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THE exploration of low temperatures down to about 1 °K 
was made possible by the use of liquefied gases. The object 
of this article is to review briefly and in general terms the 
technique used to cover the temperature range down to 
about 10-a°K and to describe some recent work which 
shows the way the temperature range down to 10 -6 °K may 
be similarly opened up. 
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Figure 1. The cooling process in the entrop)~temperature diagram: 
(a) Isothermal X1 > Xi; (b) lsentropic X2 ----~ X1 

The basic principle of generating low temperatures is 
best explained with the help of an entropy diagram. In 
Figure 1, the full line represents the entropy of a system for 
a constant value X = X~ of some external intensive para- 
meter (e.g. pressure, magnetic field, etc.) as a function of 
the temperature. A brief portion of the entropy for X = )(2 
is also indicated. The principle of the generation of low 
temperatures becomes clear from this diagram. At the 
initial temperature Ti, the entropy is reduced by an iso- 
thermal change of X from X1 to X~. The system is then 
thermally isolated from its surroundings and the subse- 
quent adiabatic-reversible, and therefore isentropic, 
change of )(2 in the opposite direction results in cooling. If 
X2 is brought back to its original value ,t"1, the final tem- 
perature Tf is given by the intersection of the horizontal 
isentropic line with the entropy curve for X = ,t"1. 

As may be seen from this representation, two conditions 
have to be satisfied for appreciable coolings to result. 
First, the system must, in its initial state, possess a finite 
entropy, and this must be capable of an appreciable reduc- 
tion by the alteration of an external parameter. Second, the 
degree of cooling one can obtain with a given initial iso- 
thermal entropy reduction AS depends on the shape of the 

entropy curve for X = X1. If this curve is steep (dotted line 
in Figure 1), the final temperature 7/will be considerably 
higher than 71, which would be obtained with a flat 
entropy curve (dash-dot). Remembering that the specific 
heat is given by T(dS/dT), we can say that in order to reach 
low temperatures the heat capacity of the system for the 
final value (X1) of the external parameter must be low. We 
can express this in another form by stating that the frac- 
tional cooling is given by 

AT AS 
T - C  

where 7' and C are appropriate mean values of the tem- 
perature and of the heat capacity. 

To summarize, the two essential conditions for the pro- 
duction of low temperatures are: 
(1) Finite entropy, entropy reduction possible; 
(2) Flat SIT curve, i.e. small specific heat for X = )(1 in a 

wide temperature range. 
The first of these conditions is reasonably well satisfied 

in the case of a gas, as it is easy to produce sizeable entropy 
reduction by compression. The second condition is satis- 
fied as long as one only considers the gas itself, but is no 
longer so when the additional heat capacity of the con- 
tainer is taken into account. In this case, one finds that the 
single process results in small temperature reduction, so 
that progressive cooling involving heat exchangers has to 
be employed. Only when the starting temperature T i is low 
enough for lattice specific heats to become small can single 
or batch processes be used for gas cooling and gas lique- 
faction. This is, for instance, the case of the Simon expan- 
sion method for the liquefaction of helium. 

The temperature of a liquefied gas can be further reduced 
by pumping off the vapour, but a practical limit is set by 
the rapidly decreasing vapour pressures. To achieve a pre- 
determined rate of cooling dT/dt of the liquid or to ab- 
sorb a given amount of heat influx ~, the rate of evapora- 
tion has to be maintained at a definite value given by 

C dT 
A dt 

Q 
or 

respectively, where )t is the heat of evaporation and C the 
heat capacity to be cooled down. The lower the vapour 
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pressure the more difficult it is to maintain this rate of 
evaporation since the required pumping speed has to be 
increased proportionally to the reciprocal of the pressure. 
Let us consider, for instance, helium-3 which is the liquid 
with the lowest boiling point or highest vapour pressures, 
and" thus the most suitable cryogenic liquid for reaching 
low temperatures. We find, assuming a pumping speed of 
100 L/see at the surface of the liquid, that the rate of heat 
absorption at 0.3 °K (avapour pressure of 1.5 x 10 -s mm 
Hg) is 2 x 10-4W. At 0"2°K this is reduced to 2 x 10 -e W 
and at 0-15°K to 10 -a W. Alternatively, we find that at 
0.2 °K the rate of cooling for 1 cm 8 of liquid helium-3 is 
about 3 x 10 -5 deg.K/see; in other words, it would take 
about 1 hr to lower the temperature by 0.01 °K. 

