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Introdzution. The shapes of colloidal particles are often reasonably com- 
pact, so that no diameter greatly exceeds the cube root of the volume of 
the particle. On the other hand, we know many coiloids whose particles 
are greatly extended into sheets (bentonite), rods (tobacco virus), or flexible 
chains (myosin, various Iinear polymers). 

In some instances, a t  least, solutions of such highly anisometric particles 
are known to exhibit remarkably great deviations from Raoult’s law, even 
to the extent that an anisotropic phase may separate from a solution in 
which the particles themselves occupy but one or two per cent of the total 
volume (tobacco virus, bentonite). We shall show in what follows how 
such results may arise from electrostatic repulsion between highly aniso- 
metric particles. 

Most colloids in aqueous solution owe their stability more or less to electric 
charges, so that each particle will repel others before they come into actual 
contact, and effectively claim for itself a greater volume than what it actuaily 
occupies. Thus, we can understand that colloids in general are apt to 
exhibit considerable deviations from Raoult’s law and that crystalline phases 
retaining a fair proportion of solvent may separate from concentrated solu- 
tions. However, if we tentatively increase the known size of the particles 
by the known range of the electric forces and multiply the resulting volume 
by four in order to compute the effective van der Waal’s co-volume, we have 
not nearly enough to explain why a solution of 2 per cent tobacco virus in 
0.005 normal NaCZ forms two phases. 

Some care is needed when 
we apply the general principles of statistical thermodynamics to solu- 
tions of colloidal particles. On one hand, any force acting on a particle 
of whatever size is important as soon as the work of the force is comparable 
to kT. On the other hand, the presence of one colloidal particle will usually 
affect the free energy of dilution of the electrolyte present by a large multiple 
of kT. This difficulty must be circumvented by a11 theories and experiments 
pertaining to the distribution of colloidal particles. One suitable piece of 
experimental apparatus is an osmometer whose membrane is impermeable to 
the colloidal particles, but permeable to a11 small molecules and ions of the 
electrolytic çolvent. The osmotic pressure measured across çuch a mem- 
brane will be exactly proportional to the number of particles if the solution 
behaves like an ideal gas. The analogy can be extended to real gases and 
real soiutions, whereby the gas pressure still corresponds to osmotic pressure. 
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General Kinetic Theory and Conventions. 
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The imperfection of an ideal gas can be computed when we know the forces 
between the molecules for every coníiguration. For that purpose, we have 
to evaluate the integral 

B(T) = /ebuikT d r / N !  

where u stands for the potential of the forces and d.r denotes a volume ele- 
ment in configuration-space. The free energy of the gas in terms of this 
integral is 

F(N,  v, T) = Npo(T) - KT log B ( N ,  v, T )  (2) 

where the additional function po(T) depends only on the temperature and 
does not enter into the computation of the pressure, 

P = -(aF/ôV)N.T = kT(a log B/aV). (3) 

The osmotic properties of a colloidal solution can be computed by a similar 
procedure. What we need to know initiaiiy is the potential 

d(d> ( 4 2 1 ,  * * * (QN)) 

of the averagefmces which act between the particles in a configuration de- 
scribed by the sets of coordinates (al), (QJ, . . . (qy,) of particles 1, 2, . . . N ,  . 
In general, it is necessary to specify the orientations of the particles as well 
as the positions of their centers, and the work against the corresponding 
torques must be inciuded in w. 

With 

B,(N,,  V, T> = /e-WlkT d r / ~ ,  ! (4) 

we have then 
F (solution) - F (solvent) 

= N p  p,” (T, çolvent) - kT log B, N,, V ,  T . (5 )  o 
Here, the difference between “solution” and “solvent” means that the 

former contains colloidal particles, and we compare solutions of different 
colloid concentrations c = (N , /V)  always in “dialytic” equilibrium across 
an osmometer membrane with a “solvent” of constant composition. The 
proportions of ions and molecules present between the particles in the col- 
loidal solution may dBer from those in the “solvent” as we have defined it. 
This complication can hardly be avoided if we want simple relations and 
precise inierpretation of practicable experiments. 

With these conventions the analog of EQUATION 3, 
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is valid for the osmotic pressure and 

(7) O 
,.tp = ,.tP - kT(a iog Bp/aNp) 

for the chemical potential of the colloidal particles. 
Moreover, the conditions for coexistence of two phases are simply 

P = P’ @a> 

PP = PP’ (8b) 

The assumed dialytic equilibrium takes care of all small molecules and 
ions. 

Electric Forces. According to theories developed by Helmholtz, Lamb, 
and Smoluchowski, the speed of migration of a colloid in an electric field 
is quantitatively related to the potential difference between the first mobile 
layer of liquid in contact with the particle and the bulk of the solution. It 
is customary to specify the electric charges of particles indirectly in terms 
of this so-called l-potential. The theory is still somewhat incomplete as 
regards cases where the thickness of the electric double iayer is of the same 
order of magnitude as the dimensions of the particle; a factor variable be- 
tween the l i i i ts  of unity and 3/2 then enters into the interpretation. 

With slight approximations, the general kinetic theory for the distribution 
of ions near charged particles leads to the weil-known Poisson-Boltzmann 
differential equation for the electric potential 

where e1 , ea , - denote the charges of ions present in concentrations ni , 
rs2 , - - * (in the solution or, rather, in a “solvent” maintained in dialytic 
equilibrium), and D denotes the dielectric constant. Whenever the condi- 
tion 1 ep,b I < < kT is satisfied for a11 kinds of ions present, EQUATION 9 may 
be replaced by 

v+ = K y  

2 = (4?r/DkT) znie:.. (10) 
i 

The normal gradient of + at  the surface of the particle is related to the 
charge density on the particle. We have to expect an implicit boundary 
condition determined by the adsorption and surface ionization in equilibrium 
with ions present at the surface in local concentrations rsI exp(-e$/KT), 
n2exp(-eJ/kT), etc. Since the kinetics of the surface ionization is rarely 
known, the relation 

$ = r = constant; (at surface) (11) 
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has often been assumed,regardless of modifying factors, although systematic 
variations of 1 with electrolyte concentration, etc., should be expected and 
have been demonstrated in some cases. We shall not pursue these questions, 
because the expected variations of I; will have but little effect on the forces 
between the particles. 

In  one-dimensional cases, 9 = $(x), EQUATION 9 is generally soluble by 
quadratures. However, even the simplest case of a binary electrolyte 
between parallel plates, both maintained a t  the potentialr, leads to elliptic 
integrals (Langmuir, 1938), and the resulting exact formula for the force is 
fairly involved (Verwey and Overbeek, 1948). 
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Their approximation 

K ( x )  = 16 rz kT(tanh(eJ/4l~T))~ e-‘= 

for the force per unit area between two parallel plates separated by a dis- 
tance x is valid for not too small distances and will suffice as a basis for 
discussion. We note that the force decreases exponentially and that the 
screening constant K ,  given by EQUATION 10, depends only on the ionic 
strength of the solvent. Moreover, for any fixed distance d between the 
plates, the force approaches a finite limit with increasing particle potential r. 
These two features are general. 

We may use the result of EQUATION 12 to estimate the force between two 
iníinite cylinders of the same diameter d crossing a t  an angle y in such a 
manner that the mantles are separated by a distance xo between the points 
of closest approach. 

We choose Cartesian coordinates in a plane parallel to the axes of both 
cylinders and identify points on the cylinder mantles by the coordinates 
(y,  z) of their projections upon that plane. Then, the distance between 
points on the two cylinder mantles with the same (y ,  z) coordinates will be: 

x(y, z )  = xo + d - (i d2 - y2)’” - [ a  d2 - ( y  COS y - z sin y)zJ1’2, 

If we allow the approximation 

and compute the local force density K ( x )  according to EQUATION 12, an 
elementary integration yields for the total force 

Average Force = (&/K sin -y)K(xo) 

w/kT = (d/q sin y) [  tanh(e~/4kT)]2e-Kxo 

q = e:/2 DkT = z; X 3.56 X 10-* cm. 

