transition (Tc − T ≪ Tc). We find that the
maximum magnitude of the gap is proportional to Tc, indicating its enhancement
due to multifractality. Additionally, we estimate the mesoscopic fluctuations of
the local density of states. Despite the absence of spin rotational symmetry, we

2The long-range component (Coulomb) of the interaction can be suppressed in films covered
by a substrate with a high dielectric constant.
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find that these fluctuations exhibit logarithmic divergence with the system size
(if the effect of dephasing is neglected).

The outline of the thesis is as follows. In Sec. 1, we present the general scheme
for the description of the superconducting state. This scheme is applied to the case
of Ising-type spin-orbit coupling in Sec. 2. In Sec. 3, we consider the case of strong
spin-orbit coupling. The results of the sections listed were published in [54]. We
also include additional developments beyond the lower-order perturbation theory
in Sec. 5. The thesis is concluded with a summary and conclusions in Sec. 6. Some
technical details are delegated to the Appendices.
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1 Equation for the spectral gap

In dirty superconductors, there is a significant energy window between the
diffusive scale of 1/τ (where τ represents the mean free time) and the energy
scale associated with superconductivity, which can be chosen as Tc. To accurately
describe the superconducting properties at the energy scale Tc (with the corre-
sponding length scale being the superconducting coherence length, ξ =

√
D/Tc),

it is necessary to account for the interaction effects among the diffusive modes
within the energy interval Tc ≲ ε ≲ 1/τ .

Similar to studies of normal dirty metals, the interaction of diffusive modes
leads to the renormalization of physical parameters in the superconducting state,
such as conductance and interaction strengths. These renormalizations have a
significant impact on the Usadel equation and the self-consistency equation for
the spectral gap. To derive these modified equations, we employ the nonlinear
sigma model approach described in Ref. [37] (see Appendix A for details). This
procedure yields the following modified Usadel equation for the spectral angle θε:

Dε

2
∇2θε − |ε| sin θε +∆ε cos θε = 0. (1.1)

Here ε = πT (2n + 1) denotes fermionic Matsubara frequency. Equation (1.1)
differs from the standard Usadel equation [55] by energy dependent spectral gap
∆ε and energy dependent diffusion coefficient Dε

3.
To the lowest order in disorder and interaction, the spectral gap satisfies the

following equation

∆ε =− 2πT
∑
ε′n>0

sin θε′

{
γc − 2

(γs −Nγt)

g

∫
d2q

(2π)2
D

Dq2 + Eε + Eε′

}
,

Eε = |ε| cos θε +∆sin θε. (1.2)

Here, γc < 0, γs, and γt represent the bare values of the dimensionless interaction
amplitudes in the Cooper channel, as well as in the singlet and triplet particle-hole
channels, respectively. We presume the interaction in the particle-hole channel to
be weak and short-ranged. Consequently, we examine the case where |γc,s,t| ≪ 1.

3In this thesis we are interested in the superconducting state which is spatially homogeneous
on the scale of the order of ξ. Therefore, we shall not discuss energy dependence of the diffusion
coefficient here.
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The disorder is regulated by the bare dimensionless (in units e2/h) conduc-
tance g = h/(e2R□), where R□ is the film resistance per square in the normal
state. The bare diffusion coefficient D is linked with conductance and the density
of states, ν, at the Fermi energy in the normal state via the Einstein relation
g = 2πνD. The superconducting order parameter ∆ establishes the bare value of
the superconducting gap.

Parameter N in Eq. (1.2) counts the number of massless triplet diffusive
modes. We will focus on the cases N = 0 and 1 whereas the case N = 3 was
considered in Ref. [37].

We note that a similar form of the self-consistency equation for the spectral gap
has been derived in Ref. [56, 57] in the case of Coulomb interaction (γs = −1) and
neglect of exchange interaction (γt = 0) by means of the diagrammatic technique.

Equation (1.2) resembles the standard self-consistency equation in the BCS
theory except for the logarithmic renormalization of the attraction interaction
parameter γc. This renormalization is identical to that in the normal metal, except
the infrared scale is set by max ε, ε′,∆. The perturbative result (1.2) for the
renormalization of γc can be extended via the renormalization group technique,
as seen in Ref. [37] for details.

Then, by solving the modified Usadel equation (1.1) as sin θε = ∆ε/
√
ε2 +∆2

ε,
we find the following self-consistency relation for ∆ε:

∆ε = −2πT
∑
ε′>0

γc
(
LEε+Eε′

)
∆ε′√

ε′2 +∆2
ε′

, (1.3)

Here Lε =
√
D/ε is the diffusive length associated with the energy scale ε. The

flow of γc with the length scale L is governed by the following renormalization
group equation (see Ref. [37] for N = 3),

dγc
dy

= − t

2
(γs −Nγt). (1.4)

Here y = lnL/ℓ with ℓ and L being the mean free path and the system size,
respectively. The dimensionless resistance is denoted as t = 2/(πg). Its bare value
t0 is assumed to be small, t0 ≪ 1.

Equation (1.4) does not contain the standard term, -γ2c , which is responsible
for the Cooper instability in the clean case. This term is encoded in the super-
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conducting order parameter ∆ (see Ref. [37] for details).
It is tempting to replace ∆ with ∆ε in the expression for Eε in Eq. (1.3) to

make it a fully self-consistent equation for ∆ε. This was done in Ref. [37] based
on the relation between the Usadel equation, linearized in variation of θε, and the
Cooperon propagator with coinciding energies. However, further analysis shows
that the Cooperon propagator with two non-equal Matsubara energies has a more
complex structure after renormalization.4 Fortunately, as we will see below, the
precise form of the difference Eε−|ε| is not critical for the results reported in this
thesis.

Eq. (1.4) needs to be supplemented by renormalization group equations for γs,t
and t. However, their exact form depends on the magnitude of N . We will analyze
Eq. (1.3) separately for the cases N = 0 and 1. Moving forward, we assume that
the bare values of interaction and disorder are weak: |γs0|, |γt0|, |γc0|, t0 ≪ 1.

4The author is grateful to P. Nosov for this comment.
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2 N = 1: Ising Spin-Orbit Coupling

In this section, our focus is on superconducting films with Ising spin-orbit
coupling. In this case, the in-plane spin-flip scattering rates induced by spin-orbit
coupling are smaller than the out-of-plane rate, i.e., 1/τx,yso ≪ 1/τ zso. As a result,
one triplet diffusive mode, corresponding to the total spin projection Sz = 0,
remains gapless, along with all singlet diffusive modes. This scenario leads to the
realization of the case N = 1 for the Ising spin-orbit coupling.

To analyze the gap equation (1.3), it is necessary to determine the actual
dependence of γc on the length scale. In Ref. [31], the complete set of one-loop
renormalization group equations for γs,t,c and t was derived using the background
field renormalization of the nonlinear sigma model above the superconducting
transition temperature. By applying the same method in the superconducting
state, we obtain:

dt

dy
= −t

2

2
(γs + γt + 2γc), (2.1a)

d

dy

γsγt
γc

 = − t

2

1 1 2

1 1 −2

1 −1 0


γsγt
γc

 . (2.1b)

We note that Eq. (2.1a) is valid under the assumption that |γs,t,c| ≪ 1. Similar
to the case of a normal metal [58], weak localization and weak antilocalization
effects cancel each other out in the presence of Ising spin-orbit coupling. Eq.
(2.1a) implies that the dimensionless resistance t remains nearly constant in the
leading order. Therefore, we can assume t ≃ t0 below. Eq. (2.1b) suggests that
under the renormalization group flow, the interaction parameters approach the
so-called BCS line, where −γs = γt = γc ≡ γ [30]. To describe the system’s
behavior at length scales y ≳ t−1

0 , we project Eq. (2.1b) onto the BCS line. As a
result, we work with an effective interaction parameter γ that evolves according
to:

dγ/dy ≃ t0γ, γ0 = (γt0 − γs0 + 2γc0)/4 < 0. (2.2)

14



Solving the above equation, we find

γ(L) = γ0(L/ℓ)
t0. (2.3)

In the following, we assume that disorder dominates over the interaction, i.e.,
t0 ≫ |γ0|. This regime is known to exhibit multifractal enhancement of the su-
perconducting transition temperature [30]. The transition temperature Tc can be
estimated using the relation |γ(LTc

)| ∼ t0 (see Appendix B). This leads to the
following estimation:

Tc ∼ (1/τ)(|γ0|/t0)2/t0. (2.4)

We observe that the superconducting critical temperature Tc corresponds to yc ∼
t−1
0 ln(t0/|γ0|) ≫ t−1

0 . This validates the projection onto the BCS line.

2.1 The Critical Temperature

More precisely, the superconducting transition temperature Tc can be de-
termined from the linearized self-consistent equation, as given in Eq. (1.3). It
should be noted that after projecting the self-consistency equation (1.3) onto the
BCS line, the parameter γc is replaced by γ. The linearized version of the self-
consistency equation can then be expressed as follows:

∆ε = −2πT
∑
ε′>0

γ(Lε+ε′)
∆ε′

ε′
. (2.5)

Taking into account the actual dependence of γ(L) on L, Eq. (2.3), we find

∆n =
|γ0|

(2πTτ)t0/2

nmax∑
n′⩾0

∆n′

(n+ n′ + 1)t0/2(n′ + 1/2)
, (2.6)

where the parameter nmax ≃ 1/(2πTτ) serves as a natural cutoff for the num-
ber of Matsubara frequencies belonging to the diffusive regime. The search for
Tc can be reformulated as a problem of finding the maximal eigenvalue of the
corresponding matrix. The superconducting transition temperature satisfies the
equation (2πTcτ)

t0/2 = |γ0|λM , where λM is the maximal eigenvalue of the matrix
Mnn′ = (n+ n′ + 1)−t0/2(n′ + 1/2)−1.

By numerically solving Eq. (2.6) using the power method (see Appendix C),
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Figure 1: The dependence of the gap function ∆n on the Matsubara energies εn =
2πT (n+1/2) for T near the critical temperature Tc. Solid and dashed lines show
analytical expressions (2.11) and (3.11), respectively. Dots of the corresponding
colors mark numerical solutions for leading eigenvectors of Eqs. (2.6) and (3.6).

we find that λM ≃ 1.4/t0, resulting in the following expression:

Tc ≃
1

2πτ
(1.4|γ0|/t0)2/t0. (2.7)

The right eigenvector rn of the matrixM corresponding to λM is depicted in Fig. 1.
It is worth noting that the left eigenvector of the matrix M can be expressed as
ln = rn/(n + 1/2). The spectral gap exhibits a pronounced energy dependence,
which is in contrast to the BCS model where it is a constant value.

