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LETTER TO THE EDITOR 

Coulomb gap and low temperature conductivity of disordered 
systems 
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A F Ioffe Physical-Technical Institute, 194021, Leningrad, USSR 

Received 28 November 1974 

Abstract. The Coulomb interaction between localized electrons is shown to create a ‘soft’ 
gap in the density of states near the Fermi level. The new temperature dependence of the 
hopping DC conductivity is the most important manifestation of the gap. The form of 
the density of states within the gap is discussed. 

We consider a disordered system the electronic states of which are localized close to the 
Fermi level. For example the system could be an amorphous or a doped crystalline semi- 
conductor. The derivation of the Mott law lnu cc T-1/4 for the DC conductivity of such a 
system is based upon the assumption that the density of states near the Fermi level is 
constant. Pollak (1970) and Ambegaokar et aZ(1971) pointed out that actually electron- 
electron Coulomb interaction should reduce the density of states near the Fermi level. 
Srinivasan (1971) considered the energy dependence of the density of states in the vicinity 
of the Fermi level, but his results contradict ours. 

We assume that the quantum localization length is much smaller than the distance 
between the centres and the overlap between the wavefunctions is negligible. So the 
energy of the system can be written in the form 

where #i is the energy of the electronic state i not taking into account the contribution of 
electron-electron interaction, eaj = e 2 / m j  is the energy of electron-electron interaction, 
re! = Irt - rjl is the distance between the states i and j ,  K is the dielectric constant and nt 
is the occupation number (ni = 0,l). Let us introduce the energies of one-particle exci- 
tations 

Ei = #t + 2 eijnt. (2) 
i 

At temperature T = 0, nt = 1 for Et<p and n6 = 0 for Et>p, where ,U is the Fermi level. 
The ground state of the system should also satisfy another condition. Let us consider two 
states i and j ,  which in the ground state are occupied and vacant respectively. The transfer 
of an electron from state i to s ta te j  should increase the energy of the system. Using 
equation (1) we find that the energy increase is 

AH(i+j) = Ej - Ea - et5 > 0. (3) 
The last term in equation (3) describes ‘the exitonic effect’, ie the Coulomb interaction of 
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the created electron-hole pair. So in the ground state any two energies Et and E$ sep- 
arated by the Fermi level should satisfy the inequality (3 ) .  Now we can show that the 
density of states g(E) should vanish at the Fermi level. We assume g(p )  = go and consider 
an energy interval of small width E centred at the Fermi level. For this interval a mean 
distance R between the states is determined by the condition g o R 3 ~  N 1 and equals(goe)-1/3. 
If E < A G 8g01/2/K3/2 the interaction energy of the states e2/KR = (e2/.) (go exceeds E 

and the inequality ( 3 )  inevitability breaks down. Thus a constant density of states contra- 
dicts the inequality ( 3 )  and g(E) at / E  - pl < A decreases with ] E  - ,U and should vanish 
at the Fermi level. A selfconsistent density of states near the Fermi level may be found 
from the condition that for any E < A the mean interaction energy erj of the states within 
the E interval is of the order of E. In other words the mean distance between the states in 
the E interval has to be of the order of e2/Ke ie 

Here o! is an unknown numerical coefficient. The assumption that g(c)  oc cy,  where 
v < 2, contradicts the inequality (3). If we assume that v > 2 then the mean distance 
between the states in the E interval would be so large that interaction between the states 
may be neglected and the physical reason for the rapid decrease of g( e) disappears. That 
is why v = 2. For the two-dimensional case the same arguments give 

g ( € ) ( f ? 2 / K € ) 3 €  N 1, g(€) = CL K3E2/e6 ,  ( €  = E - p). (4) 

I 4 K 2  g(E) = a’ __ e4 ( 5 )  

We point out that if the density of states near the Fermi level does not depend on the un- 
perturbed density of states go, equations (4) and ( 5 )  give respectively the only possible 
combinations for one and two dimensions. On the other hand the width of the gap A de- 
pends on go. Equations (4) and ( 5 )  are valid when g(c)  < go and so the width of the gap A 
is given by the equation g(A) = go. 