(13) 

(14) 

(15) 

and we obtain for the potential w of the average force 

where we use the abbreviation 

and ei = -e2 denote the charges, z1 = -22 the valences of the ions in the 
solvent; the numerical value refers to water a t  25°C. 
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As an example, we may consider two perpendicular cylindrical particles 
= 0.15 volt, in a 0.005 mo1 NaC1 solution, whereby of d = 150 A. U., 

i/. = 43 A. U. We find 

w/kT = 34.5 eCKZ0 (16) 

which equals e-‘ = 0.561 a t  a distance xo = 6 = 4.12/~ = 184 A. U. 
Here, we have neglected the divergence of the electric force-lines, which 

must be quite appreciable because 6 is by no means small, compared to d. 
We apply a correction of the right order of magnitude if we multiply w by 
the factor d/(d + XO); according to the corrected formula we then find 
w = 0.561 AT a t  a distance of about 151 A.U. 

It will be evident that over a considerable range of particle diameters and 
orientations and over a wide range of concentrations of electrolyte, the 
effective range of the electrostatic repulsion will be a modest multiple of the 
screening distance 1 / ~ .  While exact computations are not available, there 
can be little doubt about the orders of magnitude involved. 

One further observation is in order: unless the electric double layers of 
three particles overlap ifi the same region, the repulsive forces are additive. 
When K d  > > 1, the exceptional configurations are just about impossible; 
but even under much less stringent conditions very few of them can occur. 
On the strength of these estimates, we shall treat the electrostatic repulsion 
as an additive short range eject .  For very low concentrations of ions such 
that Kd is mau ,  our procedure may be unreliable. On the other hand, we 
shall make no allowance for differential van der Waal’s attraction. This 
omission would tend to become particularly serious for high concentrations 
of ions and low {-potentials, under conditions approaching those which 
lead to flocculation of the particles. 

Imperfeci Gas Theory. We proceed to evaluate the configuration integral 
of Equation 4 according to the general method developed by Mayer and 
Mayer. Assuming additive forces: 

2e, = w N ( ( Q I ) ,  . I . (nN)) = C wij 

w i i  = wd(ai>, (ai>> 

(17) 
i< i 

we put 

In order to avoid confusion with a distribution-function f, we write 
for the functions which Mayer and Mayer denote by fii. Their notation 
sometimes implies the hypothesis that wij , and with it @ij  , depends only on 
the distance between two particles. Their specialization is not essential and 
their method is valid, with obvious pertinent modifications, for the more 
general case with which we have to deal. 
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Upon suitable rearrangement of the sum 

e -w‘kT = 1 + +ij + c+ij*i,j, + * (19) 
i> i 

which now constitutes the integrand of EQUATION 4, Mayer and Mayer 
obtain an expansion for the integral in terms of the irreducible cluster 
integrals 

(20) 
1 

Pl = v /a1* ar1 dT2 

/g2 = --- /+IZ a23 %I dr1 d n  d n  
2v 

and these furnish the first two correction terms to the ideal gas laws in the 
expansion 

1og B p  = flp(1 + log (V/Np) + $Pi(Np/V + h % ( N p / V  + .-. I * (21) 

Similarly, for a solution which contains N 1 ,  - , N ,  , . particles, of dif- 
ferent types 1, . - , s, . * , respectively, we have 

Thc arguments of the cluster integrals indicate that the functions , 
@ 2 3 ,  ’ * ’ involve the interaction potentials w appropriate to pairs of particles 
from the sets of types (s, s’), (s, s’, s”), etc. 

In  EQUATION 21, the generalized volume elements d r j  are ordinary volume 
elements whenever the forces are central, so that w i j  and with it depend 
only on the distance between the two particles involved; but we shall be 
very much interested in the mutual orientations of the particles. In dealing 
with isotropic solutions, we have two alternative procedures a t  our disposal. 
The first method is to include an averaging over orientations (a) in the defini- 
tions of volume elementç, thus 

d7j = dVj dOj ,/ / dOj . (23) 

With particles of axial symmetry, it is, of course, enough to specify the direc- 
tions of the symmetry axes, so that, for a cylindrical particle, we may let 
dQ be an element of solid angle including the direction ai of the cylinder axis: 

dTj  = dVj dQj/4?r. (234 

The second method is more general, in that it applies to anisotropic phases 
without periodic structure, in other words, iiquid crystals of the nemalic 
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type. For the purpose of computing B,, we then introduce the artifice that 
we treat particles of different orientation as particles of different kinds. 
The distribution of particles among different orientations is determined by 
the condition that B, rnuçt be a maxirnum. Incidentally, the convention 
that the terms log ( V / N )  are now formed separately for each “kind” of 
particles makes due allowance for the entropy of “mixing” (Gibbs Paradox). 
On the other hand, we must remember that the generalized volume in space 
and orientation available to a particle of orientation restricted to an element 
of solid angle dQ is only VdQ, rather than 47rV for a particle of unrestricted 
orientation. Thus, when we divide the total of a11 directions in space among 
elements of solid angle AQ1, * . , AQ, , * , A 4  surrounding the directions 
ai , * * , a, , * - * , a,, respectively, these will have populations of particles 
which we shall denote by 

whereby, of course, 
ANv = N,f(av)AQv ; v = 1, 2, , s, (24) 

With this notation, EQUATION 21 is generalized as followç: 

log B,  = AN,(l + Iog (VAQr/47rAArV)) 
r 

Here, the cluster integrals of EQUATION 20 are computed for fixed orienta- 
tions a i ,  az , viz. ai , a2 , a3, of the particles involved. Replacing the sums by 
integrals in terms of the distribution-function f ( a ) ,  the integral of which 
is now normalized: 

Si (a )  dfi(a) = 1, (26) 

we may write EQUATION 23 in the form 

i- (NP/3V2) /// &(a, a’, a”)f(a)f(a’)f(a”) dQ dfi‘ dQ” + - . . 1 
The Cluster Infegrals. When the forces are repulsive a t  a11 distances, we 

have w 2 O everywhere, whence the functions 9ii, defined by EQUATION 19, 
satisfy the inequalities 
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-1 5 +;j 5 o (28) 

everywhere. In this case, the first two cluster integrals P I  and 02, defined by 
EQUATION 21, are necessarily negative, because the integrands are formed 
from one and three negative factors, respectively. The former has a par- 
ticularly simple geometrical meaning in the ideal case of “hard” particles, 
which repel each other a t  contact but do not interact otherwise. 
In this case, we have 

7 0 . .  13 = +a; 
w;j = O ;  

< ã i i  = - 1 ; 
= O ;  otherwise 

(particies intersecting) 

and (-SI) then equals the volume which is denied to particlej by the con- 
dition that it must not intersect particle i. For a pair of spheres of radius r, 
the excluded volume is obviously a sphere of radius 2r. This leads to the 
familiar result first derived by Boltzmann, that the van der Waal’s “CO- 

volume” (per particle) equals four times the volume of one spherical particle 

b = -&I1 = 4(4~$/3) = 4v, 

The analogous problem for two cylinders of lengths of I,, 12 and diameters 
di , dp is solved in the Appendix; we reproduce here the result (from A li) 

-SI(Y) = ( ~ / 4 ) d 1  dz(d1 + dz) sin Y (30) 

-I- (7r/Nh d i  + 12 d:) + ( T / ~ ) ( L  d: + 1 2  I cos Y 1 
i- (ZI + G d i  dzE(sh Y) + lllz(d1 + d d  sin Y, 

where E(sin Y) denotes the complete elliptic integral of the second kind 
TI2 

E (sin 7 )  = 1 (i - sinz y sin2 +>1’2 a+. (304 

For special orientations or dimensions, the formula simplifies more or less. 
The following cases are instructive: 

y = o: -81 = (T/4)(& + Iz)(di f dd2  (314 

y = o: li = 1 2  = 1; dr = d2 = d :  8(~/’4)1# (b) 

y = ~ / 2 :  l i lz(di  + d2) + (li + 12 + di + d&i d2 + (?r/4) (li a;” + 12 da) 

11 = 12;  di = dz: ( 4  

11 = 12 = o: (T/4)d1 dz(dl+ &) sin Y (4 
I 1  = d2 = O: (T/4)& 1 COS Y I (f) 

12 d2 = O: (~/4)1i dS k) 
21 >> d l  + dz << 12:  Zdz(di + dz) siri Y- (h) 

(2 12d + (ir/2)d3) sin y + {(7r/2)(1 + I cos y I) + 2 E(sin r )] l  d2, (d) 
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Case (b) yields 8 times the volume of one particle, as for spheres. This is 
generally true for centrosymmetrical convex particles in parallel orientation. 
Most of the others explain themselves. We cal1 attention to the idealized 
cases (e) and (f), where the particles have a mutual covolume although 
neither has any volume, and to the case (h), which shows that the ratio 
(covolume/volume) for long needles is (length/diameter) rather than (4/1). 

