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Determination of the critical exponents in the Ag Mn spin glass
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Résumé. 2014 Nous présentons des mesures d’aimantation non linéaire dans le système verre de spin AgMn couvrant
une large gamme de concentrations (0,4 %  c  24 %). L’analyse des résultats dans le cadre de l’existence d’une
transition de phase à Tg conduit aux valeurs 03B4 = 3,1 ± 0,2, 03B3 = 2,2 ± 0,2 et 03B2 = 1 ± 0,1. Ces exposants sont
obtenus à partir de trois déterminations expérimentales indépendantes dans le domaine de température et de champ
magnetique ou (T - Tg)/Tg  0,1 et où l’aimantation non linéaire est inférieure au dixième de l’aimantation totale.
A l’extérieur de ce domaine on observe systematiquement des déviations vers des valeurs apparentes plus élevées
pour les exposants critiques. Ces observations expliquent le désaccord entre nos résultats et ceux obtenus sur le
système CuMn [5]. L’analyse des équations de champ moyen Sherrington Kirkpatrick [17] montre en effet que la
présence de termes réguliers entâche d’erreur la determination des exposants critiques lorsque (T - Tg)/Tg &#x3E; 0,1
et H &#x3E; 0,1. Ce point de vue permet aussi d’apporter quelques éclaircissements concernant la diversité des exposants
critiques déterminés sur d’autres systèmes.

Abstract. 2014 We present nonlinear magnetization measurements in the AgMn spin glass in a wide concentration
range (0.4 %  c  24 %). The analysis of the results in the frame work of the existence of a phase transition at Tg
yields the critical exponents 03B4 = 3.1 ± 0.2, 03B3 = 2.2 ± 0.2, and 03B2 = 1 ± 0.1. These exponents are obtained from
three independent experimental determinations in the range of temperature and magnetic field in which (T - Tg)/
Tg  0.1 and the nonlinear magnetization is less than 10 % of the total magnetization. Outside this range, deviations
towards higher apparent values of the critical exponents are systematically observed which explains the disagree-
ment between our findings and those on the CuMn system [5]. The analysis of the mean-field Sherrington-Kirk-
patrick equations [17] indeed shows that the presence of regular terms alters the determination of the critical
exponents for (T - Tg)/Tg &#x3E; 0.1 and H &#x3E; 0.1. This point of view may also help to clarify the diversity existing
between the values of the critical exponents determined in other systems.
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Introduction.

Since the singular behaviour of the nonlinear magne-
tization has been experimentally demonstrated in a
spin glass system [1-3] great amount of experimental
work has been devoted to this subject analysing the
nonlinear magnetization in several systems with a
scaling function [4 to 9]. However the critical expo-
nents strongly differ from one system to another. On
the theoretical side the nature of the spin glass transi-
tion and even its existence in three dimensions are still

very controversial : perturbation analyses of the mean
field theory below d = 6 seem to indicate [10] that
d = 4 is the lowest critical dimension. Furthermore
numerical simulations performed on bidimensional
short-range Ising systems with a T = 0 transition

claimed to reproduce some of the experimental
results analysed in the framework of a finite tempe-
rature phase transition [ 11 to 14]. However more recent
simulations in three dimensional systems [15,16] are
consistent with a finite temperature phase transition.
We think that experiments can shed light on these
ambiguities when performed in a range of temperatures
and magnetic fields where regular contributions in the
nonlinear magnetisation" (i.e. diverging at T = 0)
cannot be mistaken with singular terms (i.e. diverging
at T = Tg).