It is clear from these considerations that even with liquid 
helium-3 the lowest practical limit is about 0.3 °K. Fortun- 
ately, just where liquefied gases lose their usefulness for 
producing very low temperatures, another group of sub- 
stances, namely the ideal paramagnetic salts, which satisfy 
both essential conditions stated above, come into their 
own. In an ideal paramagnetic substance, the interaction 
energy of the elementary magnets is by definition vanish- 
ingly small. Therefore, in the absence of an external 
magnetic field the 2,/+ 1 possible orientations of the ele- 
mentary magnet (J being the angular momentum) are 
energetically equivalent and such a system has an entropy 
of 

R x l n  (2./+1) 

Moreover, this entropy can be appreciably reduced by 
means of modest magnetic fields. In a magnetic field 
H, the (2J+ 1)-fold degenerate level is split into 2 / +  1 
equidistant levels of separation gflH, where g is the 
spectroscopic splitting factor and fl is the Bohr magneton 
for the electron. For a field of 10 kgauss this energy differ- 
ence is approximately k x 1 °K. Therefore, at 1 °K and 10 
kgauss there will be a markedly preferential population of 
the lower energy levels according to the Boltzmann distri- 
bution law and, correspondingly, a decrease in entropy. 

Our second condition is also satisfied by such a sub- 
stance. The entropy of the elementary magnets in zero 
field is, at least in the first approximation, temperature 
independent and the corresponding specific heat is zero. 
On the other hand, the entropy and specific heat associated 
with the lattice vibrations are negligibly small compared to 
the possible entropy reductions. It was the realization of 
the fact that both these conditions are satisfied by a large 
group of paramagnetic salts that led DebyO and, inde- 
pendently, Giauque ~ to propose producing very low tem- 
peratures by isentropic demagnetization of paramagnetic 
salts. If one knows the entropy in zero magnetic field as a 
function of temperature and the entropy of magnetization 
at the starting temperature, the method outlined in Figure 
1 enables one to predict the final temperatures attainable. 

The temperature changes obtainable by isentropic re- 
duction of a magnetic field can be calculated either by a 
thermodynamical or by a statistical argument--just as for 
an ideal gas--and one obtains for a strictly ideal paramag- 

netic salt with negligible specific heat the simple relation 

Tt-- / ~ f ~  .. .(1) 

where the indices i and f refer to the initial and final state. 
A simple way of correcting for the departure from ideal 
behaviour is to characterize the interaction energies by an 
internal field h. Equation (1) then becomes 

2 z Ti 
r f  --- % / ( n f + h  ) ~  . . . (X)  

(This is an approximate formula and is only valid for 
temperatures at which the deviation from ideal behaviour 
is small, in other words, when the entropy in zero field does 
not differ markedly from the ideal value R x In (2J+ 1). In 
this case we can write 

S i = Rln(2J+l)  a 1 A[HI~ 2 

Sf  = Rln(2J+l)  a 1 A(ff_ff~' 

A being the Curie constant. Now S i = Sf and hence 

x/(a/A + Hf ~) 2 Ti 
T f -  ~/(a/A+ n~) Ti = "v/(h~ + H r ) ~  

1 

since in most cases of practical interest h ~ H i. A more 
rigorous derivation of this relation has been given by 
Abragam and Proctor)) 

For the case of demagnetization to zero field (Hf = 0), 
equation (2) becomes 

h~-~ .. .(3) rf 

We see that the final temperature depends in a simple 
fashion On the initial temperature, the initial field, and h. 
That is, it depends on the interaction energies. 

Thanks to suitable paramagnetic salts with small values 
of h, temperatures down to nearly l0 -3 °K are becoming 
common in many cryogenic laboratories. This is not the 
place to describe in detail the various experimental tech- 
niques that have been developed for working in this range; 
there are quite a few informative and up-to-date survey 
articles on the subject. 4-s It seems, however, worth while 
to point out one fundamental difference between such a 
system of elementary magnets or spins and the other more 
common cryogenic systems. One is accustomed to dealing 
with systems whose energy spectrum has no upper limit. 
Such systems have the well-known property that at high 
enough temperatures where quantum effects become neg- 
ligible the law of equipartition of energy holds, the energy 
of the system becomes infinite with temperature. In a 
system of spins, the energy spectrum has an upper bound 
and the law of equipartition of energy does not apply; in 
fact the specific heat of such a system tends to zero as tem- 
perature approaches infinity. This has an interesting conse- 
quence; a finite amount of energy is sufficient to bring the 
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system to an infinitely high temperature characterized by 
an equal distribution of the particles among all the energy 
levels. If, then, the system is made to absorb an amount of 
energy which is more than necessary to bring it to infinitely 
high temperatures, one gets a preferential population of 
the upper energy levels, a state that can be described by a 
negative absolute temperature. Such negative tempera- 
tures, corresponding to true equilibrium states, have been 
realized with nuclear spins 9 which, because of the very 
weak coupling with their environment, can be regarded as 
forming a system with a bounded energy spectrum. In des- 
cribing the production of negative temperatures by the ab- 
sorption of a surplus of energy, one brings out clearly the 
essential feature of these temperatures: they are reached by 
passing through infinitely high temperatures and not 
through absolute zero, which remains an unattainable 
singularity of the temperature scale. 