The theory of isotropic solutions involves a simple average of EQUATION 30 
over a11 directions in space: 

-Pi(fi,  di; Ez, dz) 

= 2b = -/ Bdy12) dQz/4a 

= -A / Bl(7) siri Y dr  2 

= (~/4)% &(& + &) + (~/4)(& d: + 12 &) 

+ (~/8)(Zi d + 1 2  d:) + (~'/8)(Ei + &&i dz 

+ (~/4)lik(di + dz). (32) 
For details of the integration, we again refer to the Appendix (A 14). 

For particles of equal diameters di = d2 = d, EQUATION 32 simpliies 

-Pi(Zi, 12) = 2biz = 3 TdíZiZz + $(T + 3)(& + Ez) d + $T dL) (33) 

= 1.5708 d(Zil2 + 1.5354(11 + 1 2 )  d + 0.7854 a), 
and, when the lengths as well as the diameters are equal, it simplifies still a 
little further 

- Si = +d(F + $(T + 3)Z d + a). (34) 

It is interesting to examine the ratio of covolume to volume as a function 
of the ratio (Z/d) according to EQUATION 34. The ratio 

- & / Z ( T / ~ )  8 1  = b/(?r/4) #E = b/üp 

becomes in vanous limiting cases 
b/v, - Z/d; (I >> d) 

b/wp = minimum = + +(T + 3) = 4.843; ( E  = ( ~ / 4 ) l ' ~  d)  

b / V P  - ( d 4 )  d l k  (I << d). 

When the dmensions are about equal the ratio is not much more than 4, 
but for highly anisometric particles, whether needles or pancakes, ( b / ü P )  is 
about equal to the ratio of the long to the short dimension. 

While the evaluation of the first cluster integral B1 defined by EQUATION 20 
proved perfectly feasible, the integral 82 depends on three directions, and to 
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compute it exactly would be an extremely tedious task a t  best. For that 
reason we shall be content to estimate the order of magnitude of p2. 

The value for spheres of equal diameters was computed by Boltzmann; 
in that case, one finds 

- 8 2  = (15/64)&. 

This result gives us the right order of magnitude of the ratio (&'@I) for 
isometric particles in general. Where anisometric particles are concerned, 
we must distinguish between slender rods and thin plates. For the latter 
case, a little experimentation with various orientations will show that in most 
cases where two plates intersect each other, the volume within which a 
third plate of comparable diameter will intersect the other two simulta- 
neously will be a sizable fraction of the volume within wliich it will intersect 
a given one of the others. Accordingly, barring special orientations, we 
have the result 

/3z//31 = O(-&); (spheres, cubes, plates). (35) 
For the slender rods, we obtain the same result only if the three rods are 
nearly coplanar, whereby the admissible deviation in angle is of the order 
(d/Z). Otherwise, it is easily seen that if we look a t  a pair of interesting rods 
along the direction of a third, the projection of their intersection upon the 
plane normal to the axis of the third rod will be (at most) : 

dlddsin 43 , 
where $3 is the angle between the projections of two rods, alias the angle 
between the planes containing the pairs of directions (al, a,) and (az , a:<), 
respectively. Or, considering the spherical triangle whose corners have the 
directions ai ,  az , a3 , $3 is the angle a t  the third corner. If we denote the 
three sides of this triangle (angles between the directions pairwise) by 
yiz , 7 2 3  and 7 3 1 ,  we arrive at the following estimate for the second cluster 
integral: 

($3 > m. (36) 

By the theorem of sine proportions, valid for spherical triangles, the quo- 
tient of the two sines is a symmetrical function of the three directions. 
The angle 43 vanishes (or equals T )  whenever the three directions (al , az , as) 
are coplanar, whereby ai and a2 are normally not parallel. For such direc- 
tions, the estimate (36) becomes infinite; as we have mentioned above, the 
estimate (35)  is then valid instead. 

In  computing the average of 8 2  over a11 combinations of directions 
(al, a2,  as) we find that the combinations of directions which are coplanar 
within an angle =i=& do form a fraction of tlie order $m of the total. Thus, 
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when we integrate EQUATION 36 over a11 other orientations the average of 
the sine ratio will be of the order 

-1og & + const. 

When we put $,,, = d/Z and substitute the estimate (35) for coplanar orienta- 
tion, the added temi does not change the order of magnitude, and we still 
obtain 

-a2 = o(#P(log ( l /d )  + const)). (37) 

No concerted effort has been made to render this estimate more delinite. 
As it is, the result 

82/@1>2 = O((d/Z) log (l/d)> (38) 

will offer some justification for the procedure which we shall, perforce, adopt 
in the following, where order corrections which depend on 8 2  and higher 
cluster integralç will be neglected altogether. If we talk about “concen- 
trated” solutions whenever B&/V is of the order unity or greater, then we 
may hope that our results will describe fairly concentrated isotropic solutions 
of rod-shaped particles reasonably well. The reçults for anisotropic solu- 
tions will be somewhat doubtful in a11 cases, and more so the more concen- 
trated the solutions. Where plate-like particles are concerned, our approxi- 
mations will introduce more serious errors, and we can hardly hope for more 
than that our result will describe concentrated solutions of such particles 
qualitatively rather than quantitatively. 

We shall inquire, next, about the effects due to the finite range of the elec- 
trostatic repulsion between the particles. 

We have mentioned before that theforce (per unit area) between two paral- 
lel plates varies exponentially with the distance, and that the law of force 
for a daerent geometry is only modified by the effects due to divergence 
of the electric force-lhes. The data needed for an exact prediction of the 
forces are not available, and even if we had them it would be a dficult and 
laborious task to compute the forces. But fortunately the resulting uncer- 
tainty will not, as a rule, count for much in the computation of the cluster 
integrals. Only the cases where very few cations or very few anions are 
present (or very few of either sign) might well require careful separate 
analysis. The most important modification of our previous results (EQUA- 

TIONS 30 and 31 a-h) will occur for long rods (EQUATION 31 h), in which case 
the effect of the electrostatic repulsion will be equivalent to an increase of 
the effective diameter. A similar increase of the effective Zength will cause a 
relatively insignificant increase of the covolume, unless the concentration 
of electrolyte is so low that KI iç of the order unity, in which case, the problem 
of the repulsive forces must be reconsidered as a whole. 

For the law of force between two cylindrical particles of the same diameter 
di = dz = d, whose mantles are separated by a distance x, we now assume 
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w/kT = A (y)e-"" (39) 
(of EQUATION 14 and pertinent discussion). More precisely, we assume that 
w has the value given by EQUATION 39 whenever the two cylinders cross, in 
the sense that the projections of their axes upon the plane parallel to both 
intersect. Such coniigurations yield the leading term 

(dí + d&Jz sin y = 2d1112 sin y 

of the excluded volume for long cylinders (the central parallelopiped of the 
solid figure illustrated in FIGURE 7, and compare EQUATION 30). The first 
ciuster integral 81 is defined by EQUATIONS 18 and 20. Asçuming .lei = w(x) 
as given by EQUATION 39 for a11 "crossed" configurations, the part of pi due 
to such coniigurations is s h p l y  

The consequent correction to the effective diameter, assuming EQUATION 39, 
is accordingly 

(1 - dx = (1 - e-") du/Ku 

m (41 1 
LW 6̂  

= K1 (log A + C + /" e-" du/u).  