In this paper we present nonlinear magnetization
measurements on the AgMn spin glass with concen-
trations between 0.4 /0Õ 20 %. Unlike what is done
in the study of classical phase transitions the purpose
of this work is not to measure critical exponents with
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an accuracy of 10-3 , but to explore the AgMn spin
glass system in a wide concentration range with as
many as possible independent experimental criteria,
yielding information on the critical exponents. In

doing so we do not aim at an accuracy better than
10 % on the values of the critical exponents but rather
we seek an internal consistency between the different
criteria used for the various samples. Furthermore we
want to check to what extent the measured values of
the critical exponents depend on the range of field and
temperature studied for their determination, either
because of the existence of regular terms, or because
of the existence of crossovers between different types
of critical behaviour. This point may explain the

discrepancies existing between the different values
of these exponents determined so far by different
authors [1 to 9].
The paper is organized as follows :
In Section 1 we present an « experimental » analysis

of the mean field solution of the Sherrington Kirk-
patrick [17] model above T = T g calculated nume-
rically. Knowing the values of the critical exponents
for this problem we can illustrate how the presence of
regular terms in the nonlinear magnetization makes
it impossible to determine these exponents correctly
out of the very vicinity of the critical point.

In Section 2 we describe our experimental set up
which enables us to measure exclusively the nonlinear
magnetization as a function of the magnetic field by
compensating out the linear part of it.

In Section 3 we explain our method of analysis
of the nonlinear magnetization. We have used three
independent experimental criteria to determine the
critical exponents among which two only are indepen-
dent.
When our analysis is restricted to the temperature

range and to the range of magnetic
I e I

field such that MNL/M  0.1, we find y = 2.2 ± 0.2,
6 = 3 ± 0.2, and fl = 1 ± 0.1 for samples with con-
centrations varying between 0.4 at. % and 20 at. %.
It is possible to describe our data with a universal
scaling function compatible with these exponents.
However we show that our data in the range of tem-

perature 0.1 0.4 deviates from this scal-

ing behaviour. We finally complete this analysis by
pointing out properties of the temperature dependence
of the magnetization itself which can be related to the
values of the critical exponents and thus indepen-
dently confirm our determinations.

In Section 4 we discuss to what extent our data can
rule out T c = 0 phase transition conjectures. We
finally discuss the disagreement between our values
of the critical exponents and those determined on

CuMn [4] in the temperature range 0.1

We wonder whether this has to be attributed to regu-
lar terms or to crossover between different types of
critical behaviours.

1. Scaling analysis of the mean field equations : an
experimental approach.
Before analysing the singular behaviour of the non-
linear magnetization in AgMn with critical exponents
and universal scaling functions, let us discuss the

range of validity of such an analysis on the mean field
solution [17]. In the following we consider the self-
consistent equations of Sherrington and Kirkpatrik
which describe a system of N Ising spins with in finite
range random interactions of variance liP. The
order parameter is related to the average square of the
local magnetization q =  Si &#x3E;’ ( &#x3E; denotes thermal
average, - denotes average on disorder)

These equations yield a phase transition at Tg = J,
however, they do not properly describe the low

temperature phase as has been shown by De Almeida
and Thouless [18]. The correct solution involves an
infinite number of order parameters describing the
degeneracy of the free energy ground states [19].
Equations (1) and (2) properly describe the mean field
solution for T &#x3E; Tg. Note the coupling between the
order parameter and the magnetization in equation (2).

Equation (1) describes the coupling of the spin glass
order parameter with a uniform magnetic field H,
involving even powers of H. The equivalent of the
magnetic field in a classical ferromagnetic transition
(which favours one of the low energy states) is here,
indeed a staggered field being fixed in time but random
in direction on each spin site. One might think that
a uniform magnetic field is not coupled to the order
parameter, just as in a pure antiferromagnetic system.
This is true when one considers the linear term of the

magnetization which follows the paramagnetic Curie
law down to T = Tg. But in contrast with the pure
antiferromagnetic case, where above the Neel tem-
perature the exact compensation of the two sublattices
exactly cancels the molecular field at each site, the
disorder inherent to spin glasses makes these cancella-
tions impossible. The molecular field is thus a random
variable whose variance is J 2  Si )2 = J 2 q (Eq. (3)).