The result (2.7) can also be justified through an analytical treatment of Eq.
(2.6). First, we replace (n + n′ + 1)t0/2 with max{(n + 1/2)t0/2, (n′ + 1/2)t0/2},
which is justified by the smallness of the exponent t0 ≪ 1. Then, we introduce a
variable

uε =
2

t0
|γ(Lε)| =

2|γ0|
t0

(ετ)−t0/2. (2.8)

Then, using the Euler-Maclaurin resummation on the right-hand side of Eq. (2.5),
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we obtain

∆un
≃ un

u0∫
un

du
∆u

u
+

un∫
u∞

du∆u +
at0
2
un∆u0

, (2.9a)

u∞ ≡ u1/τ ∼ |γ0|/t0 ≪ 1, (2.9b)

a = 1 +
∞∑
k=1

22k−1B2k/k ≈ 1.27. (2.9c)

Here u∞ corresponds to nmax and B2k denotes even Bernoulli numbers. At T =

Tc we seek the solution of Eq. (2.9a) in the form ∆un
= ∆u0

f(un) with the
normalization f(u0) = 1. The integral equation (2.9a) can be reduced to the
following Cauchy problem for the unknown function f(u),

f ′′(u) = −f(u)/u,
f ′(u0) = at0/2, f ′(u∞) = f(u∞)/u∞. (2.10)

Solving Eq. (2.10), we obtain

f(u) =
F1(u)

F1(u0)
, F1(u) ≃

√
uJ1(2

√
u). (2.11)

Here J1(x) denotes the Bessel function of the first kind. We note that for the
sake of brevity in the above expression F1(u) is written in the lowest order in
small parameters |γ0| ≪ t0 ≪ 1. Although one can easily find the exact solution
to f(u), in what follows we do not need it. We also note that the solution (2.11)
satisfies the normalization condition f(u0) = 1 and the boundary condition at u =

u∞. The yet unknown parameter u0 determines the superconducting transition
temperature as

Tc = (2πτ)−1((2/u0)|γ0|/t0)2/t0. (2.12)

The value of u0 can be determined from the boundary condition at u = u0. By
using the relation (xJ1(x))

′ = xJ0(x) and neglecting at0/2 in the right-hand side
of the equation for the boundary condition at u = u0, we find u0 ≈ (j0,1)

2/4 ≈
1.45, where jn,k is the k-th zero of the Bessel function Jn(x). The result in Eq.
(2.12) is in good quantitative agreement with the numerical result in Eq. (2.7).
Additionally, as shown in Figure 1, there is remarkable agreement between the
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Figure 2: Multifractally-increased superconducting transition temperature Tc.
Solid lines show the dependence of lnTc/T

(BCS)
c on magnitude of the ratio t0/|γ0|,

when the initial interaction parameters γs0, γt0, γc0 lie on the BCS-line, i.e.
−γs = γt = γc = γ for N = 1 and −γs = γc = γ for N = 0. Dashed lines
of the corresponding colors illustrate the behavior of lnTc/T

(BCS)
c , when the ini-

tial parameters deviate from the BCS-line. This can lead to a decrease in the
critical temperature Tc in comparison to T (BCS)

c at a small ratio of t0 to |γ0| (see
inset), but eventually lnTc/T

(BCS)
c becomes positive and continues to grow with

increasing disorder. Black dotted lines correspond to the expressions (2.12) and
(3.12).

function f(un) and the numerically computed eigenvector corresponding to the
maximum eigenvalue of the matrix M .

Equation (2.7) predicts an increase in Tc with an increase in disorder t0, at a
fixed γ0. However, Eq. (2.7) is valid only for t0 ≫ |γ0|. To explore the behavior for
various values of t0, we numerically solve the self-consistency equation (2.6). The
dependence of Tc on t0 is shown in Figure 2. As observed, for initial conditions
on the BCS line, Tc increases with an increase in t0, eventually reaching the
asymptotic expression in Eq. (2.12) (black dotted lines) for t0 ≫ |γ0|. In the case
of the system away from the BCS line initially, Tc is initially suppressed with an
increase in t0, but then starts to increase at t0 ≳ |γ0|.

We now move on to examining the behaviour of the gap function ∆ε as a
function of ε at different temperature regimes: when T is close to Tc and when
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T ≪ Tc.

2.2 The Spectral Gap Function

2.2.1 The Gap Function Near Tc

At T = Tc, the amplitude ∆0 of the spectral gap function vanishes. To find
the dependence of ∆ε on energy at Tc − T ≪ Tc, we expand the modified self-
consistency equation to the third order, retrieving

∆ε = 2πT
∑
ε′>0

|γ(Lε+ε′)|
(
∆ε′

ε′
− ∆3

ε′

2ε′3

)
. (2.13)

We note that quadratic in ∆ε terms that originate from expansion of
∣∣γ(LEε+Eε′)

∣∣
are suppressed by a small factor t0 ≪ 1.

Let us write ∆εn = ∆0(T )rn with the normalization r0 = 1. Then Eq. (2.13)
becomes

λM

(
T

Tc

) t0
2

rn =
nmax∑
n′=0

Mnn′

rn′ −
∆2

0(T )
8π2T 2

c
r3n′

(n′ + 1/2)2

 . (2.14)

To ensure ∆0(Tc) = 0, one needs to choose rn as the right eigenvector of the
matrix Mnn′ corresponding to its maximum eigenvalue λM . Then, by multiplying
both sides of Eq. (2.14) with the left eigenvector ln = rn/(n+1/2) (corresponding
to λM) from the left, we obtain:

∆0(T ) =

(
bN

8π2

7ζ(3)
Tc(Tc − T )

)1/2

. (2.15)

Here the constant bN for N = 1 is given as

b1 =
7ζ(3)t0

2

nmax∑
n=0

r2n/(n+ 1/2)

nmax∑
n=0

r4n/(n+ 1/2)3
. (2.16)

We have chosen the normalization of b1 in a way that the quantity b1−1 describes
the deviation from the BCS theory. However, despite the strong energy depen-
dence of the right eigenvector, as we will demonstrate below, our approximation
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shows that the difference b1 − 1 is actually zero.
First of all, replacing r4n with r40 = 1 in the denominator of Eq. (2.16), we find

that
nmax∑
n=0

r4n
(n+ 1/2)3

≃ 7ζ(3). (2.17)

Next, in order to estimate the numerator of Eq. (2.16), we replace rn with an
analytical expression rn = f(un), see Eq. (2.11). Hence, we obtain

nmax∑
n=0

r2n
n+ 1/2

≃ 2

t0

∫ u0

0

du

u
f 2(u) ≃ 2

t0
. (2.18)

Combining all the above we restore the BCS results, b1 = 1, in the limit t0 ≪ 1.
We note that in order to compute corrections to the BSC result, b1 = 1, one needs
to know the precise form of dependence of the infrared cut off length scale LEε+Eε′

on ∆ε and ∆ε′ in Eq. (1.3).
One can estimate the effect of admixture of other eigenmodes to the depen-

dence of ∆ε on ε. Writing ∆ε = ∆0(T )(rn +
∑

j sjr
(j)
n ) where r(j)n are the right

eigenvectors of the matrix M with eigenvalues λj < λM , we find

sj = − λj
λM − λj

∆2
0(T )

8π2T 2
c

N∑
n=0

l
(j)
n r3n/(n+ 1/2)2

N∑
n=0

l
(j)
n r

(j)
n

. (2.19)

Here we used orthogonality condition
∑

n l
(j)
n rn = 0 where l(j)n stands for the left

eigenvector of the matrix Mnn′ corresponding to the eigenvalue λj. We see that
the admixture of the other eigenmodes at Tc − T ≪ Tc is completely negligible.
Therefore, the energy dependence of ∆ε on ε at Tc − T ≪ Tc is essentially the
same as at the transition.

2.2.2 The Gap Function at T ≪ Tc

We begin by considering the zero-temperature limit. To analyze the behavior
of the gap function at T = 0, we replace the summation over Matsubara fre-
quencies with an integration over energy ε′ in Eq. (1.3). There are two sources
of dependence on ε′ in the equation. The first is the fast dependence under the
square root, and the second is the slow (almost logarithmic for t0 ≪ 1) depen-
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dence in γ. Based on the solution for T = Tc, we expect the gap function ∆ε to
be a decreasing function of ε.

Let us introduce the characteristic energy scale ε0, such that ∆ε0 = ε0. The
structure of the equation for ∆ε, as given by Eq. (1.3), suggests that the gap
function slightly varies from its value ∆0 at ε = 0 to ∆ε0 = ε0 at ε = ε0. This
implies that ε0 ∼ ∆0. In order to determine the precise relation between ε0 and
∆0, as well as the dependence of ∆ε for ε < ∆0, one needs to know the precise
dependence of the infrared length scale LEε+Eε′ on ∆ε and ∆ε′, as given by Eq.
(1.3). This complication is absent at large energies ε ≫ ∆ε. As we will verify
later, this condition is satisfied for energies ε that are not too close to ∆0, i.e., for
ε ≳ ∆0, due to the smallness of the dimensional resistance t0 ≪ 1.

At ε≫ ∆ε we approximate the self-consistent equation (1.3) as follows

∆ε ≃ |γ(Lε)|
∆0∫
0

dε′∆0√
ε′2 +∆2

0

+ |γ(Lε)|
ε∫

∆0

dε′∆ε′√
ε′2 +∆2

ε′

+

1/τ∫
ε

dε′∆ε′√
ε′2 +∆2

ε′

|γ(Lε′)|.

(2.20)

Substituting ∆ε for ∆uε
= ∆u0

f(uε), where uε is defined in Eq. (2.8), the above
equation can be rewritten in the following differential form

f ′′(uε) = − εf(uε)/uε√
ε2 +∆2

0f
2(uε)

. (2.21)

Since we are working in the regime ε ≫ ∆ε, we can safely neglect the term with
∆0 under the square root in the right hand side of Eq. (2.21). Then Eq. (2.21)
reduces to Eq. (2.10) with the same boundary conditions except a = (1) now.
Thus the solution can be read from Eq. (2.11). Altogether we find the following
solution for the spectral gap function

∆ε ≃ ∆0

1, ε ≲ ∆0,

F1(uε)/F1(u∆0
), ε ≳ ∆0.