Fundamentals and practical requirements of nuclear cooling 
Equation (3) shows the importance of having low inter- 

action energies if very low temperatures are to be reached, 
without, however, telling the whole story. There is one 
unavoidable interaction, namely that between spins, and 
this produces a co-operative self-ordering of the spins 
when i~h ~_ kT, i~ being the elementary magnetic moment. 
This is accompanied by a steep drop of entropy (high 
specific heat), which sets a limit to the cooling by de- 
magnetization, given by 

If the interaction is dipolar, 

r 3 

where r is the distance between two adjacent dipoles and 
we have 

pz 

One way to reduce Ttlm is by increasing r, e.g. by replacing 
the paramagnetic ions with isomorphous diamagnetic 
ions. But to achieve a thousand-fold reduction of T~im 
would require a thousand-fold magnetic dilution and the 
maximum possible entropy change. AS for a given volume 
would be reduced in the same ratio. Since the cooling 
capacity of such a system, i.e. the quantity of heat it can 
absorb after demagnetization, is roughly TrAS, one should 
try to keep AS as large as possible. 

For this reason it is preferable to reduce/~. This can be 
done by using a '  nuclear' paramngnetic substance in which 
the magnetization is due to the nuclear magnetic mo- 
ments,XO, n which are about 1,000 times smaller than the 
electronic magnetic moments of ordinary paramagnetics. 
However, the smallness of the nuclear magnetic moment 
raises one difficulty; to satisfy the condition gfln H ~_ kT  
(where/3 n is the nuclear Bohr magneton), one needs values 

of H.~Ti a thousand times larger than for '  electron' para- 
magnetic substances. Even at 0.01°K, fields of the order 
of 50 kgauss would be required to achieve an entropy de- 
crease of a few per cent of the full nuclear entropy, 
Rln(2I+ 1), where I is the nuclear spin. Thus the starting 
temperature has to be about 0.01 °K and the nuclear de- 
magnetization temperature has to be preceded by a con- 
ventional cooling step. 

A general review of the conditions to be fulfilled for 
successful nuclear cooling has been given by Simon. TM The 
present account, without repeating his arguments, gives in 
a more detailed fashion the design of the actual experi- 
ments performed in the last few years at the Clarendon 
Laboratory.la, x4 

The most important requirement is to be able to transfer 
reasonably quickly the heat of magnetization of the nuclear 
spins to the heat sink at 0.01 °K formed by a paramagnetic 
salt cooled by adiabatic demagnetization. The two princi- 
pal resistances in this energy transfer are between the 
nuclear spin system and its own crystal lattice and between 
this crystal lattice and the paramagnetic salt. As to the first 
of these, it is well known that in dielectric crystals the 
nuclear spin-lattice relaxation time becomes very long at 
low temperatures, and at 10-2°K may reach days or weeks. 
On the other hand, in a metal the nuclear spins can transfer 
their energy relatively rapidly to the conduction electrons, 
which in turn can communicate it to the lattice. The energy 
transfer is accomplished by a process 15 in which a change 
of orientation of the nuclear spin is accompanied by an 
equal and opposite change of orientation of the spin of a 
conduction electron at the top of the Fermi distribution. 
Angular momentum is conserved in this process while the 
small magnetic energy change gfln H of the nuclear spin can 
be converted into kinetic energy of the conduction electron 
since the states near the Fermi level are not fully occu- 
pied. The number of these unpaired conduction electrons 
is proportional to T; the transition probability for a nuclear 
spin flip has the same temperature dependence and the re- 
laxation time is thus inversely proportional to T. These re- 
laxation times are of the order of 10 a second at 1 °K and 
thus, even at 0.01°K, the time for nuclear magnetization 
as far as this process is concerned is of the order of minutes. 

Much work has been done on the establishment of 
thermal contact between a metal and a paramagnetic salt 
at very low temperatures. 13,17, is The method which seemed 
to be particularly suitable for this work uses a low temper- 
ature glass as bonding agent. The paramagnetic salt speci- 
men consists of a viscous slurry made up of powdered 
chrome potassium alum suspended in a mixture of about 
equal volumes of a saturated aqueous solution of the same 
salt and glycerol. The metallic link between this 'para- 
magnetic' stage and the nuclear stage--they have to be 
15-20 cm apart so that the stray field during the nuclear 
magnetization does not affect the paramagnetic stage---is 
embedded into this mixture. On cooling, this slurry turns 
into a glass without any sudden volume changes, and ex- 
periments both in Leiden and Oxford have shown that 
reasonably good thermal contact can be maintained in this 
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way down to 0.01°K. For calculating the rate of heat 
transfer between this thermal link and the paramagnetic 
salt, the empirical formula 

Q = 103 A(T~- T~) ergs/sec . . .  (4) 

(where/'1 and/'2 are the temperatures of the two boundary 
surfaces arid A is the macroscopic contact area in square 
centimetres) has been found useful. No great accuracy is 
claimed for this equation but it gives at least the right order 
of magnitude within a factor of 2 or 3. Using this formula 
we can calculate the contact area needed to remove the 
heat of nuclear magnetization in a reasonable time, say 
I hr for the highest field used. Let us assume T i = 0.012 °K 
(temperature of the co-operative anomaly of chrome 
potassium alum) and H i = 30 kgauss and take 20 g (~ 
g.atom) of metallic copper as the nuclear stage. The heat 
of magnetization is 