Equations (1) and (2) exactly express this point
when written like :
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The nonlinear part of M couples to the order para-
meter. In the development of the magnetization in
successive powers of the magnetic field, every term of
degree strictly above one is singular [20] and contains
the critical exponents of the spin glass phase tran-
sition [21]. To lowest order, in H/(T - Tg)equation(l)
yields tor the order parameter : 

at

The nonlinear magnetization is coupled to q via the
relation :

valid to third order in H. Using equation (5) for q
we find : (i.e. at T &#x3E; T g and H  T - T g)

the nonlinear magnetization diverges as

the neighbourhood of Tg.
n 

Equations (1) and (2) can be easily solved for any values
of T - T g and H by using a microcomputer yielding
the complete equation of state M(H, T) in this model.

In order to estimate the range of validity of the
scaling laws in this particular case, let us compare
M(H, T) to the form expected in the framework of the
scaling hypothesis.

0 and f3 are the critical exponents which are known
to be 0 = y + p = 2 and f3 = 1 in the present mean
field case, f is a function of the variable x = H2/T2
verifying :

We have plotted the computed values of (M(H, T) -
H/T)/’t versus h’/,r4’ in figure 1. For 0.01  h  0.1
and 0.01  r  0.1 the points superimpose on a

unique curve whose asymptotic limits indeed satisfy
relation (10). However for 0.1  r  1 and 0.1  h  1
the points are widely scattered. We can show that this

dispersion comes from the regular terms in M(H, T)
which cannot be described by the scaling form Msc.
(H, T).
The first terms in the development of M(H, T)

in the successive powers of field yield [22] :

with

and

The temperature dependences of a and b represent
the corrections to the scaling assumption a(T) =
Cte = a(Tg) and b(T) = Cte = b(Tg) and explain
deviations from universality observed when

(T - T g)/T g &#x3E; 0.1. Furthermore it is important to
note that the change of scaling variables proposed by
Souletie et al. [5, 23] cannot absorb these temperature
dependences. Indeed the development of M(H, T)
versus h’ = HIT and i’ = (T - Tg)/T yields :

where a’ and b’ are temperature dependent :

Figure 2a illustrates this point by showing that the
log-log plot of a’(T) versus T’ for i’ &#x3E; 0.1 yields an
apparent value of y : y,ff = 1.3 which is larger than
the known value of 1 obtained for r’  0.1.

Figure 2b also illustrates the error in the determi-
nation of 6 (more than 30 %) which can be made by
considering (in the S.K. model) the nonlinear magne-
tization at T = Tg in the range of field where the non-
linear part of the magnetization MNL is more than
10 % of the linear part. Indeed at T = Tg :

The H2 and higher order terms are responsible for the
high field deviations from the initial H dependence
of MNL/H corresponding to 6 w 2. We emphasize
that one can obtain an apparent good scaling of the
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Fig. 1. - Scaling of the S.K. solution (in units where

Tg = 1) a) In the range of temperature and magnetic field
where 0.01  H  0.1 and 0.01  r  0.1 : 1 : r = 0.01;
H = 0.01, 0.02, ..., 0.1, 2 : i = 0.02 ; H = 0.01, ..., 0.1, etc.

Fig. 2a. - Variation with temperature of the cubic term of
nonlinear magnetization in the S.K. solution. Note devia-
tions towards higher apparent values of y in the range of
temperature where &#x3E; 0.1.

non linear magnetization in the range of temperature
T - 1 &#x3E; 0.1 and H &#x3E; 0.1, using h’ and r’ variables
but with the wrong values yeff = 1.3 and beff = 2.7,
for the critical exponents, see figure 3.

b) In the range of temperature and magnetic field where :
0.1  H  land0.l  r  1 : 1 : ’t = 0.1 ; H = 0.1, 0.2, .., 1,
2:T=0.2; H = 0.1, ...,1, etc.