Here C denotes Euler's constant 

- C = -P(l) = 0.5772 . . . . (41a) 
U 

For reasonably large values of A the exponential integral in EQUATION 41 
may be neglected, and we get simply 

-Bl(crossing) = 21112 d,rf(y) sin y 

=2Z&(d + KP(C + log A ( y ) ) }  sin y. 

Thus, the effective diameter equals the actual diameter increased by the 
distance S a t  which the condition 

(42) 

w(S) = kTe-C = 0.561 kT (43) 

is satisfied. 
In  deriving this important rule, we have made certain physical assump 

tions and mathematical approximations; but, as long as Kd is reasonably 
small (less than unity), the errors thus incurred ought to be very modest 
and EQUATION 42 should describe a good estimate. Moreover, the result is 
rather insensitive to modifications of the geometry, so that the required 
rnodifications of the first four terms of EQUATION 30 may be estimated in a 
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similar manner. We shall be content to observe that the increments of the 
effective lengths and diameters are of the same order of magnitude for a11 
terms. This observation together with EQUATIONS A 14 and A 15 should 
be helpful in case an estimate of the end-corrections for long rods (which we 
shall neglect in the following) should be desired. 

In  EQUATION 42 we have indicated that the force constant A is expected 
to vary with the angle of intersection y. A precise specification of that 
variation is contained in our EQUATION 13, and, in spite of the severa1 ap- 
proximations involved in the derivation, the relation 

A ( y )  = A(?r/2)/sin y (44) 
ought to be very nearly true, with the one exception that, for small angles 
y < d//E12 the factor l/sin y must be replaced by a smaller number of the 
order h / d ,  where Z12 denotes the length of the overlap between the two 
cylinders. 

If we disregard the exception just mentioned and neglect terrns which 
represent end-wise approach of the particles, (corresponding to the first 
four terms in EQUATION 30), we may write EQUATION 42 in the forrn 

The average of the excluded volume over ail orientations equais 

= br/2)Zl Ida + $1, 
with 

8 = K-I[c + iog A (r/2) + iog 2 - 31 = ~-l[0.7704 + iog A(T/~) 1. (47 j 
The integral 

[ log (sin y) sin2 y dy, 

which enters into the computation, might seem d&cult, but it is easily com- 
puted from the Fourier series 

-1og I 2 sin y 1 = cos 27 + 3 cos 4y + i cos 6 y + - - - . 
Concerning the absolute value of the force-constant A,  we refer back to 
EQUATION 14 with attendant discussion and references. 

Our results (33) and (46) for straight rods should apply without change 
to bent rods andflexible chaz'ns as long as they are not so tightly coiled that 
multiple contacts between pairs of difFerent chains will be common. The 
statistics of such multiple contacts has not been inveçtigated. In addition, 
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it stands to reason that, when the particles are so slender as to be very 
flexible, the effective range of the electrostatic repulsion will constitute the 
main part of their effective diameters. 

We shall deal summarily with the case of thin, plate-shaped particles. 
According to EQUATION 30, the mutual excluded volume for a pair of such 
particles is practically independent of their thickness, barring oniy nearly 
parallel orientations of the particles. Then, if only 

Kd >> 1, (48) 
which condition excludes very low concentrations of electrolyte a t  the most, 
an increase of the effective diameter bya distance 6, determinedaccording to 
EQUATION 43, will make verylittle difference. For the case of very low 
electrolyte concentration, the question of the forces would seem to require 
a more careful analysis than we have available a t  present. 

ThermodyBamic Properties of Isotropic Solutions. We shall be generally 
content with the first order corrections to the laws of ideal solutions. Ac- 
cordingly, we abbreviate the expansion (21) as follows 

1% BP = N P ( 1  + 1% (VlNP) + 2 @l(NP/V) 
(48) 

= NPU + 1% W/Nd - b(NP/V)) ,  
whereby, for a monodisperse solution of rod-shaped particles of length I 
and diameter d according to EQUATION 46 

b = (7r/4)12(d + ã), (49) 

including a correction 6 for the “padding” due to an ionic double layer. For 
a solution of plate-shaped particles EQUATION 48 is also valid over a more 
limited range of concentrations with the different value 

b = (7r/4)’ d3 (50) 
for the covolume, as given by EQUATION 34 when specialized to the case 
1 = o. 

The variation of the free energy with the particle concentration can be 
obtained by substituting the result (48) in EQUATION 5. We are particularly 
interested in the derived quantities. We obtain from EQUATIONS 6 and 7, 
respectively, 

p = kTf(N,/V) + b(NP/V)z) 

PP = PB + W I o g  ( N P / V  + 2 b ( N P / V )  

(51) 

(52)  

for the osmotic pressure and 

for the chemical potential. These correspond to well-known formulas in 
the theory of gases; the salient point of the present theory is that the co- 
volumes may be much greater than the actual volumes of the particles. We 
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alço get reasonably simple results for a polydisperse solution which contains 
rod-shaped particles of various lengths 11 , - - , 1, , * , but of identical 
diameters dl = . . = d, = - = d, and othenvise sufiiciently similar, 
so that the effective diameter for any pair of particles is aIways d + 8. 
For this purpose, we substitute the covolumes given by EQuATION 46 in 
the more general formula (22), which yields 

for the coníiguration integral, with the abbreviation 

L = N , l ,  
8 

(54) 

for the sum of the lengths of all particles present. 
accordingly 

The osmotic pressure is 

= kT {E (r/4)(d + $)(L/V)’)2), (55) 

and we get 

p8 = P: + kT log ( N 8 / V )  + 2kT(?r/4)(d + H)(L/Tr)Z, (56) 

for the chemical potential of the particles of length I,. 

shaped particles are alrnost equally simple. 
to the case 11 = 12 = O :  

The corresponding formulas for a polydisperse solution of circular plate- 
We specialize EQUATION 32 

-&(O, d1; o, d,) = 2b = (7r/4I2 dldddi + dz);  

then, with the abbreviations 
D = E N s d ,  

A = (n/4) N , d t  (57) 

These results for plates might well have qualitative rather than quantitative 
significance. While certain colloids (bentonite) are known to consist of 
sheet-like particles, it is not known whether the outlines of the sheets are 
regular curves or polygons that might be reasonably approximated by circu- 
lar disks. Nevertheless, it seems worth pointing out, that for a given total 
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area of the particles, both terms in the formula (59) for the osrnotic pressure 
do increase as the degree of dispersion increases. (When a11 particles are 
cut into quarters the sum of the diameters is doubled and the total number 
of particles is increased by a factor of four.) 

Returning to our result (55) for the osmotic pressure of rod-shaped par- 
ticles, we note that the absolute value of the second term, which represents 
the deviation from the value appropriate to ideal solutions, is quite inde- 
pendent of the subdivision into individatal lengths. (On the other hand, a 
lengthwise splitting of the particles, if possible, will increase both terms in 
EQUATION 55.) On this basis, we should be prepared to find that the 
osmotic pressures of jfexible chain-like particles in concentrated solutions 
may be practically independent of the subdivision of the chains. For rigid 
rod-shaped particles, we do not anticipate this phenomenon (in the iso- 
tropic phase, anyway), because, as we shall show next, such solutions will 
form an anisotropic phase as soon as the ratio (total covolume/volume) 
exceeds a certain critica1 value. 

We shall investigate the possibility that a solution 
of rod-shaped particles may form a nematic liquid crystd in which the dis- 
tribution of orientations of the particles is anisotropic, while the distribution 
of the particles in space is homogeneous, and does not exhibit the periodic 
variation of density which characterizes solid crystals (periodicity in three 
dmensions) and smectic liquid crystals (periodicity in one dimension) . We 
shall show that the concentration of particles need not be so very large (in 
terms of actual volume occupied) before the isotropic solution becomes un- 
stable, relative to an anisotropic phase of the nematic type. Whether the 
latter will be stable, relative to other typesof anisotropic phases, is aquestion 
which involves much more dficult computations, and we shall not try to 
settle it. 