.zMH~ 2 
Qm = T i m S  = ~ i~[~ii)  

where A = 3.2 x 10 -7 is the nuclear Curie constant per 
gram-atom. With the given numerical data we find 
Qm = 4,000 ergs. Equation (4) then gives for the area of 
contact about 1,000 cm 2, which can be obtained with a 
bundle of 2,000 copper wires of 0.1 mm diameter and 
embedded over a length of 15 cm in the paramagnetic 
stage. The lower end of this thermal link serves as the 
nuclear stage. Such a divided specimen has the further 
advantage that heat evolution due to eddy currents is 
greatly reduced. 

As shown earlier, effective cooling requires an entropy 
vs temperature curve which for H = 0 is flat over a wide 
temperature range. Figure 2 shows the two chief com- 
ponents of the entropy of a metal with nuclear spins. We 
see that the nuclear entropy with the constant value of 
R ln (2 I+ l )  at high temperatures (in practice above 
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Figure 2. The relative importance of nuclear spins and conduction 
electrons in nuclear cooling 

I 0 - 4  OK) satisfies this condition. Superimposed on it is the 
entropy of the conduction electrons which increases 
linearly with temperature. The Figure is not drawn to scale 
and it is only intended to illustrate the argument. As to the 
lattice entropy, it is altogether negligible compared with 
that of the conduction electrons at temperatures below 1 °K. 

We must distinguish between two cases, according to 
whether there is thermal equilibrium or not between the 
nuclear spins and the conduction electrons during de- 
magnetization. We shall compare the temperatures 
reached in these two cases with the temperature Tf which 
would be attained (isentropic line AB) if one had the 
nuclear spin system by itself. Let us first consider the case 
where there is equilibrium (reversible and hence isentropic 
process). Our starting point is now given by A', the dis- 
tance AA' being equal to the conduction electron entropy 
at Ti. Since the process is isentropic, the final temperature 
T( is again given by the intersection of the appropriate 
horizontal line (A'B') with the entropy curve for H = 0. 

The position is different in the second case where during 
demagnetization there is no temperature equilibrium be- 
tween the nuclear spins and the conduction electrons. Let 
us take the extreme case in which the coupling between 
these two systems is so weak that during demagnetization 
the temperature oftbe conduction electrons does not alter 
at all, so that the nuclear spins reach Tf. Now, as time goes 
on, there will be energy exchange between the two systems 
and equilibrium will be reached at a temperature at which 
the total heat Q gained by the nuclear spin system equals 
that lost by the conduction electrons. Remembering that 

Q = f TdS 

we find that the final temperature T~ reached in this pro- 
cess is given by the condition that the two differently 
shaded areas are equal. Clearly, the irreversible process 
gives much poorer results than the reversible process. 

We can calculate for each of these two cases the 
conditions under which the presence of the conduction 
electrons has only a small influence on the final tempera- 
ture reached in nuclear cooling. For the reversible case we 
have Si = Sf, with 

1" ~[Hi\Z 
S i = R ln (2 l+  ) - 2 ( T i )  +yTi 

"2I 1" A/h\2 and S t =  Rln~ + ) - ~ )  

(where A is the nuclear Curie constant, yT i the electronic 
specific heat, and h the local internal field), since in all cases 
of practical interest T/@ T i and h < H i. Remembering 
that Tr, the temperature that would be reached by the 
nuclear spin system alone, is given by 

hT~ 
N 

we find 1 - ~  = _ X ~  "'" (5) 
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or, substituting numerical values for copper (7 = 7.5 x I0 8 
erg(deg.K) -I (g.atom) -1 and A = 3-2 x 10 -~ (g.atom)-l), 

I-T~ = 4.7x 10 ~ .. .(5a) 

!_,. ...... .... ............ 

0 . 1  ' ' 

i0-~ 10-2 iO-V 
: (° K 

- -  Irreversible demagnetizat ion 
. . . . .  Reversible demagnetization 

Figure 3. The effect of  the conduction electrons on the final tempera- 
tures reached in the nuclear demagnetization of copper. The lines 
indicate limiting values of  Hi and Tifor stated deviations of  the actual 
final temperatures (T~ and Tg') from those that would be reached in the 

absence o f  conduction electrons 

Equation (5) defines pairs of values Ti, Hi, leading to T~ 
not exceeding Tf by more than a given factor. Figure 3 
shows two Ti, Hi lines corresponding to T~/T/= 0-9 and 
Tt/T/= 0"5; only Ti, Hi values lying under these lines satisfy 
the respective conditions. We see that in this reversible 
case nuclear demagnetizations can be carried out from a 
wide range of initial conditions without the results being 
appreciably influenced by the conduction electrons. 