Fig. 2b. - Field dependence of the nonlinear magnetiza-
tion at Tp in the range of magnetic field where MNL/M &#x3E; 0.1
note the apparent value of 6 rr 2.7.

In appendix I we complete this analysis with a
comparison with the mean field ferromagnetic case
in which the choice of i’ and h’ as scaling variables
is better justified.
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Fig. 3. - Scaling of the S.K. solution using scaling variables
T’ = (T - 1)/T and h’ = HIT in the range of temperature
1.1  T  2 and 0.1  H  1. An apparent good scaling
is obtained with the wrong values of the exponents y = 1.3
and 6 = 2.7 obtained from figure 2.

The conclusion of this « experimental » study of
the mean field solution is that the presence of regular
terms in the development of the magnetization makes
it impossible to determine the critical behaviour of
the singular terms correctly when the regular terms
are comparable to the singular terms. Taking this
analysis as a rough guide we have aimed at a 10 %
accuracy on the critical exponents. This is the reason
why we have chosen to restrict the range of our

analysis to the temperature (T - Tg)/Tg  0.1 in
our determination of the critical exponents. The
same kind of restriction must be made concerning
the choice of the range of magnetic fields. We have
chosen to limit this range to the fields for which the
nonlinear magnetization is less than 10 % of the linear
magnetisation, at Tg. We think that this range of field
and temperature is indeed the best choice we can do
because the spin glass transition temperature is not
defined to better than ± 0.5 %. (At temperatures
(T - Tg)/Tg  0.01 and in very low fields one may
indeed expect some rounding of the transition to

occur.)

Fig. 4. - Determination of Tg on the AgMn 0.5 at. %
sample : + AC susceptibility at 32 Hz, the cusp is found at
T = 2.71 ± 0.01 K. D.C. magnetization measured in a

15 gauss field, the maximum takes place at 2.70 ± 0.01 K,
the irreversibility occurs at 2.71 ± 0.01 K.

2. Experimental procedure.
The samples studied are bulk cylinders of AgMn
(8 mm high and 6 mm wide) whose Mn concentrations
are equal to 0.4, 0.5, 0.7 and 20 at. %, respectively.
The 0.4 and 0.7 at. % polycrystalline samples were
obtained by melting the constituants in an induction
furnace. The 0.5 and 20 at. % samples are single
crystals grown by the Bridgmann furnace method [24].
No difference concerning the sharpness of the tran-
sition could be detected between samples of different
metallurgical origins. The transition temperature was
evaluated by :

1) Position of the cusp in a.c. susceptibility
( f = 30 Hz) versus temperature.

2) Position of the maximum in the low field D.C.
magnetization versus temperature. See figure 4.

3) Occurrence of irreversibility in the low field
D.C. magnetization (i.e. the temperature below which
the field cooled magnetization differs from the zero
field cooled magnetization).
These three criteria for Tg coincided within ± 0.5 %

which is the error bar we attributed to the value of Tg.
This result is in agreement with the very slight fre-
quency dependence of the susceptibility cusp in
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AgMn reported in [25]. The temperature was stabilized
Wthin better than 0.1 % by regulating the pressure
of either a helium bath for the low concentration

samples or a nitrogen bath 63 K  T  77 K for
the 20 at. % sample (Tg = 68.5 K).
The magnetization measurements were made with

a vibrating sample Foner magnetometer whose sensi-
tivity is 10-6 emu. A pair of Helmholtz coils produces
a magnetic field between 0 and 1.5 K gauss homoge-
neous within 10-4 in a 1 cml sphere. The earth’ magne-
tic field is compensated for. The measure of the current
in the Helmholtz coils with a high precision shunt
yields an accuracy and a reproducibility on the field
measurement better than 10-4. This last point is
crucial for a precise subtraction of the field linear part
of the magnetization.
Furthermore in order to increase our accuracy

concerning the nonlinear part of the magnetization
we have compensated in situ the linear part using
the following procedure depicted in figure 5 : a small
coil (6 mm diameter 20 turns) is mounted on the

sample holder two centimeters above the spin glass
sample. This coil is biased with a current proportional
to the current in the Helmholtz coils (i.e. the magnetic
field), so as to produce a magnetic dipole, propor-
tional to the field, opposite in sign to the magnetization
of the sample. In this way we are able, by suitable
adjustment to nearly compensate out the field linear
contribution of the sample magnetization [26]. This