(2.22)

Now we can check the assumption ε≫ ∆ε. Using Eq. (2.22), we find that

ε

∆ε
=
u
2/t0
∆0

F1(u∆0
)

u
2/t0
ε F1(uε)

≫ 1 (2.23)
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holds for all ε except close vicinity of |ε−∆0| ∼ ∆0.
We note perfect matching of both asymptotic results (2.22) at ε = ∆0. Using

the boundary condition f ′(u∆0
) = 0 we find that ∆0 coincides with Tc upto

numerical prefactor,
∆0 ∼ Tc. (2.24)

However, as we noted above our approach does not applicable in the vicinity of
the point ε = ∆0. Therefore, we cannot determine the precise constant for the
ratio for ∆0/Tc. We emphasize that the dependence of the spectral gap function
at ε≫ ∆0 for T = 0 is exactly the same as for T close to Tc.

We emphasize that the spectral gap function is parametrically enhanced at
small energies. Using Eq. (2.22) we find that the spectral gap at ε ∼ 1/τ (which
coincides with the order parameter ∆) is proportional to ∆0|γ0|/t0 ≪ ∆0. Typical
behaviour of ∆ε is illustrated in Fig. 3.

At non-zero temperature, the form of the spectral gap function remains the
same but there is reduction of the magnitude of ∆0 while temperature increases.
At T ≪ ∆0 the dependence of ∆0 on temperature can be estimated as follows.
At ε ≫ ∆0 the gap function ∆ε satisfies equation similar to Eq. (2.20) in which
∆0 is substituted by ∆0(T ) and

∆0∫
0

dε′∆0√
ε′2 +∆2

0

→ 2πT
∑
ε′>0

∆0(T )√
ε′2 +∆2

0(T )
−

1/τ∫
∆0(T )

dε′∆0(T )√
ε′2 +∆2

0(T )

≃
∆0(T )∫
0

dε′∆0(T )√
ε′2 +∆2

0(T )
−

√
2πT

∆0
e−∆0/T . (2.25)

Such modification of Eq. (2.20) results in change of the constant a in the boundary
conditions in Eq. (2.10). Now it becomes a = (1) −

√
2πT/∆0 exp(−∆0/T ).

Taking this temperature shift of the constant a into account, we find

∆0 −∆0(T ) ∼
√
2πT∆0 e

−∆0/T , T ≪ ∆0. (2.26)

We note that since this result is obtained with the help of the boundary condition
at ε = ∆0(T ), we cannot unambiguously determine a numerical factor in Eq.
(2.26).
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Figure 3: The dependence of the gap function ∆ε at low temperatures on energy
ε (see text). Dimensionless interaction constant is chosen to be |γ0| = 0.005 and
dimensionless resistance is t0 = 0.2. Bottom curve illustrates the behaviour of ∆ε

for the case of Ising spin-orbit coupling (N = 1) while the top one corresponds
to the case of strong spin-orbit coupling (N = 0).

3 N = 0: Strong Spin-Orbit Coupling

In this section, we consider the case when all three spin-flip rates, 1/τx,y,zso ,
induced by the spin-orbit coupling, are of the same order. In this scenario, only
the diffusive modes corresponding to the total spin zero remain gapless. As a
result, the number of triplet modes reduces to zero, i.e., N = 0.

For N = 0 the renormalization group flow of the interaction parameters γs,c
and the dimensionless resistance t is governed by the following equations [31]

dt

dy
= −t2(1 + γs + 2γc)/2, (3.1a)

d

dy

(
γs

γc

)
= − t

2

(
1 2

1 0

)(
γs

γc

)
. (3.1b)

We emphasize that contrary to the case N = 1 there is the weak-antilocalization
correction (term with unity in the brackets in the right hand side of Eq. (3.1a))
that results in flow of t towards zero. In what follows we neglect terms proportional
to γs,c (Altshuler-Aronov and density-of-states-type corrections) in Eq. (3.1a) in
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comparison with weak antilocalization. In accordance with Eq. (3.1b), the inter-
action parameters flow approaching the BCS line −γs = γc ≡ γ. Projecting Eq.
(3.1b) onto the BCS line, we find

dγ/dy = tγ/2, γ0 = (2γc0 − γs0)/3 < 0. (3.2)

Here γ0 is the initial value of the effective attraction. We assume t0 ≫ |γ0|. Solving
Eqs. (3.1a) and (3.2), we obtain

t(L) =
t0

1 + (t0/2) lnL/ℓ
, γ(L) = γ0

t0
t(L)

. (3.3)

The effective attraction is growing with increase of the length scale. The super-
conducting critical temperature can be estimated from the condition |γ(LTc

)| ∼
t(LTc

) (see Appendix B). It results in the estimate [30]

ln 1/(Tcτ) ∼
1√
|γ0|t0

. (3.4)

We note that the numerical factor cannot be determined reliably in this way.

3.1 The Critical Temperature

Let us now solve the self-consistent equation (2.5) in order to determine the su-
perconducting transition temperature. It is convenient to introduce a parametriza-
tion of the critical temperature in the following form:

Tc = (2πτ)−1 exp (4/t0 − 4/tc) , (3.5)

where, based on Eq. (3.4), we expect tc to be of the order of
√
|γ0|t0. Hence Eq.

(2.5) becomes

∆n =
|γ0|t0
4

nmax∑
n′=0

4/tc − ln(n+ n′ + 1)

n′ + 1/2
∆n′. (3.6)

Here nmax = 1/(2πTcτ) ≃ exp(4/tc). Again Eq. (3.6) can be considered as the
maximal eigenvalue problem for the matrix Mnn′(ζ) = (ζ − ln(n+ n′ +1))/(n′ +

1/2) with ζ = 4/tc. Numerical solution for the maximal eigenvalue reveals λM ≈
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0.41(4/tc)
2 (see Appendix C). Thus we find

tc ≈ 1.3
√
|γ0|t0. (3.7)

The dependence of the right eigenvector corresponding to the maximal eigenvalue
found numerically is shown in Fig. 1.

Similar to the case N = 1, we are able to solve the linearized self-consistency
equation (2.5) analytically. Introducing the variable

uε =
4

t(Lε)
=

4|γ(Lε)|
|γ0|t0

=
4

t0
− ln(ετ), (3.8)

replacing ln(n + n′ + 1) with ln(max{n + 1/2, n′ + 1/2}), and using the Euler-
Maclaurin formula, we get

4∆un

|γ0|t0
= un

u0∫
un

du∆u +

un∫
u∞

duu∆u + aun∆u0
. (3.9)

Here a coincides with the one defined in Eq. (2.9c). Next, writing ∆un
= ∆u0

f(un)

with f(u0) = 1, we cast the above equation in the following differential equation,

f ′′(u) = −(|γ0|t0/4)f(u),

f(u0) = 1, f ′(u∞) =
f(u∞)

u∞
, f ′(u0) =

|γ0|t0
4

. (3.10)

The latter can be elementary solved:

f(u) =
F0(u)

F0(u0)
, F0(u) ≃ sin

[
u
√
|γ0|t0/4

]
(3.11)

Again, in the above equation the solution to f(u) is written in the lowest order
in the small parameters |γ0| ≪ t0 ≪ 1. The last step is to find u0 = 4/tc from
the relation f ′(u0) = |γ0|t0/4. Simple algebra yields

u0 ≃ π/
√
|γ0|t0, ⇔ tc ≃

4

π

√
|γ0|t0. (3.12)

We point out remarkable agreement between the numerical and the analytical
results, Eq. (3.7) and Eq. (3.12): 1.3 and 4/π, respectively.
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The numerical solution of Eq. (3.6) for Tc with arbitrary values of t0 is shown
in Fig. 2. Analytical expression (3.12) (marked with a black dotted line) gives
correct asymptotic values of lnTc/T

(BCS)
c in the regime of large ratio t0/|γ0|.

3.2 The Spectral Gap Function

3.2.1 The Gap Function Near Tc

At temperatures Tc − T ≪ Tc we use Eq. (2.13) in order to find ∆ε. We
parametrize the temperature T by tT , such that T = (2πτ)−1 exp(4/t0 − 4/tT ).
After one writes ∆ε = ∆0(T )rn, Eq. (2.13) becomes

λMrn ≃
nmax∑
n′=0

Mnn′(4/tT )

rn′ −
∆2

0(T )
8π2T 2

c
r3n′

(n′ + 1/2)2

 , (3.13)

Here, we remind, λM denotes the maximal eigenvalue of the matrix Mnn′(4/tc).
Using the identity Mnn′(4/tT ) = Mnn′(4/tc) + (4/tT − 4/tc)/(n

′ + 1/2) and ap-
proximation 4/tT − 4/tc ≈ (Tc − T )/Tc, we rewrite Eq. (3.13) as

λM(4/tc)rn ≃
nmax∑
n′=0

Mnn′(4/tc)

rn′ −
∆2

0(T )
8π2T 2

c
r3n′

(n′ + 1/2)2

+
Tc − T

Tc

nmax∑
n′=0

rn′

n′ + 1/2
.

When T = Tc the gap function turns to zero. This implies that rn are the compo-
nents of the leading eigenvector of matrix Mnn′(4/tc). Multiplying Eq. (3.2.1) on
the left eigenvector of Mnn′(4/tc), ln = rn/(n+1/2), we retrieve the result (2.15)
with bN for N = 0 being

b0 =
7ζ(3)

λM

(
nmax∑
n
rn/(n+ 1/2)

)2

nmax∑
n=0

r4n/(n+ 1/2)3
. (3.14)

As in the case of N = 1 one can check that within our approximation b0 = 1 as in
the BCS theory. The denominator in the right hand side of Eq. (3.14) is treated
in the same fashion as in the case of N = 1. While in the numerator we write
rn = f(un), where f(u) is given in Eq. (3.11). Using F0(u) = sin(u/

√
λM) and
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u0 =
√
λMπ/2, one immediately finds

(
nmax∑
n=0

rn
n+ 1/2

)2

≃

 u0∫
0

du f(u)

2

= λM . (3.15)

Therefore, combining the results for numerator and denominator we restore b0 =
1.