Let us next consider the irreversible case. T~ is now given 

values. The third line for the irreversible case refers to 
T(/T~ =0"9 and defines the limits of the nuclear cooling 
experiments with copper under conditions of poor energy 
exchange between nuclear spins and conduction electrons. 

The foregoing calculations show that the effect of the 
heat capacity of the conduction electrons is negligible in 
the reversible case but not if the process is irreversible. We 
shall next discuss whether under actual experimental con- 
ditions there is equilibrium between the nuclear spin 
system and the conduction electrons during demagnetiz- 
ation. For the simplest case of I--½ (two nuclear spin 
orientations of energy difference u, to be denoted b y '  + '  
a n d ' - ' ) ,  the approach to equilibrium between the nuclear 
spins and their surroundings is given by 

= (n -n0 )  . . . ( 7 )  

where n = N + -  N_ is the population difference between 
the two states and n o is the distribution corresponding to 
temperature equilibrium with the 'temperature bath', i.e. 
the conduction electrons at T 0. The relation between the 
relaxation time T and the transition probability for a 
nuclear spin flip is given by 

1 u 

- • ~ 2w cosh kT ° 

with w+ = w exp ( -  u/kTo) 

and w_ = w exp (u/kTo) 

being the probabilities for the ( + - )  and ( - +)  transitions, 
respectively. In most cases of practical interest u/kT o < 1 
and $ is independent of the level separation; it depends, 
however, as mentioned earlier, on the temperature of the 
conduction electrons. We can define by means of n a 
nuclear spin temperature T) ° and as long as u/kT< 1 we 
have no= liT and equation (7) may be written 

dr r(1 
- . . . ( 8 )  

where To is the temperature of the conduction electrons. 
The rate of heat transfer from the conduction electrons to  
the nuclear spins is then given by 

by the condition 
dQ C d r  ~[I-I'~'T[ 1 T) n r l  I = 

h~ 
w h e r e  

and C o--- yT. Making the same simplifying assumptions as 
before we have 

l_rf ,r: 
= ~ H i i  = 3.9x 1 0 ~  . . .(6) 

(with h = 3 gauss, the value found for copper14). 
As may be seen from Figure 3, the conduction electrons 

have a great effect in this case; the lines for Tf/T~. = 0.9 and 
Tf/T~. =0.5 leave only a small range of permissible Ti, Hi 

. . .(9) 

(C n = ~(H/T) 2 being the specific heat of the nuclear spins 
in a magnetic field H), or by 

-~,To~t~ 

(yTo being the specific heat of the conduction electrons). 
Remembering that rTo = ~ (constant), we have 

dTo_  
  o(ro-r) . . . ( 1 0 )  

dt 

We must now calculate the value of (T/T,.)(T o-  T) which 
makes the cooling rate dTddt of the conduction electrons 
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about equal to the cooling rate of the nuclear spins due to 
demagnetization. Let us assume that the field is reduced at 
a constant rate, dH/dt =-[3, then for the nuclear spin 
system alone 

T T i 

dT T i 
and hence dt - Hii [3 

equating this with the right-hand side of equation (8), we 
find 

( )  , T y ~  T 2 T i ~  T a 
T.(ro-r)  --- ~ p # ~ _ ~ p  .. .(ll) 

Substituting numerical values (~ = 1 sec/deg.K, # = 10 a 
gauss/see), we find with T i = 1"2 x 10-2°K and H i = 10 ~ 
gauss 

(T e -  T) = 4 x 10 -6 °K 

In other words, not till a temperature of about 4 x 10-* °K 
is reached does the temperature difference between con- 
duction electrons and nuclear spins exceed 10 per cent. We 
were thus justified in regarding T/H as constant during 
most of the demagnetization. It is true that while in the 
final stage the temperature of the nuclear spins drops from 
4 x 10 -4 °K to 

T.. 1"2 x 10 -2 rt = h ~ =  3x =3"6x10  - e ° K  
Hi l0 t 

the conduction electrons will lag behind. But, as may be 
seen from Figure 3, at these temperatures even irreversible 
cooling of the conduction electrons will have only a 
negligible effect. 

It can also be shown that at the end of demagnetization 
the time-lag is only of the order of seconds. In equation (8), 
T the temperature of the nuclear spins may now be taken 
as constant and equal to 3.6 x 10-e°K,  H =  h = 3.0 gauss, 
and since T e >> Texcept at the very end we have a constant 
cooling rate for the conduction electrons given by 

dT e = ~h 2 1 = 10_, deg.K/sec ...(12) 
dt y T~, 

(Note: The first detailed discussion of the establishment 
of thermal equilibrium in a nuclear cooling experiment is 
due to Kittel. 2x He based his calculations on the early ex- 
periments of Kurti et al. 18 which gave a much higher value 
of h (25 gauss) than the present one. Although Kittel's 
numerical values have been superseded by the present 
ones, his main argument remains correct; in spite of the 
small transition probability for the Korringa relaxation 
process at very low temperatures 00 -2 sec -1 at 10-2°K), 
the conduction electrons can take part in the nuclear cool- 
ing process. The physical explanation is that although 
the probability for a nuclear spin flip is small, very few 
such flips are necessary to cool the conduction electrons.) 