We introduce a distribution-functionf(a) for the directions a of the axes 
of the cylindrical particles, normaliied according to EQUATION 26. When we 
neglect the terms which depend on 82 and higher cluster integrals in the 
expansion given by EQUATION 27, we arrive a t  the following formula for the 
coníiguration-integral 
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AIzisotropic Solutiom. 

log B, = N , (  1 + log (v /N,>I  - / j (a )  log ~ ( a )  dQ(a> 
(61) 

+ (Np /2V)  1 pi (cos-’ (a.a’))f(a)f(a’> dQ dQ’. 

The functionf(a) is implicitly determined b y the condition 

B, = maximum, (62) 
(subject to the restriction (26)). 

which enter into EQUATION 61 : 
We shall introduce convenient abbreviations for the two functionals 
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u(f> = 1 f(a) log 4rj(a> da(a), 

- 2bp(j) = 01 p ( f )  = 1 81 (~0s-l (a- a’))f(a)j(a’) da’; 

where, in conformity with EQUATION 46, we understand: 
*I2 

- 2 b  = p1 = 1 pi(y) sin y ar. 
O 

In addition, we shall denote the concentration of particleç by 

c = ( N P / V ) .  

In this shorthand, the condition (62) becomes 

u ( j )  + bcp(fl  = minimum, 

wherehf is subject to the restriction 

I f d a  = 1. 

The value of the minimum required by the condition (66) determines the 
free energy of the system according to EQUATIONS 5 and 61: 

F(so1ution) - F(soivent) = N , ~ O ,  - k~ log B, 

= N P P ;  + N p W l o g  c - 1 + u(j> + b d f ) ) .  
(67) 

We may apply Lagrange’s method to the problem (66), thus 

Su(f) + bcSp(f )  - A6 1 f a0 = o. (68) 

The usual manipulations lead to the non-linear integral equation 

(69) 

EQUATION 69 is satisfied by every function which renderç the functional of 
the problem (66) stationary; the true solution of (66) is included among 
these. The constant function 

f = fo = l k ,  (704 

which describes the isotropic distribution, is always a solution of EQUATION 

69, with 

~ ( f o )  = O ;  p(fo) = 1; X = 1 + 2 b ~  (70b) 
On the other hand, in order to show that for sufficiently large values of c 
the solution (70) wili not be the true solution af the problem (662, we only 
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have to find some function f1 such that õ(j1) is finite and p(fl) < 1; then, 
when we take t large enough, the inequality 

~ ( f i )  + b ( f i )  < &o) + W f o )  = bc 
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can certainly be satisfied. 
According to our previous considerations, the function -&(y) is an in- 

creasing function of (sin r), so that a trial function fi with tlie required 
properties can be constructed very simply as follows: We choose an angle 
yi such that 

-P1(r) < - 4 1 ;  Y < 2Y1, 
a preferred disection ao and the following trial function 

fda) = O ;  I ( a o 4  I < cosm 

fi(a) = 1 / 4 ~ ( 1  - cosyl); cosyi < I (ao-a) [ < i. 

may by interpreted as solutions of a modified variation problem: 
Some of the unwanted solutions of EQUATION 69-possibly a11 of them- 

prescribed 
S f d a  = 1 

õv> = u 1 ~  OJ 

p(f) = minimum = p,(al). 

This leads again to EQUATION 68 with the difference that c is interpreted 
as a Lagrange multiplier on par with A. 

The second restriction in the problem (71) is in effect no different than 
the inequality 

.cf> 2 6 1 ,  (714 
because the function @(y) in EQUATION 64 is continuous (less would suffice). 
In  consequence, if we know one function f(a), which realizes a certain value 
of p ,  we can always find another which realizes very nearly the same value 
of p, but gives us a greater value of u. A11 we have to do is introduce a 
very rapid local fluctuation of f(a). This reasoning leads to the inequality 

(Pm(U2) - P*(Ul))/(U2 - Ul) 5 o; (71b) 
in words: the minimum of p is a never-increasing function of u. 

One way to solve the problem (66), a t  least in principle, is to solve the 
more general problem (71) first for a11 values of õ. For greater flexibility, 
we may describe the resulting relation between pm and õ in parameter form 

= ~ ( a ) ;  pm = ~ ( 0 ~ 1 ;  U2al 
then the solution of EQUATION 66 must satisfy the condition 

Ú(a) + bcp’(a) = o, (72b) 
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and, in order that the state thus described be stable 

u”(a) + bcp”(a) > o. (724 

(-dpm/du) = -prn(u) (73) 

According to these results, if the function 

is a steadily decreasing function of u, then the transition from the isotropic 
to the anisotropic phase will be continuous and take place a t  the concentra- 
tion given by the condition 

1 + bc(dpm/du),o = o .  (74) 
On the other hand, if the function (73) increases for small values of u, reaches 
a maximum (as it must because p > O), and decreases thereafter, then the 
isotropic solution will become unstable towards finite disturbances a t  some 
concentration lower than that required by EQUATION 74. In this case, the 
anisotropic phase wiil always possess a finite degree of anisotropy. More- 
over, there will be a pair of concentrations for which the two phases can 
coexist; a solution of concentration intermediate between these will sepa- 
rate into two phases. 

It is possible to show by rather general qualitative reasoning that the 
second alternative-a discontinuous transition-must be realized when an 
anisotropic solution is formed. We may as well assume that the anisotropic 
phase has cylindrical symmetry around some preferred direction ao; this 
restriction is unimportant, because it allows the distribution-function to 
contain spherical harmonia of a11 (even) orders. The odd orders are ex- 
cluded if we assume that the solution is not polar in the crystallographic 
sense (seignette-electric) : 

Under these assumptions,f(a) may be developed in a series of even Legendre 
polynomials 

f(a> = f(-a>. 

d..f(a) = 1 + 5AzPz(a-ao) + 9A*P4(a*ao) + e - (75) 
Moreover, since the homogeneous quadratic functional defined by EQUA- 

TION 64 is invariant against all rotations of the frame ,of reference, the 
Legendre polynomials are its eigenfunctions and an expansion of the type 

(76) 
2 

p(f) = 1 - - B d 4  - ... 
is valid. Only even powers of A2 , A4 , - * , (in fact, only the second powers), 
occur in EQUATION 76. However, when we substitute the expansion (75) 
in EQUATION 73, we get 

uV) = (5/2)Af + (9/2)A: + . - .  
- (25/21)Ai - (45/7)AiA4 - a * *  
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Linear terms do not occur in thrs expansion either, but every cubic term i s  
presezt. The critica1 condition defined by EQUATION 74 is fulfilled by the 
smallest value (to) of c, which causes any one of the coefficients in the ex- 
pansion 

((5/2) - Bzbc)Ai + ((9/2) - B4bc)Ai + - * a  

to vanish. It does not matter which one vanishes Grst; for the sake of argu- 
ment let us assume that it is the coefficient of A i .  Then, if we take 

f(a) = 1 + AZPz(a.ao) 

we have the expansion (convergent for I AS I < 1): 
~ ( f )  + bcop(f) = bco - (25/21)A; + (125/28)A; + * * .  

For finite, not too large, positive values of Az, the sum of this expansion 
certainly takes values smaller than b c ~ .  This means that the isotropic 
solution becomes unstable towards finite disturbances a t  some concentration 
lower than that required by EQUATION 74 for a continuous transition, so that 
a discontinuous trufisitiofi must take place a t  some lower concentration. 

We shall try next, to get some idea about the distribution of orientations 
of the particles in the anisotropic solutions, and to estimate the thermo- 
dynamic functions for these solutions. The variation problem (66) is best 
attacked directly : the technique is to construct plausible trial functions 
with as many variable parameters as one can handle conveniently; the 
parameters are then adjusted so as to approach the required minimum as 
closely as possible. 