Fig. 5. - Schematic diagram of the compensation of the
linear part of the magnetization. H : Helmholtz coils;
D : Pickup coils; C : compensation coil; S : Sample; R :
high precision shunt - (0.04 Q) ; P : Potentiometer adjus-
ting the current in the compensating coil; A : Current

amplifier. Insert : response of the pickup coils versus the
position of the sample along the vertical axis. Zs denotes the
proper position of the sample, Zc denotes the proper position
of the compensating coil centred in the secondary lobe of the
pick up coils response function at a distance of the sample
(2 cm) such as to produce a negligible perturbation of the
applied magnetic field on the sample.

procedure enables us to measure nonlinear contribu-
tions which are less than 10-3 of the linear part of the
magnetization. Data acquisition and magnetic field
runs are automatized via a microcomputer.

Typical sets of curves yielding the variation with
magnetic field ofAM/H for different temperatures near
Tg are shown in figure 6 (AM denotes the magnetiza-
tion of the spin glass sample whose linear part has
been compensated as above). At temperatures above
1.1 Tg AM/H is quadratic in low magnetic fields as
expected for a paramagnet. At lower temperatures
the curvature of åM/H versus field increases drasti-
cally until T = Tg where the low field behaviour of
AMIH is singular (i.e. cannot be described by an
analytic function of H 2).

In the following we discuss the analysis of this
singularity in terms of critical exponents and a scaling
function.

3. Critical analysis of the nonlinear magnetization.
3 .1 DETERMINATION OF 6 FROM THE NONLINEAR MAGNE-
TIZATION AT Tg. - In figure 7 the nonlinear magne-
tization divided by the magnetic field is plotted on a
logarithmic scale, for the 0.5 at. % at T = T g = 2.70 K.

Fig. 6. - Typical set of curves yielding OM/H as the function
of the magnetic field at different temperatures, above the
transition temperature, for the 0.5 at. % sample. The relative
origins on the Y axis are arbitrary. xo denotes the value of
the linear magnetization per unit field at T = Tg.
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Fig. 7. - Log-Log plot of the non linear magnetization
versus magnetic field at T g for the 0.5 at. % in the range of
magnetic field where MNL/M  0.1, the slope yields 2/6 =
0.64 + 0.02.

It is well fitted between 10 gauss and 400 gauss by a
power law :

This yields :

The same exponent has been obtained for the other
concentrations. Figure 8 shows (M/H)/Xo versus

(H/Ho)0.64 for three different concentrations where
the concentration dependence of Ho is given in table I.
The H 0.64 law is well satisfied in the range of magnetic
fields where MNJM  0.1. Deviations towards appa-
rent higher values of 6 occur at higher field as shown

Fig. 8. - M/H scaled to the linear susceptibility at Tg is

plotted versus reduced, magnetic field (HjHo)0.64 for three
different concentrations : a AgMn 0.4 %; 0 AgMn 0.5 %;
x AgMn 20.5 %.

Table I. - Analysis of the non linear magnetization at
Tg : M/H = Xo(1 - (H/Ho)O.64).

in figure 9 on the 0.5 at. % sample. We may attribute
these deviations to the presence of higher order terms
in the development of MNL/H versus H whose contri-
bution for high values of the magnetic field is not

negligible compared to the H 2/ð term. The effect of
such terms has already been discussed in 2 on the
S.K. equations. Our determination of 6 by measuring
the field dependence of the nonlinear D.C. magnetiza-
tion at T = T g in a range of field where MNL/M  10-1
are the first of that kind. Indeed the determination
of ð on CuMn by Omari, Prejean and Souletie [5]
was made in a range of fields where 0.1  MNL 
M  0.5. This remark combined with our own obser-
vations explain the discrepancy between their deter-
mination of 6 = 5 and our value of 6 = 3 (see Table II).