3.2.2 The Gap Function at T ≪ Tc

The spectral gap function at T = 0 can be found in the same way as it was
done in Sec. 2.2.2 for N = 1. After straightforward calculations, we find

∆ε ≃ ∆0

1, ε ≲ ∆0,

F0(uε)/F0(u∆0
), ε ≳ ∆0.

(3.16)

The maximal magnitude of the spectral gap, ∆0, is given by the expression similar
to Eq. (3.5),

∆0 = (2πτ)−1e4/t0−4/t∆0 , t∆0
∼
√
|γ0|t0. (3.17)

Unfortunately, within our approximation we cannot unambiguously determine the
numerical factor in the ratio t∆0

/
√
|γ0|t0 since it requires knowledge of the precise

dependence of the infrared lengthscale LEε+Eε′ on ∆ε and ∆ε′, see Eq. (1.3). Since
t∆0

stands in the exponent of the expression for ∆0, we cannot exclude a possibility
that ∆0 differs parametrically from Tc.

We note that the superconducting order parameter (which coincides with the
spectral gap function at energies ε ∼ 1/τ ) is proportional to ∆0

√
|γ0|/t0 ≪ ∆0.

Typical dependence of ∆ε on ε is shown in Fig. 3.
The change of ∆ε with increasing temperature is the same as in the case of

N = 1. At T ≪ Tc the amplitude ∆0 is decreasing in accordance with Eq. (2.26).
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4 Local Density of States

In this section, we discuss the local density of states and its mesoscopic fluctu-
ations in the superconducting state. For the sake of simplicity, we consider T = 0.

The disorder-averaged density of states can be found from the solution of the
Usadel equation

⟨ρ(E)⟩ = νℜ cos θε→−iE+0 = νℜ ε√
ε2 +∆2

ε

∣∣∣
ε→−iE+0

. (4.1)

Here the analytical continuation from Matsubara energies to real energies is per-
formed, iε→ E + i0.

The behavior of the density of states at energies E close to ∆0 depends on
fine structure of ∆ε at ε ∼ ∆0. Thus we have no access to these range of energies.
The only statement is possible to make is the existence of the spectral gap of the
order of ∆0. Away from ∆0, i.e. at E ≳ ∆0, using the smallness of ∆ε/ε, we find

⟨ρ(E)⟩
ν

≃ 1 + ℜ∆2(E)

2E2
≃ 1 +

∆2
0

2E2

F 2
N (uE)

F 2
N (u∆0

)
. (4.2)

Here uE = u∆0
(E/∆0)

−t0/2 and uE = u∆0
− ln(E/∆0) for N = 1 and 0, respec-

tivelty.
Now we estimate mesoscopic fluctuations of the local density of states. This

can be done using the nonlinear sigma model approach in a way similar to the
one of Ref. [37]. We restrict our consideration by energy range

∆0 ≪
1

τ
e−2(2−N )/t0 ≪ E ≲

1

τ
. (4.3)

In this range we can neglect the energy dependence of ∆ε and approximate it by
its non-renormalized value ∆. Then we obtain for the variance of the local density
of states the following result (see Appendix D)

⟨[δρ(E, r)]2⟩
ν2

=
1 +N
g

Re

∫
d2q

(2π)2

[
2E2 −∆2

E2 −∆2

1

q2
+

∆2

E2 −∆2

D

Dq2 + 2i
√
E2 −∆2

]
.

(4.4)

We note that the contribution in the first line of Eq. (4.4) corresponds to corre-
lations between electron-like and electron-like excitations. They do not feel the
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superconducting spectral gap. This explains why the infrared divergence in diffu-
sive propagator persist inside superconductor. The contribution in the second line
of Eq. (4.4) is due to correlations between electron-like and hole-like excitations
which are split by the twice the superconducting gap.

Performing integration over momentum and expansion in ∆/E ≪ 1, we find

⟨[δρ(E, r)]2⟩
⟨ρ(E)⟩2

=
(1 +N )t0

2

(
ln
L

ℓ
+

∆2

2E2
ln
LE

ℓ

)
. (4.5)

We emphasize logarithmic divergence of the variance with the system size L.
This signals about strong mesoscopic fluctuations of the local density of states in
disordered superconductors with the spin-orbit coupling similar to the case when
the spin-orbit coupling is absent [37, 38].

The renormalization of diffusive propagator ignored so far results in substitu-
tion of L by min{L,L(ϕ)

E } where L(ϕ)
E denotes the dephasing length induced by

electron-electron interactions. Unfortunately, at present, there is no complete the-
ory of dephasing rate in disordered superconductors. Using the results of Ref. [59],
one can estimate dephasing length due to electron-electron interaction at E ≫ ∆

as L∆/(|γ0|
√
t0) ≫ L∆. We note that such estimate is applicable at T ≪ Tc.

Close to superconducting transition the dephasing rate is enhanced due to the
superconducting fluctuations (for details see Ref. [60]).

With the help of the renormalization group we can convert the perturbative,
infrared divergent, result (4.5) into the result for the second moment of the local
density of state:

⟨ρ2(E, r)⟩
⟨ρ(E)⟩2

=

(min{L,L(ϕ)
E }/ℓ)t0, N = 1,

1 + (t0/2) ln(min{L,L(ϕ)
E }/ℓ), N = 0.

(4.6)

One can also generalize expression (4.5) to the pair correlation function of the
local density of states at differing energies E ≫ ∆ and E ′ = E + ω ≫ ∆ (see
Appendix D),

⟨δρ(E, r)δρ(E ′, r)⟩
⟨ρ(E)⟩⟨ρ(E ′)⟩

≃ (1 +N )t0
2

ln
min{L,L(ϕ)

E , Lω}
ℓ

. (4.7)

For the autocorrelation function of moments one can use Eq. (4.6) in which
min{L,L(ϕ)

E } should be substituted by min{L,L(ϕ)
E , Lω}.
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We note that one can compute the disorder-averaged higher moments of the
local density of states. Similarly to the case without spin-orbit interaction [37],
the moments correspond to the log-normal distribution for the local density of
states.

We would like to acknowledge the recent experimental work [61] that pro-
vides valuable insights into the interplay of superconductivity and disorder in
two-dimensional systems. Our theoretical study, which investigates strong meso-
scopic fluctuations in disordered systems, is in qualitative agreement with their ex-
perimental observations. Specifically, our calculations demonstrate similar trends
in the emergent strong fluctuations of the local density of states (LDOS) and sug-
gest that fluctuations of spectral gap are rather small, see Eq. (6.1) of Conclusion.
It is also important to note that in this work, an epitaxial monolayer of lead is
believed to exhibit superconducting behavior in the weak-antilocalization regime,
which is directly relevant to the focus of this thesis.
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5 Beyond the Lowest Order in Interaction

As noted earlier, the approach presented in this work is limited to the lowest
order in disorder and small interaction constants. However, it is of interest to go
beyond the framework of lowest order perturbation theory (in small parameters
|γs,t,c| ≪ 1) in order to address a number of important questions. For instance,
this would enable us to estimate the interaction-induced inelastic scattering time
or verify the assumption that a fully self-consistent expression can be obtained
from (1.3) by replacing ∆ with ∆ε in Eε. The latter would shed light on the
puzzle of whether ∆0 and Tc could be parametrically different, given that they are
determined by different limiting equations. Among other factors, the motivation
for considering higher orders in γs,t,c is also connected to the interest to understand
how the collective modes in a superconductor (see [62] for a detailed review)
influence the solutions of the self-consistency equation.

To obtain the one-loop renormalized equations in the higher order in inter-
action, one needs to account for fluctuations around the saddle point solution.
However, in this case, relying solely on the bare expression for the Cooperon is
insufficient and the renormalization of the Cooperon due to the interaction must
also be taken into account.

Appendix E provides detailed calculations that lead to the following expression
for the renormalized Cooperon in the second order of interaction

⟨Φα1α2,(r,j)
ε1,−ε2,b

(q)Φ̄
α3α4,(r,j)
−ε3,ε4,b′

(−q)⟩ = ⟨Φα1α2,(r,j)
ε1,−ε2,b

(q)Φ
α3α4,(r,j)
ε4,−ε3,b′

(−q)⟩(δb′1mrj + δb′2m0j) =

=
2

g
(δb,1mrj + δb,2m0j)

[
[Âr,j(q)]

−1
]α1α4;α2α3

ε1ε4;ε2ε3;bb′
(δb′,1mrj + δb′,2m0j) (5.1)

wheremrj = (δr ̸=3−δr3)(δj0−δj ̸=0) and the Φ-fields are related to the perturbative
functions wαβ

n1n2
=
∑

r,j[wrj(p)]
αβ
n1n2

trj, see (A.16), via

Φ
αβ,(0,j)
ε,−ε′ =

(
[w0j]

αβ
ε,−ε′, [w1j]

αβ
ε,−ε′

)T
, Φ

αβ,(3,j)
ε,−ε′ =

(
[w3j]

αβ
ε,−ε′, [w2j]

αβ
ε,−ε′

)T
,

Φ̄
αβ,(0,j)
−ε′,ε =

(
[w̄0j]

αβ
−ε′,ε, [w̄1j]

αβ
−ε′,ε

)T
, Φ̄

αβ,(3,j)
−ε′,ε =

(
[w̄3j]

αβ
−ε′,ε, [w̄2j]

αβ
−ε′,ε

)T
. (5.2)

The inverse operator [Âr,j(q)]
−1 appearing in (5.1) is essentially the kernel of the
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fluctuations action,

S
(2)
fl [θ,W ] = −g

4

∫
q

∑
{εi>0}

∑
r=0,3

j=0,1,2,3

∑
bb′=1,2

∑
{αi}

Φ
α1α2,(r,j)
ε1,−ε2,b

(q)[Âr,j(q)]
α1α4;α2α3

ε1ε4;ε2ε3;bb′

(δb′,1mrj + δb′,2m0j)Φ
α4α3,(r,j)
ε4,−ε3,b′

(−q). (5.3)

It is clear that the resolvent of Âr,j(q) contains terms that arise due to the account-
ing of interactions between quasiparticles. In the first order, as Γs,t,c/Zω → 0, one
can easily demonstrate that

[[Âr,j(q)]
−1]α1α4;α2α3

ε1ε4;ε2ε3;bb′
= D(0)

q (iε1, iε2)δ
α1α4δα2α3

{
δε2ε3δε1ε4δbb′

− 16πT

g
δα1α2D(0)

q (iε3, iε4)

[
(δj0Γs + δj ̸=0Γt)X̂

(r,j)
bb′ (ε1, ε2; ε3, ε4)

+ δj0Γc

(
Ŷ

(r)
bb′ (ε1, ε2; ε3, ε4)−

(2π)2δ(q)

V
Y

(r)
0,b (ε1, ε2)[Y

(r)
0,b′ (ε4, ε3)]

∗
)]}

.