As regards the general nature of the distribution, we note that -pi(a, a') 
has a minimum when the directions (a, a') are parallel and a maximum 
when they are perpendicular. The smallest possible value of p ( f )  is, there- 
fore, attained when all particles have exactly the same orientation; according 
to our somewhat approximate formula (49, the function pv> then vanishes. 
For this singular distribution, however, a( f )  becomes infinite. As a com- 
promise, we have to expect a diçtribution which is more or less concentrated 
around a preferred direction ao , with this direction as an axis of symmetry. 
EQUATION 69 indicates, in a general way, how the density will decrease 
with the angle 

8 = cos-l(a.ao) ; (78) 

for large angles an exponential function of (sin6) is thus indicated. A 
trial function of the type 

constant x (cosh (a sin e))-" (79) 

would therefore seem promising, and tentative computations for f i  = 3 
gave encouraging results, but this lead was abandoned on account of the 
effort involved. The simpler function 
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!(a) = ( C Y / ~ T  sinh a) cosh (a(a.ao)) = (a/& sinh a) cosh (a cose) (80) 

decreases rather to0 rapidly for large angles, and it contains but one param- 
eter. I t  was, neverthekess, adopted as the best tractable function. Even 
so, according to EQUATION 67, the function to be minimized for d e  problem 
(66) is the free energy itself, so that our results for this important thermo- 
dynamic function ought not to be very much in error. 

Further, to simplify the cornputations, we shall allow the approximate 
descrip tion 

-/i?~(r) - 211Zz(d + 8) sin y = (8/7r)b sin y (81) 

of the more complicated function given by EQUATION 45. When EQUATIONS 

80 and 81 are substituted in EQUATION 64, the resulting integral can be 
evaluated in terms of elementary functions, together with a Bessel function 
of order 2, and imaginary argument. For the definition (B 18) and proper- 
ties of this function, and for the details of the integration, we refer to the 
Appendix, Section 2. We quote here the result for a monodisperse solution 

~ ( c Y )  = 2(sinh < Y ) - ~ ~ ~ ( ~ C Y )  (82) 
(cf. EQUATION B 17). The evaluation of the integral in EQUATION 63 for 
the function (80) is elementary and yields 

.(a) = log(a coth a) - 1 + (sinh a)-l tan-*(sinh a). (83) 

The power series 

4p(a) 4 - (a4/%) + (2a6/945) - (712/226800) + * * -  ; 

( I C Y I  -=d (84) 

.(a) = (d/90) - (2a6/810) + (108cu8/226800) - * - * ; ( 1 a 1 < 7r/2), 

illustrate our consideration of continuous vs. discontinuous transition (when 
an expansion of the type (75) is constructed for the function @O), the coef- 
ficient of PZ is of d e  order (az)). However, the values of CY which correspond 
to stable anisotropic solutions are far outside the limits of convergence of 
the series (84). Fortunately, the required values of a are so large that 
the asymptotic representations 

u(a) - log a - 1 , (85) 

(86) 
~ ( c Y )  - ~(TcY)-"~{ 1 - 30(320r)-' + 210(32~~)-' + 1260(32a)-' + - * ), 

(cf. B 20), are eminently suitable for computation. 
for interna1 equilibrium becomes, after rearrangement, 

The condition (72b) 

(TCY)'" = 2bc( 1 - 90(32a)-' + 1050(3201)" + 8820(32a)-' + - . . 1. 
(87) 
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The asymptotic behavior of a for high concentrations is evident from the 
inverted series 

a - ( 4 / ~ )  ( b ~ ) '  - (45,'s) + O ( ( ~ C ) - ~ ) .  (88) 

As a measure of the spread in angle, we may compute the mean square of 
sin(0/2), if we understand by 8, (this time), the angle between the direction 
a of a particle and the nearer of the two directions (+ao, - ao). With this 
convention, we have 

(2 sin (S/2))2 = (2/a) cotha - 1/a. (89) 

The standard deviation of the angle 8 is, therefore, about proportional to 
a-lI2 or, if we disregard the higher terms in EQUATION 87, inversely propor- 
tional to the concentration: 

(2 sin (0/2))2 - ( ~ / 4 )  ( b ~ ) - ~  (894 

bcp - 2 + 7 5 ~ ( 8 b c ) - ~  + - - (90) 

(91) 

Combiiation of EQUATIONS 85, 86, and 87 yields for high concentrations 

u - 10g(4/~) - 1 + 2 log(bc) - 9 O ~ ( 8 b C ) - ~  + * * . 
The free energy is given by EQUATION 67; in view of EQUATION 72b we 
derive therefrom the following simple general formula for the osmotic presszlre 

P = -(aF/av)hfp = RTC(1 4- bcp). 

P = RT ~ ( 3  + 75n(8bc)" + - * ). 

(92) 

(93) 

In particular, if we take EQUATION 90 seriously 

On this basis, the osmotic pressure should be just a little greater than three 
times the ideal pressure. 

The simple results (89a) and (93), however, depend on a rather severe 
over-simplification of the physical picture. The approximation (81) for 
EQUATION 45 tends to overestimate the deviation of the angles for high 
concentrations. The severa1 approximations and simplifications which 
enter into EQUATION 93 would tend to make this an underestimate, possibly 
a very bad one; it is barely conceivabIe that our neglect of the attractive 
van der Waal's (dispersion) forces might in some cases bring about a measure 
of compensation. 

For the lowest concentrations at  which the anisotropic solutions can exist, 
the approximations which lead to EQUATIONS 85 and 86 may still be quite 
tolerable. In  those cases it is best to solve EQUATION 87 numerically, be- 
cause the expansion is only semi-convergent and the inversion (88) aggra- 
vates its tendency to diverge. In  constructing tables or graphs there is, of 
course, no need for the inversion; it is just as well to compute u, p and G 

all as functions of the parameter a. 
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We. still have to compute the conditions for equiiibrium of the two liquid 
phases. The osmotic pressure of the anisotiopic solution is given by EQUA- 
TION 92. The chemical potential is computed according to the definition 
(7) by differentiation of EQUATION 67, whence in view of EQUATIONÇ 65 and 
72b: 

p p  = (BF/BN& = pp + kT{log c + u + 2bcp). (94) 

The equilibrium conditions (8) require that the functions given by (92) and 
(94) be equated with the corresponding functions (51) and (52) for the iso- 
tropic phase. The two concentrations ca and c i  are thus determined by 
the two equations 

ca + b& = c i  + bci 
log ~a + u + 2b~& = log ci + 2bci, 

which we may write in terms of the total covolumes as follows: 

bca(1 + bcup) = bci(1 + bcj) 

log(bcu) + u + 2bce = log(bci) + 2bci. (95) 
Here, u and p are functions of (bc,) described hnpiicitly by EQUATIONÇ 85, 
86, and 87. The following results were obtained by numerical solution of 
the system of equations: 

a = 18.584 bci = 3.3399 
p = 0.49740 bca = 4.4858 

u = 1.9223 pbca = 2.2313 (96) 
C J G ~  = 1.343. 

The standard deviation of sin (0/2) given by EQUATION 89 corresponds to 
an angle 8 = 13.3". 

It is a matter of interest to see how the expansions (88), (90), and (91) 
work out in the worst possible case. The values obtained from these 
formdae, as abbreviated, for the case 66, = 4.486, 

a = 19.9; pbc, = 2.184; u = 2.021, 

may be compared with the accurately computed values (96). 
It would take us too far to develop a theory for the anisotropic phase of 

a polydisperse solution. The dficulty k that long rods wiil be more per- 
fectly oriented than short rods, so that one has to compute a whole set of 
mutually dependent distribution-functions, one for each size of particles. 
Moreover, each composition of the anisotropic phase presents a separate 
problem of this type. Nevertheless, the mathematical analysis in the 
Appendix has been kept as general as was feasible, in order to facilitate 
computations for polydisperse systems. 
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It is possible to foresee that when two phases are formed, the longest 
particles will collect preferentially in the anisotropic phase, and that the 
total concentrations in each phase will vary with the ratio of the volumes. 