3.2 DETERMINATION OF y FROM THE DIVERGENCE OF THE
H2 TERM IN AM/H. - The initial slope : a(T) of
AMIH plotted versus H2 yields the exponent y.
In figure 10 and 11 one can see that the range of field :
AH where AMIH is linear in H 2 decreases drastically
when T -+ Tg. AH 2 varies approximately like ’t3
in the range of temperatures where  0.1. For the
20 at. % AgMn sample we took into account the non-

Fig. 9. - Log-Log plot of the non-linear magnetization
versus magnetic field at Tg for the 0.5 at. % sample in the
range of magnetic field where MNL/M  0.5. Note devia-
tions towards apparent values of ð which are higher than the
value deduced when the analysis is restricted to the range of
field where MNL/M  0.1.
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Table II. - Measured values o f critical exponents on various spin glass systems. Some of these values were directly
measured like y and 6 others are the result oj’ the optimization of the scaling like 0 and fl.

Fig. 10. - Typical set of curves yielding AM / H as a function
of the square of the magnetic field for different temperatures
above the transition temperature on the 20.5 at. % sample.
The initial slope of each curves, yields a(T).

zero Curie Weiss temperature 0 determine by analys-
ing the low field magnetization as a function of tem-

perature : M/H = c - in the neighbourhood of Tg.P T-e
F’or the 20 at. %, 0 = 22 ± 0.5 K. Instead of a(T)

I 

the quantity plotted in figure 11 is a’(T) = I

Fig. 11. - Square of the range of magnetic field used for the
determination of a(T) versus (T - Tg)/Tg. + AgMn 0.5 %;
0 AgMn 20.5 %.

(assuming like in (9) that the existence of such a Curie
Weiss behaviour modifies the scaling behaviour of the
nonlinear magnetization in the following way :
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with Jo = 0/C). However in the temperature range
between T g and 1.1 T g which we have considered, this
correction is of minor importance and changes the
value of y from less than 5 %. In the temperature range
between Tg and 1.1 Tg, a(T) is well described by a
power law (see Fig. 12) :

with

Deviations from this behaviour are observed for the
0.5 at. % between 1.2 Tg and 1.5 Tg as seen in figure 11.
These deviations would yield an apparent value of
y = 3 in the range of temperatures between 1.1 and
1.5 Tg [27]. Are these deviations the manifestation
of the presence of regular terms which are expected
(See Sect. 2) to contribute subsequently to the non-
linear magnetization at temperatures above (1.1) Tg ?
Or are they the manifestation of a crossover from one
type of critical behaviour to another characterized by
different values of critical exponents ? This point
will be discussed in section 4.

3. 3 ANALYSIS OF THE SLOPE AT THE INFLEXION POINT OF

.MNJH. DETERMINATION OF P. - An examination of
the set of MNL/H = f(H) curves in figure 6 shows
that each of these curves present an inflexion point
whose position along the field axis decreases towards
zero when the temperature decreases towards Tg.
The position of this inflexion point is not well defined
but the slope p of the tangent of the curve at this
inflexion point can be accurately measured. It is

Fig. 12. - Temperature dependence of the quadratic term
in field of AM/H : a(T) from which one reads the value of y :
2022 0.5 at. % sample; 0 20.5 at. % sample : a’(T) = a(T)
(1 - O/T)4. Temperature dependence of the slope of the
tangent of AM/H = f (H) measured at the inflexion point :
p(T) from which one reads the value of t/J = (y - P)/2.
o 0.5 at % sample; A 0.7 at % sample; 0 20.5 at % sample:
p’(T) = p(T) (1 - O/T)’. Insert : plot of T’ a(T) using
(T - Tg)/T as scaling variable.