(5.4)

As expected, the first line corresponds to the bare value of the correlator,
which does not take into account the interaction between quasiparticles. While
the expressions in the second and third lines correct this value and make it de-
pendent on the interaction constants. Here, the functions X̂(r,j)

bb′ , Ŷ (r)
bb′ , and Y

(r)
0,b

are introduced that depend on the Matsubara energies. The exact expressions for
them can be found in the appendix E. We also note that the last term in Eq.
(5.4) is negligible due to its small magnitude, which is inversely proportional to
the size of the system (1/V ).

5.1 The Modified Usadel Equation

Knowing the expression for the renormalized Cooperon (5.1), we can now
write down the effective action and derive the renormalized Usadel equation up
to second order in the interaction constants. The latter is obtained by varying the
effective action with respect to the spectral angle.

After some calculations, details of which can be found in App. F, we get the
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following lengthy expressions for the modified gap and Finkel’stein frequency Zε

∆(2)
ε =

2πNTΓtγt
g

∫
q

∑
ε′>0

sin θε′D(0)
q (iε, iε′)

[
Π(t)(ε+ ε′, q) + Π(t)(|ε′ − ε|, q)

]
−2πTΓsγs

g

∫
q

∑
ε′>0

sin θε′D(0)
q (iε, iε′)

[
Π(s)(ε+ ε′, q) + Π(s)(|ε′ − ε|, q)

]
+
4πTΓcγc

g

∫
q

∑
ε′>0

sin θε′D(0)
q (iε, iε′)

[
Π

(c)
⊥ (ε+ ε′, q) + Π

(c)
⊥ (|ε′ − ε|, q)

]
−8πTΓcγs

g

∫
q

∑
ε′>0

cos θε′D(0)
q (iε, iε′)

[
Π

(c)
A (ε+ ε′, q) + Π

(c)
A (|ε′ − ε|, q) sgn(ε′ − ε)

]
(5.5)

Here, the superscript «2» indicates that it is an expression for the second order in
interaction constants. Preceding orders are not explicitly indicated here and are
detailed in Eq. (1.2). The Finskel’stein frequency renormalizes as

εZ(2)
ε =

2πNTΓtγt
g

∫
q

∑
ε′>0

cos θε′D(0)
q (iε, iε′)

[
Π(t)(ε+ ε′, q)− Π(t)(|ε′ − ε|, q)

]
+
2πTΓsγs

g

∫
q

∑
ε′>0

cos θε′D(0)
q (iε, iε′)

[
Π(s)(ε+ ε′, q)− Π(s)(|ε′ − ε|, q)

]
−4πTΓcγc

g

∫
q

∑
ε′>0

cos θε′D(0)
q (iε, iε′)

[
Π

(c)
∥ (ε+ ε′, q)− Π

(c)
∥ (|ε′ − ε|, q)

]
−8πTΓcγs

g

∫
q

∑
ε′>0

sin θε′D(0)
q (iε, iε′)

[
Π

(c)
A (ε+ ε′, q)− Π

(c)
A (|ε′ − ε|, q) sgn(ε′ − ε)

]
(5.6)

Here we have introduced some convenient notations Π(t,s)(ω, q) and Π
(c)
⊥,∥,A(ω, q),

the details of which can be found in Appendix F.
A few remarks are in order here. First, we point out that the new expression

for the spectral gap ∆ε has a much more complex structure in energies ε and ε′.
This suggests that while it is tempting to assume that one can simply substitute
∆ with ∆ε in Eq. (1.3), this calculation prohibits this simple trick.

It is also important to note that there was no impact from the renormalization
of the Zε frequency in the first order. However, as we can clearly see from the
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second order, this is no longer the case and can potentially lead to interesting
solutions to be obtained in the future. We would like to remind that Zε corresponds
to the renormalization of some physical parameters, such as heat capacity. We
would also like to remind the reader that the formal solution to the homogeneous
Usadel equation is actually dependent on the ratio of ∆ε to Zε, rather than on
∆ε alone. Indeed, it can be written as

sin θε =
∆ε/Zε√

ε2 + (∆ε/Zε)2

Finally, we would like to note that our second-order calculation coincides, in
the relevant order, with the most general answers obtained independently by P.
Nosov, and the author is thankful for sharing his work.

5.2 Limiting Condition: T Near Tc

In the vicinity of the critical temperature, we can linearize the renormalized
Usadel equation, bearing in mind that as the temperature approaches Tc, spec-
tral angles θε vanish. This allows us to neglect the superconducting part in dif-
fusons and set Eω = ω everywhere in D(0)

q (iε, iε′). In what follows, I denote
D̄q(iε, iε

′)−1 = q2 + (ε+ ε′)/D.
Knowing the structure of the operators in Eq. (5.5), see Eqs. (F.6) - (F.10),

we can readily find

∆ε = 2πT
∑
ε′>0

θε′

(
− γc + 2

(γs −Nγt)

g

∫
q
D̄q(iε, iε

′)−

− 4πT
γc(γs +Nγt + 2γc)

g

∑
ε′′>0

∫
q

D̄2
q(iε, iε

′′)

D
+ 8πT

γsγc
g

∑
ε′′>0

∫
q

D̄2
q(iε, iε

′′)

D

)
,

(5.7)

where I have kept only the logarithmically divergent terms. Let’s discuss each of
the contributions briefly. The first line of equation (5.7) consists of two contribu-
tions. The first term represents the non-renormalized interaction constant, while
the second term corresponds to the renormalization in the lowest order in γs,t,c.
It’s worth noting that this is equivalent to equation (1.2).

The first term in the second line arises from differentiating the Cooperon with
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respect to the spectral angle. It corresponds to taking the derivative of the first
line of equations (F.2) - (F.4). Finally, the last term arises as a consequence of
the mixing of spin-zero modes from the singlet and Cooper channels.

By carefully evaluating the sums and integrals in equation (5.7), we find that
in the vicinity of the critical temperature, the expression within the parentheses
simplifies to a running interaction constant. This can be compared with Eqs.
(18)-(21) in [31],

−dγc =
(γs −Nγt)

πg
dy +

γc(γs −Nγt − 2γc)

πg
dy. (5.8)

This suggests that the critical temperature is determined by the behavior of
the renormalized interaction constants in the normal state.
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6 Conclusion

In summary, we have developed a theory for the multifractally-enhanced su-
perconducting state in thin films with spin-orbit coupling. Our theory is based
on the assumption of weak short-ranged electron-electron interaction. We consid-
ered two cases: Ising spin-orbit coupling (N = 1), where the renormalization of
the normal state resistance is negligible, and strong spin-orbit coupling (N = 0),
where the renormalization of t is dominated by weak-antilocalization correction.
In addition to these cases, we also studied the case without spin-orbit coupling
(N = 3), which was previously discussed in Ref. [37]. With these three cases, we
now have a theory that covers all possible behaviors of the normal state resistance
with respect to the system size: increasing, decreasing, and constant.

Following the approach of Ref. [37], we considered fluctuations around the
mean-field spatially homogeneous saddle-point and derived modified Usadel and
self-consistency equations that capture the interplay of disorder and interactions
at high energies. These derived equations enable us to accurately determine the
superconducting transition temperature. Interestingly, even in the presence of
disorder, the transition temperature is enhanced compared to the BCS result
in the absence of disorder, including for the case of strong spin-orbit coupling
(N = 0). Solving the modified Usadel and self-consistency equations yields Tc,
which is parametrically consistent with the estimate obtained from the Cooper-
channel instability in the renormalization group equations for the normal phase. It
is worth comparing the multifractally increased critical temperatures for different
numbers of triplet modes. In the absence of spin-orbit coupling, as discussed in Ref.
[37], the superconducting phase is expected to exist for temperatures lower than
TN=3
c ∼ τ−1 exp(−2/t0). In contrast, our predictions for N = 1 and N = 0 are
TN=1
c ∼ τ−1 exp(−(2/t0) ln(t0/(1.4|γ0|))) and TN=0

c ∼ τ−1 exp(−3.1/
√
|γ0|t0),

respectively. Therefore, the critical temperature increases with the number of
triplet diffusive modes: TN=3

c ≫ TN=1
c ≫ TN=0

c .
The presence of disorder induces an energy dependence in the effective attrac-

tion, which in turn affects the energy dependence of the spectral gap function.
The specific form of this energy dependence is influenced by the number of triplet
modes, denoted as N . In the case of N = 1, as well as N = 3, the energy depen-
dence of the spectral gap is concave, as depicted in Fig. 3. Conversely, for N = 0,
the spectral gap function ∆ε becomes a convex function of ε. The interplay be-
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tween disorder and interactions leads to a parametric enhancement of the spectral
gap function at low energies compared to its magnitude at energies on the order
of 1/τ .

In spite of the strong deviation from the BCS theory, where the spectral gap
function is energy-independent, the fundamental aspects of the BCS model re-
main valid for weakly disordered films. This includes the behavior of the gap just
below Tc and at low temperatures T ≪ Tc. Hence, the temperature dependence
of the spectral gap in such films can still be described using the BCS theory.
In the presence of spin-orbit coupling, we have observed significant mesoscopic
fluctuations in the local density of states within the superconducting state. These
fluctuations persist up to the length scale determined by the dephasing length.
The presence of spin-orbit coupling leads to a reduction in the amplitude of the
variance of the local density of states by a factor of 2 (for N = 1) and by a
factor of 4 (for N = 0). The energy dependence of the variance is sensitive to
the number of massless triplet modes, owing to the different energy dependencies
of the gap function for different N values. The most pronounced differences are
expected to occur near the coherence peak at E ∼ ±∆0. However, it is important
to note that this region falls beyond the accuracy of our calculations.