Possibly, the best experimental tests of the present theory will consiçt in 
measurements of light scattering. As is well known, the light scattering per 
particle is inversely proportional to (dP/dc). However, when the longest 
dimensions of the particles are comparable to that of the measuring light, 
this simple relation applies only to scatterilzg at smdl angles. We have, in 
effect, shown that the presence of one particle reduces the density of scat- 
tering matter up to a distance which equals the length of a presumptive neigh- 
bor, so that the phust relutions of the light waves scattered from dijerent 
particles must be considered in the interpretation of the large angle scattering. 

On the basiç of our results (92) and (51), the unisotropic soluiion ought to 
scattm more light at small ungles than the isotropic phase in equiiibrium 
with it. Predictions for large angles must await a mathematical analysis 
of the optical problems; the distribution of scattering matter around any 
one particle obviously depends on the degree of orientation of the particles. 

A ppendix 
Thc M W  Eduded Volume of Two Cylinders 

We first compute the exduded volume -&(O, di; O, th) for two circular piateç of vanish- 
ing thickness and diameters di = 271; ds = 212. Besides, this is one of the interesting limiting 
cases. 

Let the first plate be fixed with its center at the origin and let its normal form an angle 
y with the y axis, in the (y, e) plane. We allow the second plate to move, but we keep 
its orientation constant, so that its normal is always parallel to the y a i s .  When we re- 
quire that the two plates must not intersect, what is the volume inaccessible to the center 
of the second plate? 

FIGO= i. 

Some of the analysis becomes a Kttle simpler if we replace the coordinates (y, z) by the 
pair (Y, 2) referred to skew axes parallel to the plates 2, 1 respectively: 

y = Y + Z c o s y  
z = 2 sin y 

Then the intersection of the excluded region with the plane 
z = 2 sin y = const. 

(A 1) 



ONSAGER: COLLOIDAL PARTICLES 651 
is bounded by the curve formed by the center of circle 2 as this circle rolls on a chord A B  
of the circle 1 (see FIGURE 2). 

FXGURX 2. 

The length of the chord equals 
2(r: - 2*)”*. 

A ( 2 )  = 4(r: - Zz)”z Ta + M S  
The area of the intersection is, ‘evidently, 

(rectangle + two half circles), and the excluded volume is, accordingly, 

= 2 ~ 1 t & 1  + r ~ )  sin y 

= (7r/4) di &@i + &I sin y . 
(A 2) 

The exduded region, illustrated in FIGURE 3. is bounded by four planes and by the fourth 
degree surface described by the equations 

(A 3) 

This surface joins the planes 

(r: - 22)”2 + (rt - Y*)’/* = f x .  

(Here and in the following we always take positive roots). 

Z = f r l  

Y = i r *  (A 4) 
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along the circles 
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x2 + Y2 = 7; 

x2 + 21 = r: ,  

respectively, in such a manner that the normal directions are continuous except at the 
points 

x = O )  Y = r1, z = 72 

where two such circles touch one another. 
A curve bounding the intersection of the excluded region with a plane x = const. is de- 
scribed by EQUATION A 3 for x = const, or it consists of segments of curves described thus 
altemating with segments of the straight lines described by EQUATION A 4, according to the 
value of x. The cross-section for x =: O is simply the parallelogram given by EQUATION 4. 
The four possible cases are illustrated in FIGURE 3. 

I 

FIGURE 3. 

On each curve of this type there is a pair of points for which 

y = Y + 2 cos y = extremum (S,) 

and another pair for which 

z’ = Y cos y + Z = extremum (SI). 
The loci of such points are space-curves SI, SZ on the surface of the excluded volume; 

their projections on the (y, z)  plane are described by the equations 

(A 5 )  

The significance of S2 will be clear from the observation that when the center of plate 2 is 
on Sz ) not only does thiç plate make rim-to-rim contact with plate 1, but (in addition), a 
cylinder raised perpendicularly on the rim of plate 2 also just touches the rim of plate 1. 
Similarly, when the center of plate 2 is on Si, then the rim of plate 2 just touches a cyl- 
inder raiçed perpendicuIarIy on the rim of plate 1. 
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The curve S, separates the two parts of the surface of the excluded volume which are 

seen from opposite directions along the normal of piate (2). I ts  projection Pz on tbe 
( x ,  y )  plane (parallel to plate 2), which deiimits the projection of the excluded volume, 
may be described as the locus of points whose distance from the nearest point of the 
projection of plate (1) is precisely 72. The projection of plate (1) on the plane of plate (2) 
is an ellipse E, of semi-axes 11 , YI cos y; if a circle of radius 7% rolls on this ellipse its center 
traces P2. 

The area A ( P J  can be evaluated by a general method applicable to rolling-figures of 
continuous tangent. We let R denote the curve described by the center of a circle of 
radius Y as the circle rolls on closed curve C. The algebraic sum of the curvatures of the 
circle and the curve C must be posiiive (convex) everywhere on C. The area between C 
and R is easily found as follows (FIGURE 4) : 

C 

Consider the area contained between two normals of directions 9, 9 + &, the segments 
dp(C) of the perimeter of C, and the segment 

dP’(R) = d m  + *& 
of the perimeter of R. The a r a  of the trapezium thus formed equals 

L ( d p  + dp’) = rdp + W v .  
Integrating around C we find simply 

where p ( c )  denotes the circumference of C, and A(C)  its area. 
scribed above we have 

For the eliipse Ei de- 



654 ANNALS NEW YORK A C A D E U Y  OP SCIENCES 

A(&) = r r :  I cos y 1 

p(E1) = 4riE(sin y) = 471 (i  - sinz y sinz ~)1'2d<p r 
where the customary notation E(sin y )  is used for a complete elliptic integral of the second 
kind. We substitute these results in (A 6) along with r - 72 and obtain for the projection 
P2 : 

A ( P z )  = w; 1 cos y I + 4Ylr2E(h y) + xrp (A 8) 
Similarly, of course, 

A(P1) = xr: + birzE(sin y) 4- ÍW'~ cos y . (A 9) 

Actually, the profile areas (A 8) and (A 9) are the only properties of Si and SZ which 
will enter into our final result for the excluded volume of two cylinders, but some additional 
analysis has been included as an aid to visualization, 

So far, we have considered the thin plates of diameters di , dz. Now, let us replace the 
second by a cyiinder of length k ,  diameter &. Our solution for the case h =. O has an 

FIGURE 5 .  

important connection with the more general problem: As we consider the two halves of &e 
surface illustrated in FIGURE 3 separated by the curveS1 , thefront half is the locus for the 
center of the rear end of cylider (2) a t  closest approach to plate 1, and the rear half of 
the surface is the locus for the front end-center of the cylinder for the opposite type of 
end-wise contact. The corresponding loci for the center of cylinder (2) are displaced by 
distances f 12 in the direction of the cylinder axis. If the two end surfaces formed by 
these loci are joined rim to rim by a cylindrical mantle parallel to the axis of cylinder (2), 
then that mantle is the locus for the center of (2) when this cylinder makes lateral contact 
with the rim of plate (1). 

The excluded volume for th is  case is the same as for I1 = 12 = O, plus that of a cylinder 
of length l2 and orthogonal section Pz: 

-B1(0, dl , k ,  d2) = -&(O, di , o, dd + h A(Pz).  (A i O j  
The end-faces of the inserted cylindrical piece are parallel, so that the computation of the 
volume is not affected by their complicated shape. 