plotted in (Fig. 11) as a function of (T - Tg), in the
temperature range below 1.1 Tg it can be well des-
cribed by :

Such a behaviour can be understood by assuming
that the nonlinear magnetization is properly described
by the scaling assumption :

where

At the inflexion point :

The corresponding slope p verifies :

p is thus temperature independent in the mean field
case for which 6 = 2. This can be seen in figure 13.
The temperature dependence of the tangent at the
inflexion point can thus be used as a simple experi-
mental criterion to distinguish an array of KNL mean
field isotherms from a non mean field one for which

Fig. 13. - Set of curves yielding M/H = F(H) calculated
from the mean field S.K. solution. Note that each curve

presents an inflexion point at which the slope of the tangent
is temperature independent.
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6 &#x3E; 2. Our experimental determinations of ql in the
temperature range below 1.1 Tg are :

The deviations towards higher values of # observed
in p(T) for T &#x3E; 1.1 T g raise the same questions as the
deviations noted in the study of the temperature
dependence of xNL in 3. From our determinations of y
and # we can deduce from (17) p = 1 ± 0.1 for the 0.5
and 20 at. % samples. We can verify from the know-
ledge of 6 = 3.1 ± 0.2 determined in 3.1 and # that
relation (17) yields :

which is indeed in agreement with our previous
independent determinations of y in 3.2. Our three
independently measured critical exponents P, y and 6
thus verify the scaling relation :

This result a posteriori justifies our choice for the
transition temperature. A shift of Tg of more than
0.5 % would indeed modify y and # in such a way that
the scaling relation (18) would not be verified (within
the 10 % error bar of our determination of the critical
exponents) [28].

3.4 SCALING FUNCTION [29]. - We have tried to

describe our experimental data with a scaling function :

in the temperature range where  0.1 and the range
of magnetic field where KNL/XO  0.1. The best fit is
obtained for q5 = 3.3 ± 0.1 and P = 1 ± 0.1 inde-

pendent of the Mn concentration see figure 14 for
the AgMn 0.5, 0.7 and 20.5 at. % samples [30]. The
exponent 0 verifies the scaling relation y + j8 = 0.

Indeed, our previous determination of y yields :

and

The asymptotic forms of the scaling function of the
x = H 2/’tf/J variable can also be checked in figure 14 :

1) F(x) is linear for small x which corresponds to
the range of fields and temperatures where KNL is
dominated by the quadratic term (i.e. H  AH defined
in 3.2). One can indeed verify in figure 11 that OH 2
scales like T3 ~ T .

2) F(x) varies like xll’ for high values of x. It is
note worthy to find the same values for the critical
exponents in the dilute systems (0.4, 0.5, 0.7) at. %

and in the concentrated system (20.5 at. %). In the
latter case indeed, the respective number of first and
second neighbours deduced from short range order
parameters determined by X ray scattering studies
on the same sample [31] are N1 = 1 and N2 = 2.3.
First and second neighbour magnetic interactions are
thus expected to play the main role at the spin glass
transition. The AgMn 20 % system may then be consi-
dered as a short range spin glass.
On the other hand in the dilute regime (i.e. c  1 %),

the magnetic interactions responsible for the tran-
sition are expected to be well described by the asymp-
totic 1/R 3 form of the Ruderman Kittel interaction.

Fig. 14. - Scaling of the nonlinear magnetization expressed
in units of xo, as a function of the reduced field H/Ho (where
Ho is given in table I) and the reduced temperature (T - Tg)/
Tg :
18 values of T and 200 values of H

11 values of T and 100 values of H

12 values of T and 200 values of H

Note the shifted origins on the x axis for the three different
concentrations. The three scaling curves are nearly identical.
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Our result, that the critical exponents are concen-
tration independent in AgMn is not in contradiction
with the statement [32] that the R.K.K.Y. interaction
has to be considered as short range from the phase
transition point of view.