We have assumed all along that immediately before 
demagnetization the thermal contact with the electronic 
stage is broken so that the nuclear stage as a whole--i.e. 
nuclear spins, conduction electrons, and lattice--is 
thermally insulated. While this should be possible with a 
superconducting heat-switch, various experimental diffi- 
culties have prevented the use of such a device and so far 
all experiments have been carried out without a heat- 
switch. This may seem to make nonsense of these 
nuclear cooling experiments, but the presence of the two 
thermal resistances, nuclear spin--conductio'n electron re- 
laxation and heat transfer from copper to paramagnetic 
salt, justified the expectation of an observable cooling 
effect. 

As mentioned above a typical specimen used in the 
nuclear cooling experiments consists of a bundle of insu- 
lated copper wires, about 35 cm long, whose lower 
end constitutes the nuclear stage and whose upper end is 
embedded into the electronic stage of chrome potassium 
alum. This specimen is suspended in a jacket whose walls 
are at a low enough temperature ( < 0-35°K) for heat influx 
due to gas to be negligible. Mutual inductance coils sur- 
rounding the electronic stage and the nuclear stage permit 
the measurement of their respective susceptibilities and 
hence their temperatures. 

The apparatus used in the first experiments TM had two 
main shortcomings. The nuclear susceptibility was meas- 
ured by a ballistic method; thus no continuous record of 
the rather rapid warming-up of the nuclear stage could be 
obtained, and this made the analysis of the results difficult. 
The second difficulty was caused by the manganous 
ammonium sulphate cylinder used to cool the shield sur- 
rounding the nuclear stage to about 0.1°K. Since this 

Helium- 
at  0 9  ' 

Mutua 
inductan 

coils 

L ' 

"leiium-4 
~t 42  °K 

telium-3 
: 035 °K 

KCr alum 
at fO -2 °K 

R,pple 
shield 

opper nucle~ 

at I0 -6 °K 

J d 

Figure 4. Schematic view of the cryostat ]br nuclear demagnetization 
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cylinder was at the height of and concentric with the 
electronic stage, it was impossible to determine with any 
accuracy the temperature of the latter and hence T i. 

To remedy these drawbacks, a new apparatus was con- 
structed 2~ which uses a shield cooled by liquid helium-3 
and an a.c. mutual inductance bridge permitting continu- 
ous measurement of the nuclear susceptibility starting 
about 2 sec after demagnetization. The apparatus is shown 
diagrammatically in Figure 4. Figure 5 is a photograph of 
the cryostat, with the magnetizing solenoid. 

Results and discussion 

We shall now briefly describe some of the results 
obtained with the new apparatus. First a series of de- 
magnetizations were carried out, all starting from the same 
initial temperature, T i = 0.012°K, and from fields between 
3 kgauss and 30 kgauss. Figure 6 shows the recorder graph 
of the nuclear susceptibility after a typical demagnetiza- 
tion. The mutual inductance was balanced at the starting 
temperature and the amplifier sensitivity so adjusted that 
the lowest temperature (highest susceptibility) gave ap- 
proximately full deflection. Immediately after the nuclear 
stage had warmed up to the starting temperature--this 
usually took about 90 sec--the instrument was calibrated 
by altering the compensating mutual inductance in known 
steps. The times corresponding to integer values of the 
mutual inductance were then read off these warming-up 
curves and plotted logarithmically, as shown in Figure 7. 
Since the mutual inductance is proportional to the nuclear 
susceptibility, these plots in effect give n = N + -  N_ or 1IT 
as a function of time. If the warming-up is governed by a 
relaxation process between nuclear spins and conduction 
electrons, the latter being at a constant temperature given 
by the electronic stage ( T ~  T), one would expect, 
according to equation (8), straight lines, all parallel to each 
other. We see that the lines are indeed nearly parallel, 
though there is a slight curvature. 

The following simple experiment was carried out to 
prove that during this warming-up the conduction elec- 
trons are not in thermal contact with the nuclear spins but 
rather with the electronic stage. About 10 see after de- 
magnetization, that is as soon as the trend of the warming 
curve could be ascertained, the nuclear stage was exposed 
to a burst of y-rays of a few seconds' duration and of an 
intensity calculated to generate in the specimen a quantity 
of heat of about 10 ergs. If  the lattice and the conduction 
electrons had been in temperature equilibrium with the 
nuclear spins, the nuclear spin temperature would sud- 
denly have risen to that of the electronic stage, since the 
enthalpy of the nuclear stage between 10 -e °K and 10 -2 °K 
is only 4 ergs. The recorder graph, however, was un- 
affected, indicating that all the energy released by the 
3/-ray absorption went into the electronic stage without the 
temperature of even the conduction electrons being 
appreciably increased. Since the nuclear spin-conductance 
electron relaxation time is proportional to tIT the warm- 
ing-up curve would have become steeper if the conduction 
electrons had been heated. 