The final generalization to the case li > O proceeds in a similar manner: The hody 
illustrated hy FIGURE 5 is cut as indicated by the dotted lhe. The cut, most simply taken! 
perpendicularly to the plane of the projection, follows the separated halves of the curve 
SI and the median plane of the cylinder inserted in the previous step. A second cylindrical 
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FIGUP~ 6. 
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FIGURE 7 

piece of length k parallel to the normal of the phte (1) and cross-section, as indicated by 
FIGURE 6, is inserted. This time the added volume is 
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and the volume of the resulting domain, iilustrated in FIGURE 7, equals 

-8i(Zi, di; 1 2 ,  da; y) = (~r/4)d1 d&i + dz) sin y 
+ & { ( ~ / 4 ) 4  + dl dE(sin y) + (u/4)d: I cos y I I 

+ h I (~ /4 )@ + dd8(sin 7) + (~ /4 )@ I COS Y I 1 + 11 lz(d1 + d&in y. 
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The integrations involved in the computation of the average 

JB'(7) dW4r = + PdY)  siri 7 d - f  1 
should be obvious for a11 terms exrept those which involve the eIIiptic integra1 E(sin 7) .  
These too, reduce to a very simple form by a suitable substitution. By the definition of 
the complete eliiptic integral we have 

-21 
4E(siny) = 4 6  (1 - sb1~ysin2J/)l'~d$ =i (1 - sin2ysin*$)l'*d# 

Hence 
rr rr r2r 

4 E(siny)sinydy=]o s i n y d y l  d$(l-sin2ysina$)11* (A12) 1 
By the substitution 

sin y sin p = cos 6 
cos y = sin 6 sin p, 

(which may be interpreted as a change of polar coordinates in space), the integral (A 12) 
becomes 

4 l * E ( s i n  y) sin r d y  = l * s i n  6 d 8 l  dp sin 8 = T Z  

2 *  

(A 13) 

With the aid of this result and obvious elementary integrations we find from EQUATION 
A 11: 

For a pair of cyiinders of lengths 1, , &, capped by hemispheres of dianieters dl , de ,  the 
computation of the mutual excluded volume is quite analogous to the preceding. Severa1 
details are much simpler. For the case 11 = k = O, the result (A 2) is replaced by the 
volume of a sphere of diameter di + = 2d. The profiles(P1, Pz) are replaced by circles 
of radius d (compare A 8, A 9). The assembled final result for capped cylinders is 

-&(y) = (47r/3)@ + d ( Z 1  + k )  + 2dl,12 sin y. (A 15) 
Here, the averaging over directions involves only the simple integra1 

sin y &/4w = u/4. (A 16) s 
The Mean Conoiurne jor Anisoiropic Soluiions 

We shall show how the muitiple integral 
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where al , & denote variable unit vectors which speufy the orientations of particles, can be 
reduced to a single integral when the distribution-functions are of the special type 

fa(a) = (aa/4r sinh as) cosh a,(a . ao), (B 2) 
symmetrical about the discretion ao (axis of the liquid crystal). Concerning 81 we assume 
011ly 

(B 3) 
at  this stage, although in the end we shall introduce the approximation 

(B 4) 

8d-d = í%(u - Y) = F(sin-t) 

Pdr) = Bl(ã/2)sin 7, 
derived in the text. 

Consider the integral 

J = cosh (al(a1- ao) + adap . ao)) F(siny) &I di2e ; 

cos7 = (al - %). (B 5) 

s 
The value of this integral is not affected by the substitution 

4 4 - 4  

cosh (al(aI - ao) - a*(& - ao)). 
The arithmetic mean of the two integrals involves the factor 

cosh (ai(al ao)) cosh ( d a z  - ao)) 

which changes the íirst factor of the integrand into 

instead, and by comparison with EQUATIONS. B 1, B 2, we readily verify the identity 

J = ( 4 ~ ) ~  (sinh ai sinh a z / a i a z ) B I p ~ i ,  12). (B 6) 
We proceed to evaluate I. 
For the direction a1 , we next introduce polar coordinates (01 ,+I) referred to ao , but the 
direction aa we shall specify in terms of polar coordinates (7, 4) referred to the direction 
ai, such that + = O for as = ao. Then 

(ao. a,) = cos el 

doI = sin e1 d ei d +l 

da = sin 7 dy d+. 
Since the integrand does not depend on @ i ,  we integrate a t  once over this variable and 

(ao as) = COS 6% = COS 91 COS 7 + sin 81 sin y cos 0 íB 7) 

get 

I = 2x cosh (ai cosh 8i + az cos Bi)F(& y) sin 01 dei sin y dy d@ . s 
The limits of the variables are 

O < e l < u ;  O < y < u ;  0 < + < 2 u .  

Now we replace tbe two variables 81 and @ by the following substitution: 

cos el = sin x cos ($ + ~ ( y ) )  

sin el cos 4 = sin x sin($ + q (7)) 

tan q(y) = az sin ?/(ai + ar2 cos 7) 

m, m a ( x ,  $1 = siri x/sin el 
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whereby the integral bkes the form 
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the integral to be taken between the limits 

o < y < . n ;  O < x < * ;  0 < * < 2 * .  (B 10a) 

After a final substitution 

sin x cos # = COS p 

cos x - sin p COS f (B 11) 
a(x, $)/%.4, €1 = siri d s i n  xl 

we can integrate over p and [ under the integral sign as follows 
2s 

cosh ([a: + a: + 2Criaz COS 711'2 COS p )  d[ I: siri d p i d  
=. 4 ~ [ 4  + ai + 2a1a2 cosh ~ 1 - l ' ~  sinh ([a: + QZ + 2aia2 COS y119 

a 
= (- &/aias sin y) cosh ([a: + a4 + 2 aia2 cos y]l/*),  

The resuft 

may be integrated by parts and we finally obtain 

J = (8rKe/mia2) 12 sinh a 1  sinh asF(0)  

cosh ([a: + ai + 2al a2 COS yP2) dF(sin y)) (B 13) 
+ Lo 

- L" 
or in view of (B 6) 

2 sinh ai aífBiPCfi,  fa) - Bi(0) 1 

C O S ~  ([a: + a: + 2ai oli cos y]'") d &(y). (B 14) 

(B 15) 

- 

For identical particles, ar = a2 
we have 

a 

(a2 + a 2  + 2 c r 2  COS y)"2 = 201 COS ir. 
Moreover, if we adopt the approximation 

F(sin y) = &(y) = &(.n/2)sin y = - (8/7r)b sin y 

(see text), the integral (B 14) can be cxpressed in terms of a Bessel function as foliows 
(B 16) 

2(sinh a)x Bi p v )  = cosh ( 2 ,  cos + 7 ) ~ ~ ( ~ / 2 )  cos y dy 

= a&(r/2)Zs(2a) = - 8bIz(2a) (B 17) 
with the standard notation 

Do 

Z z ( 2 a )  = - k(2ia) = c (an+*/n!(n + 2 ) ! )  (B 18) 
n-O 
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for the Bessel function of order 2. The integral (B 17) is but a variant of the standard 
integral definition of the Bessel function 

z s  

nIn(2ff) = J, cosh (2a cos x) cos (2x) dx, 

the last step being justified by the observation that the integrand remains unchanged when 
the argument x is replaced by n - x. 

In a11 cases encountered in the present work, the argument of the Bessel function will be 
either zero (isotropic solution) or else so large that a few terms of the asymptotic expansion 

-I- e..} (B19) 
(- 1 ) * 1 - 3 . 5 - 7 . 9  

31 ( 1 6 ~ ~ ) ~  
- 

will suffice for computation. The corresponding formula for the mean effective exjuded 
volume is 

+ - - + ... . } (B20) - & p ( j )  -8b(xa)-'/' i - - 30 210 1260 { 32a ( 3 2 ~ ~ ) ~  ( 3 2 ~ ~ ) ~  

In the general case ai # ue, even though we adopt the approximation (B 16), the integral 
of (B 14) can no longer be expressed in terms of simple known functions. An asymptotic 
expansion anal ous to (B 20) has been obtained by the usual produre:  A new variable 
t is introducedTy the substitution 

(B 21) a: + ai + Zaia2 cos y = (cri + a - t)*; 

the hyperbolic function is approximated by an exponential and the factor 

dF(sin y)/dt cos y (dyldt) 

by an abbreviated power series in 6; hai ly  the range of integration over 1 is extended to 
the interval (O, a). The following generalization of (B 20) results 

By this general technique, it is also possible to deal with the more accurate description 
of the covolume function given by EQUATION 45 in the text. Some terms involving the 
factor iog6 then occur after the substitution (B 21); but the integrals which correspond 
to tbese terms are easily evaluated: 

1- e+t* (iogt) dt = e - t t n a  = r'(tc + i). 
For the present work, however, it did not seem worth while to complete this computation. 
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