The Coulomb gap plays an important role in the low temperature DC conductivity. 
For the three-dimensional case the energy interval of width EM = T3/4/a3/4g01/4 is re- 
sponsible for the hopping conductivity, which obeys the Mott law (here a is the local- 
ization length). The influence of the gap can be neglected if EM 9 A ie T $ Tc = e4UgO/K2, 
at such temperatures the Mott law is valid. If T < Tc the states within the Coulomb gap 
are particularly important. Using equation (4) and by analogy with the Mott law deri- 
vation we obtain 

U( T )  cc exp [ -( To/T)1/2] (6) 
where TO = e2i.a. The same result is valid for the two-dimensional case. 

We point out that the Coulomb gap exists only in the spectrum of energies Et which 
corresponds to the withdrawal of one electron or its addition to the system. There are 
other small-energy excitations in the system. These are the electron-hole pairs with sinall 
separation between the electron and hole. The energy of such an excitation is given by 
wtj = Ej - Et - e2/Krtj. It was shown that the density of states g(E) is small near the 
Fermi level. Thus, pairs with wrf < A  include states with energies /Et --pI,lEj - ,U/ > A  
which lie outside the gap. Then rtj 3 YO = e2/KA. The density of states of such electron- 
hole pairs is finite when w+O and is of the order of go. Therefore the temperature de- 
pendence of the heat capacity is linear. On the other hand most electron-hole pairs with 
small excitation energies are very compact and isolated from each other. That is why they 
cannot contribute to the DC conductivity. 

We would like to emphasize that in the three-dimensional case the small energy pairs 
interact strongly with isolated shallow energy levels. Due to this interaction the ground 
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state of the system should satisfy the following condition. The occupied state of each pair 
within a sphere of radius r6 = (e2ro/Kl € 1 )  lj2 around an isolated level with energy E = 
[Et - pI < 0 should be at a shorter distance from the level than the unoccupied one. 
Otherwise the energy of the system could be reduced by removing an electron from the 
central shallow state to a large distance and by transferring an electron from an occupied 
to an unoccupied state of the pair. 

The opposite direction ‘polarization’ of pairs takes place near the shallow level with 
E > 0. The number of polarized pairs in the vicinity of a level is much larger than unity. 
The influence of such a polarization ‘atmosphere’ on the density of shallow levels was not 
taken into account in the derivation of equation (4). We are not able to do it in a correct 
form and we cannot exclude the possibility of an additional reduction of the density of 
states due to this effect. Similar considerations show that in the two-dimensional case the 
number of the ‘polarized’ pairs per shallow level is of the order of unity. Then the essen- 
tial part of the levels is not affected at all. Consequently there seems to be no doubt of 
the validity of equation (5). 

According to Knotek et a1 (1973) for amorphous Geg0 = 1.5 x 1018eV-lcm-3, 
a = lOA and K = 16. This gives A = 12 K and Tc = 0.15 K. The resistivity was not 
measured at such low temperatures. Using the data of Hamilton et a1 (1974) we can see 
that for amorphous carbon Tc is a hundred times larger than for amorphous Ge. Hamilton 
et a1 (1974) have observed the dependence close to that of equation (6)  in amorphous 
carbon. This resemblance may be explained as a manifestation of the Coulomb gap. 

The energy spectrum of lightly doped and intermediate compensated crystalline semi- 
conductors has a single characteristic energy e2N1I3/~, where N is the impurity concentra- 
tion. Therefore the dispersion of the impurity levels and the width of the Coulomb gap 
are of the same order of magnitude and the range of constant density of states does not 
exist at all. So the range of the validity of the Mott law should not exist. In the cases 
of the extremely weak or extremely strong compensation such a range may exist. 
Redfield (1973)’ Shlimak and Nikulin (1972)’ Emel’anenko et a1 (1972) reported the 
temperature dependences of cr close to that of equation (6) in crystalline GaAs and Ge. 

We wish to thank Professor V I Perel for helpful discussions. 
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