Figure 5. View of the nuclear cooling apparatus. Underneath the metal 
Dewar, enclosing the actual cryostat, i~ the water-cooled high powered 

solenoid 

8 C R Y O G E N I C S  • S E P T E M B E R  1960 



, , ~ : ~  , ..... m~.~,,~ 

• ~i'~:. : ,!,.~ 

~,;,~ ~,,._;-,2~.~,. ................. 

...... I ~ ................. t" ~ s ~  

Figure 6. Recorder graph o f  the magnetic thermometer. Right: nuclear susceptibility after demagnetization; Left." calibration o f  the bridge with 
a variable mutual inductance. Each small division represents 5 sec 

A number of nuclear demagnetizations were carried out 
with the electronic stage, and hence the conduction elec- 
trons, at higher temperatures, and these experiments served 
to determine the temperature dependence of the relaxation 
time. The results are given in Figure 8 which shows that 
the temperature dependence is not far off the predicted 
one. The straight line gives ~-T= 0.4 sec.deg.K, which 
agrees reasonably well with the value of ~-T=0.45 
sec.deg.K found by Anderson and Redfield le in the liquid 4c 

2O 

t 

. -  - -  _kgauss - -  

, r , " - , 4 1  
0 5 10 15 20 25 30 

Time after demagnetization, ~; ~ (sec) 

Figure 7. Nuclear susceptibility ( in  arb#rary units) as a function o f  
time after demagnetizations/ram O.O12°K and the stated fields. The 
broken line ( -  - - - )  hldicates the trend one wouM expect if  the warmhlg- 
up were governed by the heat resistance between the paramagnetic salt 

and the copper specimen 

helium temperature range and in small fields. It should be 
emphasized that, as shown by these authors, the relaxation 
time increases about 2.5 times between 1 and 100 gauss, and 
reaches at higher fields the value of~-T= ].l sec.deg.K. 

Figure 9 gives the final temperature reached by demagne- 
tization from 0.012 °K and from various fields. The results 
obey equation (3) and from the slope of the line We obtain 
h = 3.1 gauss, in good agreement with the predictions of 
various theories of interaction between nuclear spins in 
metals, and with the results from nuclear resonance experi- 
ments. Clearly, nuclear cooling is a rather cumbersome 
method for obtaining h; but when it becomes possible to 
use 3 or 4 times larger values of Hi/Ti than hag been done 
hitherto one would probably get below the critical tem- 
perature of the co-operative ordering of nuclear spins and 

o~ 

S 3O 

t o 

°// 
I I I I 

0 20 40  60  80  

I/T ~ ~ (deg .  K -1) 

Figure 8. Relaxatiofl time as a function of the reciprocal of the conduc- 
tion electron temperature 
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Figure 9. Temperatures attained by nuclear demagnetization from 
0"012°K and various fields 

then the question of whether nuclear spins are ordered in a 
ferromagnetic or an antiferromagnetic way may perhaps 
be answered. 

Finally, one possible objection to the validity of these 
results must be discussed. Since we have used no heat- 
switch the nuclear stage was in, albeit weak, thermal con, 
tact with the electronic stage both after and during de- 
magnetization. If  the demagnetization could be carried out 
quickly the error so introducod would be small; but, in 
order to keep eddy current heating in the copper specimen 
within permissible limits, the demagnetization has to be 
rather slow, at the rate of about 1 kgauss/see. We can calcu- 
late under certain simplifying assumptions how the heat 
contact during demagnetization affects the final tempera- 
ture. There are two main heat resistances between the 
nuclear spin system and  the paramagnetic salt of the 
electronic stage: at the boundary between the paramag- 
netie specimen and the copper, given by equation (4), and 
between the conduction electrons and the nuclear spins, 
characterized by the relaxation time ~-. We shall consider 
the two extreme cases where one or the other of these 
resistances is zero. 

(1) Good heat contact at the paramagnetic salt so that 
the heat transfer to the nuclear spins is governed by, and is 
given at any moment by, equation (9). On the other hand, 
during demagnetization, as long as H > h, we have for the 
rate of heat influx to the nuclear spins 

_ HdH . / H ~ d T  dQ H dH -A  .(13) 
dt dt = 7 ~ d-i :+A~r) all "" 

since the internal energy of a system of ideal spins is 

constant. Assuming demagnetization at a constant rate, 
i.e. H = H i - •  and combining equation (9) and equation 
(13) we obtain the following relation between T and H 

Hi-fit[1 T~= Ui-[JtdT . . . (14) 
; • dt 

Integration gives 

_Ti = l+---flY - [ l - e x p ( - t / - r ) ]  6~X5~ 
T Hi-fi t  "" 

We obtain T~ a), the final temperature reached for complete 
demagnetization in case (1), by letting H =  Hi-lit de- 
crease to a fictitious field h. Remembering that in all cases 
of practical interest H.dh >> 1, we have 

Ti 
T/a---- ~ = ~ [ 1 - e x p ( -  H.J/~-r)] . . . (16)  

Since in the ideal adiabatic-reversible case 

Ti Hi 

we obtain for the ratio of final temperatures 

T/1) H, ...(17) 
T~ id> = f l . [ l  - e x p  ( -  ~/fl.)] 