It is instructive to compare the fluctuations of the local density of states with
the fluctuations of the superconducting order parameter. While our approach
assumes a spatially constant order parameter, it is still possible to investigate
its mesoscopic fluctuations. In the presence of spin-orbit coupling, we have found
that

⟨(δ∆)2⟩
∆2

≃ (1 +N )t0
2

ln
L∆0

ℓ
. (6.1)

We would like to emphasize the close similarity between Eqs. (4.7) and (6.1).
However, there is a crucial difference: the mesoscopic fluctuations of the super-
conducting order parameter are governed by the coherence length L∆0

in the
infrared regime. Since L(ϕ)

E ≫ L∆0
, we expect ⟨(δρ)2⟩/⟨ρ⟩2 ≫ ⟨(δ∆)2⟩/∆2. For

N = 1 (N = 0), we can estimate ⟨(δ∆)2⟩/∆2 to be on the order of ln(t0/|γ0|)
(
√
t0/|γ0|), respectively.
Also, we have developed a theory that goes beyond the lowest order in in-

teraction. We have demonstrated that in the second order, the structure of the
modified Usadel equation becomes more complex, making it no longer amenable
to a straightforward replacement of the kernel with an analogous expression from
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renormalization group equations in the normal state. However, in the limiting case
of temperatures near the critical temperature, the behavior of the spectral gap
and Tc is determined by a running constant γc(L).

The results presented in this thesis can be generalized in several directions.
With the developments of P. Nosov for an arbitrary interaction force at our dis-
posal, it becomes intriguing to investigate the influence of collective modes on
superconductivity. By employing these new results, one can determine the value
of ∆0 up to a numerical factor, enabling a comparison with the expression for
Tc. This ongoing work holds promise for further progress in our understanding of
interplay of disorder and superconductivity. On the other hand, our theory can
further be extended to include the Coulomb interaction. Additionally, it would
be interesting to go beyond weak-coupling for superconductivity and to study
multifractal effects at the BCS – BEC crossover [63, 64]. Also our work can be
extended to consider systems with singular dynamical interaction between elec-
trons, see Refs. [65, 66, 67, 68, 69, 70], in the presence of disorder. This can be
achieved along the approaches of Refs. [71, 72].

Finally, we mention that our theory ignores phase fluctuations of the order
parameter. The latter are known to be responsible for the Berezinskii- Kosterlitz-
Thouless transition in superconducting films. Such fluctuations can be taken into
account in the way similar to the one in Refs. [73, 74]. However, for weakly disor-
dered superconducting films effects related with phase fluctuations are expected
to be weak [75, 73].
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Appendices

A Details of the Finkel’stein Nonlinear Sigma Model For-
malism

In this Appendix we present details of the Finkel’stein nonlinear sigma model
formalism.

The action of an electron liquid in a disordered metal with spin-orbit coupling
is given by

S = Sσ + S
(ρ)
int + S

(σ)
int + S

(c)
int + Sso, (A.1)

where the first term comes from non-interacting fermions. The next three terms
correspond to electron-electron interactions in the particle-hole singlet channel,
S
(ρ)
int , in the particle-hole triplet channel, S(σ)

int , and in the particle-particle channel
S
(c)
int . The last term appears due to spin-orbit coupling. The above mentioned

contributions reads (see Refs. [78, 2, 79] for review)

Sσ =− g

32

∫
r
Tr(∇Q)2 + 2Zω

∫
r
Tr ε̂Q (A.2a)

S
(ρ)
int =− πT

4
Γs

∑
r=0,3

∑
α,n

∫
r
Tr Iαn tr0QTr Iα−ntr0Q (A.2b)

S
(σ)
int =− πT

4
Γt

∑
r=0,3
j=1,2,3

∑
α,n

∫
r
Tr Iαn trjQTr Iα−ntrjQ (A.2c)

S
(c)
int =− πT

4
Γc

∑
r=1,2

∑
α,n

∫
r
Tr tr0L

α
nQTr tr0L

α
nQ (A.2d)

Sso =
πν

2

∑
j=1,2,3

1

τ
(j)
so

∫
r
Tr(t0jQ)

2 (A.2e)

In what is written above g is the total Drude conductivity (in units e2/h and
including spin). The parameter Zω describes the renormalization of the frequency
term [78]. Its bare value is given as πν/4. Interaction amplitudes in the singlet,
the triplet, and the particle-particle channels are designated as Γs, Γt, and Γc,
respectively. It is convenient to introduce the dimensionless interaction parameters
γs,t,c ≡ Γs,t,c/Zω. 1/τ (j)so stands for the spin-orbit scattering rate in the channel j.
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The matrix field Q(r) and the trace Tr operate in the replica (α, β), Mat-
subara (n,m), spin (j = 0, 1, 2, 3), and particle-hole (r = 0, 1, 2, 3) spaces. The
matrix field Q(r) obeys the nonlinear constraint, as well as the charge-conjugation
symmetry relation

Q2 = 1, TrQ = 0, Q = Q† = −CQTC, (A.3)

where C = it12 and the matrix trj is

trj = τr ⊗ sj, r, j = 0, 1, 2, 3. (A.4)

In the expression above r and j subscripts correspond to particle-hole and spin
spaces, respectively. τr and sj denote standard Pauli matrices,

τ0/s0 =

(
1 0

0 1

)
, τ1/s1 =

(
0 1

1 0

)
,

τ2/s2 =

(
0 −i
i 0

)
, τ3/s3 =

(
1 0

0 −1

)
. (A.5)

Taking constraints (A.3) into account, we use the following parametrization for
the matrix field Q(r)

Q = U−1ΛU, U † = U−1, CUT = U−1C,

Λαβ
nm = sgn εnδεn,εmδ

αβt00 (A.6)

The constant matrices in the action (A.1) are given by the following expressions
(ωk = 2πTk):

ε̂αβnm = εnδεn,εmδ
αβt00,

(Iγk )
αβ
nm = δεn−εm,ωk

δαβδαγt00, (A.7)

(Lγ
k)

αβ
nm = δεn+εm,ωk

δαβδαγt00.

Following Ref. [37], we employ the above technique to describe the low-energy
physics in the broken symmetry superconducting state. In order to do so one
needs to single out the static term with n = 0 in the particle-particle channel,
see Eq. (A.2d), and introduce two decoupling fields ∆α

r (r) with r = 1, 2. Upon
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Hubbard–Stratonovich transformation one finds

S
(c)
int =

∑
r=1,2

∫
r

[
4Zω

πTγc
[∆α

r (r)]
2 + 2Zω∆

α
r (r) Tr tr0L

α
0Q− πT

4
Γc

∑
n ̸=0

(Tr tr0L
α
nQ)

2

]
.

(A.8)

Variation of the total action with respect to Q(r) and ∆α
r (r) give rise to the

Usadel equation and the self-consistency relations for ∆α
r (r), r = 1, 2. In turn,

these equations may generate many spatially dependent solutions. In order to
account for them we assume 1/g ≪ 1 and exploit the renormalization group tech-
nique by treating the spatially dependent solutions Q(r) as fluctuations around
some spatially independent solution Q.

This program can be performed as follows. At first, we distinguish spatially
independent and spatially dependent components of the fields ∆α

r (r), r = 1, 2,
they read

∆α
r (r) = ∆α

r + δ∆α
r (r),

∫
r
δ∆α

r (r) = 0. (A.9)

We point out that fluctuations of the order parameter are now contained in
δ∆α

r (r). On the other hand, one can perform a formally exact integration over the
fields δ∆α

r (r) in the action. The latter transfers information about fluctuations of
the order parameter entirely onto the field Q(r). Accordingly, we get

S
(c)
int = 2ZωV

∑
α

∑
r=1,2

{
∆α

r Tr tr0L
α
0Q+

2

πTγc

[
∆α

r

]2}
+ Ŝ

(c)
int , (A.10)

where V is the volume of a superconductor,

Q =
1

V

∫
r
Q(r), (A.11)

and
Ŝ
(c)
int = −πT

4
Γc

∑
α,n

∑
r=1,2

∫
r

(
Tr tr0L

α
nQn

)2
. (A.12)

Where Qn = Q−Qδn,0.
The described above procedure leads to a new saddle-point equation for Q(r)
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and self-consistency equations for ∆α
r ,

D∇(Q∇Q)− [ε̂+ ∆̂, Q] +
πT

4

∑
α,n

[∑
r=1,2

γc[tr0L
α
n, Q]

×Tr tr0L
α
nQn +

∑
r=0,3

3∑
j=0

γj[I
α
−ntrj, Q] Tr I

α
n trjQ

]
= 0,

∆α
r =

πT

4
|γc|Tr tr0Lα

0Q, r = 1, 2 . (A.13)

Now, one can investigate solutions of the latter equations. In the mean-field de-
scription one ignores fluctuations, seeking a spatially independent solution solely.
This solution can be conveniently parametrized with the so-called spectral angle,
θεn, which is function of Matsubara energies εn. In terms of the spectral angle the
saddle-point solution reads

Q = R−1ΛR, Rαβ
nm =

[
δεn,εm cos

θεn
2
,−tϕδεn,−εm sgn εm sin

θεn
2

]
δαβ

tϕ = cosϕ t10 + sinϕ t20, ∆α
1 = ∆cosϕ, ∆α

2 = ∆sinϕ. (A.14)

Substituting the expressions for Q and ∆α
r from (A.14) into the Usadel and

self-consistent equations, we find

D

2
∇2θεn − |εn| sin θεn +∆cos θεn = 0, (A.15a)

∆ = πT |γc|
∑
εn

sin θεn. (A.15b)

The spatially independent solution of Eq. (A.15a) reduces Eq. (A.15b) to the
usual self-consistent equation of the BCS theory. Thus Tc becomes insensitive to
disorder in accordance with the "Anderson theorem".