(2) Short relaxation time; heat leak to the nuclear spins 
governed by the heat influx {) at the electronic stage. This is 
given by equation (4) and we can simplify the calculations 
by assuming this heat influx to be constant. Because of the 
T 3 dependence of 0,  this is a good approximation except 
for the initial stages of the demagnetization and will, 
anyway, only exaggerate the effect of this heat leak. We 
now have, analogously to equation (13) 

H / d n  ndri 
O" = - A l ' l  dtt T dt / . . .(18) 

and, with H = H i -  #t 

0 
~-~ = r d n /  . . .  ( 1 9 )  

Integration between H i and h (i.e. T i and Tr (=)) gives 

and, as above, 

Tf(') --- l /  [ l  Ti ~ Hi 

We can now calculate the effect of non-adiabatic conditions 
in these two extreme cases by substituting into equations 
(17) and (21) the following numerical values appropriate 
to our experiments: 

10 CRYOGENICS • SEPTEMBER 1960 



Y i = 1"2 x 10 -I °K 

h = 3"1 gauss 

= 1"1 x 10 -7 (for ½ g.atom of Cu) 

= 1 erg/sec 

= 90 sec (corresponding to ~T-- I. 1 sec.deg.K found 
by Anderson and Redfield 16 for H > 100 gauss) 

/~ = 10 a gauss/sec. 

l 1.10 

-u 

~.~ I-o5 

I.c 
0 I0 20 30 

Hi "---" (kgou=s) 

Figure 10. The effect o f  non-adiabatic conditions during demagnetiza- 
tion on the final temperatures. Case (1): Good heat contact at the 
paramagnetic salt, heat influx governed by the relaxation time; Case 
(2): Short relaxation time, heat influx governed by the thermal 

resistance at the paramagnetic salt 

The two curves of  Figure 10 representing equations (17) 
and (21) give the maximum deviations from ideality, since 
in each of these cases one of  the energy transfer mechan- 
isms was considered perfect. The actual values of Tf/Tf00) 
lie below these curves, and in fact must always lie below 
the lower of the two curves, in the shaded area. The 
maximum possible deviation from ideal behaviour is thus 
8 per cent, the actual deviation being less. 

(Note:  Similar calculations can be done for constant 
demagnetization times t a instead of for constant field 
reduction rates, simply by substituting in equations (17) 
and (21) Hi/t o for/3. One finds that for low values of  Hi the 
deviation may rise to 20 per cent, but for Hi > 15 kgauss 
the effect becomes comparable with that for fl = constant.) 

We can now discuss qualitatively what happens during 
demagnetization. For  low values of Hi/Ti we shall have, 
at the beginning of  the demagnetization, case (2); this is 
because the nuclear spin system can absorb energy from 
the conduction electrons at a higher rate than the heat 
influx 0 from the paramagnetic stage. But as the bulk 
copper cools the relaxation tiffte gets longer and finally the 
nuclear spins and conduction electrons 'separate" (this 
occurs at a few thousandths of  a degree according to the 
conditions), the latter warming to T~ and the former con- 
tinuing to cool to Tf. This discussion shows that, while in 
the present experimental arrangement the conduction 

electrons do not reach the lowest temperatures attained 
by the nuclear spins, they do, under favourable conditions, 
participate in the cooling process. It seems feasible, there- 
fore, to cool bulk copper below 10 -z °K by nuclear cooling 
even without the use of a thermal switch. In view o f  the 
difficulty of establishing thermal contact with paramag- 
netic salts below 10 -a °K, this may be a useful method for 
the study of  metals between 10 -8 °K and 10 -~ °K. 

A number of  attempts have been made n to carry out 
nuclear demagnetizations with a superconducting heat- 
switch between the nuclear and the electronic stage, but  
the results have been disappointing. In some cases no 
nuclear cooling was observed at all, while in others the 
warming-up rate of  the nuclear spin system was fast, 
indicating a rather high conduction electron temperature. 
The first behaviour could be explained by too low a 
thermal conductivity of  the thermal switch at 0.01 °K and 
in a strong magnetic field, while the second behaviour may 
be due to heating in the switch by eddy currents or by the 
normal-superconducting transition. The development of  a 
satisfactory heat-switch and an improvement in the start- 
ing conditions Hi/Ti from the present value of  about 30 
kgauss/deg.K to about 100 kgauss/deg.K (for some other 
nuclei, e.g. protons, a more modest increase would suffice) 
seem to be the two main short-term technical aims of  
nuclear cooling. The solution of  these two problems would 
open the way to the study of  ordered nuclear spin systems 
in thermal equilibrium with their surroundings and to 
investigations about the bchaviour of  conduction electrons 
down to temperatures of  10 -7 °K. 
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