However, we are interested in more intricate picture, when fluctuations of
Q(r) around the saddle-point solution Q are taken into consideration. The latter
corresponds to the interaction of the diffusive modes. We use the square-root
parametrization of the matrix field to get the perturbative expansion of Q(r)
field around the saddle-point solution,

Q = R−1
(
W + Λ

√
1−W 2

)
R, W =

(
0 w

w 0

)
. (A.16)
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Here W -field satisfies the charge-conjugation constraints:

w = −CwTC, w = −Cw∗C. (A.17)

Before delving into fluctuations, it is necessary to determine the propagators
for the diffusive modes. In this analysis, we consider the lowest order in residual
electron-electron interactions, corresponding to small values of the bare interaction
parameters |γs0,t0,c0| ≪ 1. Within this approximation, we obtain〈

[wrj(p)]
α1β1
n1n2

[wrj(−p)]β2α2
n4n3

〉
=

2

g
δα1α2δβ1β2δεn1 ,εn3δεn2 ,εn4D

(0)
p (iεn1

, iεn2
),

D(0)
p (iεn1

, iεn2
) =

1

p2 + Eεn1
/D + Eεn2

/D
. (A.18)

Here, we would like to remind that Eεn = |εn| cos θεn + ∆sin θεn. It is crucial to
keep in mind that the result in Eq. (A.18) disregards the spin-orbit term in the
action, Sso. This omission results in the appearance of an additional mass term
(proportional to 1/τ effso , which is a combination of 1/τ (x)so , 1/τ (y)so , and 1/τ

(z)
so ) in the

denominator of the diffusive propagators in Equation (A.18). As a consequence,
these propagators will be suppressed in the diffusive limit. In other words, the
index j in the above equations exclusively accounts for the gapless modes. For
N = 0, j = 0, and for N = 1, j = 0, 3. The precise expression for the correlators,
incorporating the spin scattering times τ (x,y,z)so on the right-hand side, can be
found, for instance, in the referenced work [80].

Hereby, we are ready to examine how the fluctuations of Q renormalize the
action of the NLSM. To the lowest order in disorder, we approximate Q as Q ≃
Q + R−1WR. Taking this approximation into account, we obtain the following
correction to the action arising from the interaction part (in the particle-hole
channel):

S
(ρ)
int+S

(σ)
int →− πT

4

∫
r

∑
α,n

∑
r=0,3

∑
j

Γj⟨Tr
[
RIαn trjR

−1W
]
Tr
[
RIα−ntrjR

−1W
]
⟩.

(A.19)

Here and in subsequent calculations, we perform summation over j = 0 for
N = 0 and over j = 0, 3 for N = 1. Using the expression for the propagators
(A.18), we can evaluate the following expressions (for a more detailed derivation,
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refer to Ref. [37]):

S
(ρ)
int + S

(σ)
int → 32πTNrV

g
(Γs −NΓt)

∑
ε,ε′>0

sin θε sin θε′

∫
q
D(0)

q (iε,−iε′) , (A.20)

where
∫
q ≡

∫
d2q/(2π)2. In turn, the interaction in the Cooper channel undergoes

renormalization as follows:

Ŝ
(c)
int → −32πTΓcNr

g

∑
ε>0

D(0)
q=0(iε,−iε) sin2 θε. (A.21)

Together Eqs. (A.20) and (A.21) contribute to the following modified action

S[Q] → 16πTZωNrV

{
∆2

4πTγc
+
∑
ε>0

[
ε cos θε +∆sin θε

]
+
2πT (γs −Nγt)

g

∑
ε,ε′>0

sin θε sin θε′

∫
q
D(0)

q (iε,−iε′)
}
. (A.22)

Finally, variation of Eq. (A.22) with respect to θε and ∆, leads to Eqs. (1.1) and
(1.2), accordingly.

B The Critical Temperature: Renormalization Group Ap-
proach

In this appendix, we employ the renormalization group equations to estimate
the critical temperature by considering the renormalization of resistivity and in-
teractions in the normal phase. The complete set of one-loop (lowest order in
disorder) renormalization group equations has been derived using the background
field renormalization of the Finkel’stein nonlinear sigma model. The correspond-
ing equations can be found in Eqs. (47)-(51) of Ref. [31]. By expanding these
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equations in the regime of |γs,t,c| ≪ 1 and selecting N = 1, we obtain

dt

dy
= −t2(γs + γt + 2γc])/2, (B.1a)

d

dy

γsγt
γc

 = − t

2

1 1 2

1 1 −2

1 −1 0


γsγt
γc

−

 0

0

2γ2c

 . (B.1b)

Eq. (B.1a) implies that dimensionless resistance t remains constant and equals to
its bare value t0. Projecting Eqs. (B.1b) onto the BCS line −γs = γt = γc = γ we
obtain

dγ

dy
= t0γ − γ2, γ0 = (γt0 − γs0 + 2γc0)/4 < 0. (B.2)

Upon solving the above equation, we observe that the renormalization group flow
diverges at yc = t−1

0 ln(1 + t0/|γ0|). In the regime where |γ0| ≪ t0 ≪ 1, this
divergence leads to a significant enhancement of superconductivity, with Tc ∼
(1/τ)e−2yc, as shown in Eq. (2.4). It is worth noting that for |γ0| ≪ t0 ≪ 1, the
attractive interaction γ reaches the value of t0 at the length-scale yc − ln 2, after
which it rapidly diverges.

Next, we address the case of N = 0 using the same approach. Strong spin-
orbit coupling completely suppresses all triplet modes, and the equations for the
remaining interactions γs, γc, and the resistivity t are given by:

dt

dy
= −t2/2, (B.3a)

d

dy

(
γs

γc

)
= − t

2

(
1 2

1 0

)(
γs

γc

)
−
(

0

2γ2c

)
. (B.3b)

Projection of the latter system onto the BCS line −γs = γc = γ gives

dγ

dy
= (t/2)γ − (4/3)γ2, γ0 = (2γc0 − γs0)/3 < 0. (B.4)

Similarly to the case discussed above, in the regime |γ0| ≪ t0 ≪ 1 |γ| grows
with increase of y and reaches t. After this happen, |γ| very quickly diverges at
the length-scale yc ∼ 1/

√
|γ0|t0. The latter corresponds to the following critical

temperature Tc ∼ (1/τ)e−2yc, cf. Eq. (3.4) .
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C The Critical Temperature: Exact Numerical Diagonal-
ization

In this appendix, we provide additional details regarding the numerical solu-
tion for the critical temperature. To accomplish this, we utilize techniques such
as power iteration and dimensional fitting.

As mentioned in the main text, the linearized self-consistency equation in
Eq. (2.5) can be viewed as an eigenvalue problem. However, from a numerical
standpoint, the challenge arises due to the fact that the matrices defined in Eqs.
(2.6) and (3.6) are significantly large in size. In fact, nmax ≃ 1/2πτTc leads to
nmax ∝ (t0/|γ0|)2/t0 ≫ 1 for N = 1 and nmax ∝ exp(4/tc − 4/t0) ≫ 1 for N = 0.
In the following, we address each case separately.

When considering Ising spin-orbit coupling, we fit the leading eigenvector using
the following expression:

λM = c1/t0 + c2, (C.1)

where c1 and c2 are the fitting parameters. This formula is justified by the following
analytical estimate,

λM =
nmax∑
n′⩾0

∆n′/∆0

(n′ + 1)t0/2(n′ + 1/2)
≃ 2

t0

u0∫
u∞

du

u0
f(u) + c2 = c1/t0 + c2. (C.2)

This allows us to determine the functional dependence of the leading eigenvalue
λM on the parameter t0 ≪ 1. In the expression above, we have employed the
asymptotic form of the right eigenvector rn as rn = f(un) and replaced (n+n′+1)

with max{(n + 1/2)t0/2, (n′ + 1/2)t0/2}, which holds due to the smallness of the
parameter t0 and introduces a correction of the order of O(t0). By fitting the
numerical results with the analytical expression (C.1), we find c1 ≈ 1.38 and
c2 ≈ 1.50, yielding the result stated in Eq. (2.7).

It worth be pointed out that λM ≈ 1.38/t0 lies within the boundary of the
Perron–Frobenius inequality,

λM ⩽ max
n

nmax∑
n′=0

Mnn′ ≃ 2

t0
. (C.3)

Next, we consider the case of N = 0, corresponding to strong spin-orbit
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coupling characterized by the matrix Mnn′(lnnmax). To determine the functional
dependence of λM on the matrix size nmax, we can make use of an approximation
ln(n+ n′ + 1) → ln(maxn+ 1/2, n′ + 1/2). This approximation unveils

λM =
nmax∑
n′⩾0

ln(nmax)− ln(n′ + 1)

n′ + 1/2

∆n′

∆0
≃

u0∫
u∞

duuf(u) + c2 lnnmax. (C.4)

With the help of Eqs. (3.9) and (3.12) and using π2/(|γ0|t0) = ln2 nmax, we find
the following dimensional fitting,

λM = c1 ln
2 nmax + c2 lnnmax. (C.5)

Using the aforementioned expression to fit the numerical data, we find that c1 ≈
0.406 and c2 ≈ 1.57. It is worth noting that c1 = 0.406 satisfies the Perron-
Frobenius inequality, as one can verify:

λM ⩽ max
n

nmax∑
n′=0

Mnn′(lnnmax) ≃
ln2 nmax

2
. (C.6)

D The Local Density of States

In this appendix, we delve into the details of the calculation of the disorder-
averaged pair correlation function of the local density of states. In our approach,
the mesoscopic fluctuations of the local density of states can be described using
Q-matrices, as outlined in previous works [76, 77],

K2(E,E
′, r) = ⟨δρ(E, r)δρ(E ′, r)⟩ = ⟨ρ(E, r)ρ(E ′, r)⟩ − ⟨ρ(E, r)⟩⟨ρ(E ′, r)⟩

=
ν2

32
Re
[
P α1α2

2,irr (iε1, iε3)− P α1α2

2,irr (iε1, iε4)
]
.

Here α1 ̸= α2 are some fixed replica indices and analytical continuation, iεn1
→

E+i0, iεn3
→ E ′+i0, iεn4

→ E ′−i0, is assumed. P α1α2

2,irr (iεn, iεm) is the irreducible
part of bilinear in Q operator,

P α1α2
2 = ⟨spQα1α1

nn spQα2α2
mm − 2 spQα1α2

nm Qα2α1
mn ⟩. (D.1)
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To find mesoscopic fluctuations of the local density of states, we approximate
P α1α2

2,irr (iεn, iεm) as

P α1α2

2,irr ≃ −2 sp⟨(R−1WR)α1α2
nm (R−1WR)α2α1

mn ⟩. (D.2)

Using Eq. (A.18), we find the following expression

P2(iε, iε
′) = −32(1 +N )

g

[
1− ε√

ε2 +∆2

ε′√
ε′2 +∆2

]
×
∫

d2q

(2π)2
D

Dq2 +
√
ε2 +∆2 +

√
ε′2 +∆2

, (D.3)

that works for all signs of ε and ε′. We point out that this expression is only
valid under the assumption (4.3), when energy dependence of the spectral gap
function ∆ε can be neglected. Then for K2(E,E

′, r), where E,E ′ ≫ ∆, we find
the following lengthy expression,

K2 =
ν2(1 +N )

g

∑
s=±

s

(
1 +

sEE ′
√
E2 −∆2

√
E ′2 −∆2

)
×Re

∫
q

D

Dq2 + i
√
E2 −∆2 − is

√
E ′2 −∆2

. (D.4)

Clearly, when E = E ′, we obtain Eq. (4.4).
We now turn to the analysis of mesoscopic fluctuations in the local density of

states at different energies E ̸= E ′. It is important to note that when the ener-
gies E and E ′ are close to each other, the pair correlation function K2(E,E

′, r)

only exhibits slight differences compared to the case where the energies coincide,
K2(E,E, r). Therefore, our focus is on energies that are well-separated from each
other. Let’s consider the case where E ′ = E+ω, with ω being significantly larger
than E. By expanding Equation (D.4) in terms of the small argument E/ω ≪ 1

and performing the integration with respect to momentum q, we obtain Equation
(4.7).

E The One-Loop Action for Fluctuastions

To determine the renormalized propagator, we begin by deriving an expression
for quadratic fluctuations around the saddle point solution in various channels.
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This can be done conveniently using the approach described in App. A. Only this
time, one needs to take into account the inclusion of quartic terms as well. After
some algebra, the answer can be succinctly written as follows

S(2)
σ + S

c,(2)
int = −g

4

∑
r=0,3
j=1,2,3

∑
αβ

∑
ε,ε′>0

∫
q
[D(0)

q (iε, iε′)]−1Φ
αβ,(r,j)
ε,−ε′ (q) · Φ̄βα,(r,j)

−ε′,ε (−q),

S
σ,(2)
int = −4πTΓs

∑
α,n

∑
r=0,3

∫
q

∑
ε1,ε2>0

X(r,0)
n (ε1, ε2) ·Φαα,(r,0)

ε1,−ε2 (q)

×
∑

ε3,ε4>0

[X(r,0)
n (ε4, ε3)]

∗ · Φ̄αα,(r,0)
−ε4,ε3 (−q),

S
ρ,(2)
int = −4πTΓt

∑
α,n

∑
r=0,3
j=1,2,3

∫
q

∑
ε1,ε2>0

X(r,j)
n (ε1, ε2) ·Φαα,(r,j)

ε1,−ε2 (q)

×
∑

ε3,ε4>0

[X(r,j)
n (ε4, ε3)]

∗ · Φ̄αα,(r,j)
−ε4,ε3 (−q),

Ŝ
c,(2)
int = −4πTΓc

∑
α,n

∑
r=0,3

∫
q

(
1− (2π)2δ(q)δn0

V

) ∑
ε1,ε2>0

Y (r)
n (ε1, ε2) ·Φαα,(r,0)

ε1,−ε2 (q)

×
∑

ε3,ε4>0

[Y (r)
n (ε4, ε3)]

∗ · Φ̄αα,(r,0)
−ε4,ε3 (−q). (E.1)

Here the vector fields read as
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X(0,j)
n (ε, ε′) =

(
cos

θε+m0jθε′
2 (m0jδωn,ε+ε′ + δ−ωn,ε+ε′)

sin
θε−m0jθε′

2 (m0jδ−ωn,ε−ε′ + δωn,ε−ε′)

)
, (E.2)

X(3,j)
n (ε, ε′) =

(
cos

θε+m0jθε′
2 (m3jδωn,ε+ε′ + δ−ωn,ε+ε′)

i sin
θε−m0jθε′

2 (m3jδ−ωn,ε−ε′ + δωn,ε−ε′)

)
, (E.3)

Y (0)
n (ε, ε′) = 2

(
cos θε′

2 sin θε
2 δ−ωn,ε+ε′ − cos θε

2 sin θε′
2 δωn,ε+ε′

cos θε′
2 cos θε

2 δωn,ε−ε′ − sin θε
2 sin θε′

2 δ−ωn,ε−ε′

)
, (E.4)

Y (3)
n (ε, ε′) = 2

(
−i cos θε′

2 sin θε
2 δ−ωn,ε+ε′ − i cos θε

2 sin θε′
2 δωn,ε+ε′

cos θε′
2 cos θε

2 δωn,ε−ε′ + sin θε
2 sin θε′

2 δ−ωn,ε−ε′

)
. (E.5)

Finally, fields associated with W are defined in the main text, see (5.2).
The inverse of the operator Âr,j(q) defined in Eq. (5.3) can be found using

perturbation theory. Indeed, for two invertible operators such that their sum is
also an invertible operator, as α tends to 0, we can estimate

(Â+ αB̂)−1 ≃ Â−1 − αÂ−1B̂Â−1 + . . . , α→ 0. (E.6)

This brings us to Eq. (5.4), where we have defined

X̂
(r,j)
bb′ (ε1, ε2; ε3, ε4) ≡

∑
n

X
(r,j)
n,b (ε1, ε2)[X

(r,j)
n,b′ (ε4, ε3)]

∗, (E.7)

Ŷ
(r)
bb′ (ε1, ε2; ε3, ε4) ≡

∑
n

Y
(r)
n,b (ε1, ε2)[Y

(r)
n,b′(ε4, ε3)]

∗. (E.8)

F The Modified Usadel Equation

To find the renormalized equations for ∆ε and Zε, one must obtain the effective
action by averaging the fluctuation correction. This is done like the follows,

Seff [θ] = − ln

∫
DW exp(−Sfl[θ,W ]). (F.1)

Since we have already found the expression for the correlation of fields Φ,
further computations are, although extensive, pretty straightforward. They yield
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⟨Sσ,(2)
int ⟩ = −32πTNr

g
NΓt

∑
ε1,ε2>0

(sin θε1 sin θε2 + 1)

∫
q
D(0)

q (iε1, iε2)+

+Nr

(
8πTΓt

g

)2 ∑
r=0,3
j ̸=0

∫
q

∑
εi>0

∑
b,b′=1,2

D(0)
q (iε1, iε2)

×D(0)
q (iε3, iε4)[X̂

(r,j)
bb′ (ε1, ε2; ε3, ε4)]

∗X̂
(r,j)
bb′ (ε1, ε2; ε3, ε4) (F.2)

for the triplet channel. For the singlet we find

⟨Sρ,(2)
int ⟩ = 32πTNr

g
Γs

∑
ε1,ε2>0

(sin θε1 sin θε2 − 1)

∫
q
D(0)

q (iε1, iε2)+

+Nr

(
8πT

g

)2

Γs

∑
r=0,3

∫
q

∑
εi>0

∑
b,b′=1,2

D(0)
q (iε1, iε2)D(0)

q (iε3, iε4)[X̂
(r,0)
bb′ (ε1, ε2; ε3, ε4)]

∗

[
ΓsX̂

(r,0)
bb′ (ε1, ε2; ε3, ε4) + Γc

(
Ŷ

(r)
bb′ (ε1, ε2; ε3, ε4)−

(2π)2δ(q)

V
Y

(r)
0,b (ε1, ε2)[Y

(r)
0,b′ (ε4, ε3)]

∗
)]

.

(F.3)

Finally, the Cooper channel reads

⟨Ŝc,(2)
int ⟩ = −32πTNr

g
Γc

(
2

∫
q

∑
ε1,ε2

D(0)
q (iε1, iε2)−

∑
ε

2− sin2 θε
V

D(0)
q=0(iε, iε)

)
+

+Nr

(
8πT

g

)2

Γc

∑
r=0,3

∫
q

∑
εi>0

∑
b,b′=1,2

D(0)
q (iε1, iε2)D(0)

q (iε3, iε4)

×
(
Ŷ

(r)
bb′ (ε1, ε2; ε3, ε4)−

(2π)2δ(q)

V
Y

(r)
0,b (ε1, ε2)[Y

(r)
0,b′ (ε4, ε3)]

∗
)∗

[
ΓsX̂

(r,0)
bb′ (ε1, ε2; ε3, ε4) + Γc

(
Ŷ

(r)
bb′ (ε1, ε2; ε3, ε4)−

(2π)2δ(q)

V
Y

(r)
0,b (ε1, ε2)[Y

(r)
0,b′ (ε4, ε3)]

∗
)]

.

(F.4)

By differentiating these expressions with respect to the spectral angle θε and
setting the result equal to zero, we obtain equations (5.5) and (5.6). We note that
∆ε and Zε correspond to the solutions of the Usadel equation in the form
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−|ε|Zε sin θε +∆ε cos θε = 0. (F.5)

To complete the picture, we provide the exact expressions for the functions
introduced in Eqs. (5.5), (5.6).

Π(t)(|ωn|, q) =
16πT

g

∑
ε1,ε2>0

D(0)
q (iε1, iε2)

[
δε1+ε2,|ωn|(1 + cos(θ1 − θ2))

+δ|ε1−ε2|,|ωn|(1− cos(θ1 + θ2))

]
(F.6)

Π(s)(|ωn|, q) =
16πT

g

∑
ε1,ε2>0

D(0)
q (iε1, iε2)

[
δε1+ε2,|ωn|(1 + cos(θ1 + θ2))

+δ|ε1−ε2|,|ωn|(1− cos(θ1 − θ2))

]
(F.7)

Π
(c)
∥ (|ωn|, q) =

16πT

g

∑
ε1,ε2>0

D(0)
q (iε1, iε2)

[
δε1+ε2,|ωn|(1− cos(θ1 − θ2))

+δ|ε1−ε2|,|ωn|(1 + cos(θ1 + θ2))

]
(F.8)

Π
(c)
⊥ (|ωn|, q) =

16πT

g

∑
ε1,ε2>0

D(0)
q (iε1, iε2)

[
δε1+ε2,|ωn| + δ|ε1−ε2|,|ωn|

]
sin θε1 sin θε2

(F.9)

Π
(c)
A (|ωn|, q) = −8πT

g

∑
ε1,ε2>0

D(0)
q (iε1, iε2)

[
δε1+ε2,|ωn| sin(θε1 + θε2)

−δ|ε1−ε2|,|ωn| sin θε1 sin θε2 sgn(ε1 − ε2)

]
(F.10)
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