3.5 SCALING BELOW Tg. - Nonlinear magnetization
measurements have also been performed on the

AgMn 0.5 % sample below the transition temperature.
The magnetization becomes an irreversible function
of the magnetic field : the quantity AM/H is depicted
in figure 15 at a temperature Tg - AT, the sample
having been cooled in zero field till T = Tg - AT.
AM/H measured when first increasing the magnetic
field is lower than AM/H measured when subse-
quently decreasing the magnetic field for values of
the magnetic field H  H;r. For H &#x3E; H;r the magne-
tization is again observed to be reversible. The non-
linear magnetization in this regime is equal to the
nonlinear magnetization measured at T = Tg + AT.
This fact suggests that we can check the validity of
the scaling below Tg in the range of field and tem-
perature where the magnetization is a reversible
function of the magnetic field. Below Tg one expects
that the linear part of the magnetization also contains
a contribution of the spin glass order parameter in
zero field which varies like :

in zero field

We thus consider the quantity :

where C/T is the extrapolation below Tg of the Curie
law which describes well the temperature dependence
of the linear part of the magnetization above Tg.
Ks(T, H)/(T - Tg) is plotted in figure 16 versus

x = H 2 j(T JT)3.3 in the range of magnetic field

Fig. 15. - Nonlinear magnetization (small points) mea-
sured at 2.5 K = T g - 0.2 K on the 0.5 at. % sample after
zero field cooling compared to the non linear magnetization
measured at T = 2.9 K = Tg + 0.2 K.

Fig. 16. - Scaling function of AgMn 0.5 % for 10 tempe-
ratures above and 10 temperatures below Tg verifying
I T - Tg /Tg  0.1. Below Tg our analysis was restricted
to the range of field where H  H;rr(T).

Hir(T)  H  600 gauss, for ten different tempera-
tures below Tg. The experimental points are super-
imposed on a universal scaling function of the variable
x. The asymptotic behaviour for large values of x :

is identical to the asymptotic behaviour of the scaling
function above Tg. The asymptotic behaviour for
small values of x is :

which means that the quantity Ks is dominated by
the a(T g - T) contribution of the order parameter
in zero field.

This last point can be checked in another inde-
pendent way by considering below Tg the variation
with temperature of the quantity Q(T) = T(M(T) -
C/T) where M(T) is the field cooled magnetization
measured in low magnetic field (see Fig. 17). q(T)
is found to vary linearly with temperatures between
Tg and 0.8 Tg in agreement with P = 1. The nonzero
value of q(T) at T = Tg is due to the finite value of the
magnetic field and is in agreement with the expected
contribution :
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Fig. 17. - Temperature dependence of the spin glass order
parameter below Tg extracted from the field cooled magne-
tization of AgMn 0.5 % under the field H = 43 gauss
(see Fig. 18).

Note the surprisingly large temperature range of

validity of the formula :

which is expected to be valid only in a temperature
range where irreversibilities can be neglected.

3.6 ANALYSIS OF THE MAGNETIZATION AS A FUNCTION
OF THE TEMPERATURE. PROPERTIES RELATED TO CRITICAL
EXPONENTS. - In principle the analysis of the non-
linear magnetization could be performed using a set
of M(T) curves for different values of the magnetic
field instead of the array of isothermal curves we have
considered above. The subtraction of the linear part
of the magnetization is not so straightforward in the
analysis of M(T) curves as in M(H) curves, however
information on the critical exponents can be deduced.
In the following we discuss two properties of the field
dependence of the M(T) curves which yield infor-
mation on the critical exponents from the S.Q.U.I.D.
measurements on AgMn of Chamberlin et ale [33].
3.6.1 Inflexion point of M(T). - In the frame-work
of the scaling analysis of the nonlinear magnetization
above Tg one has :

The inflexion point of M(T) verifies :

(Since y + 2 &#x3E; y + P, the relation Hi2  rf is verified
and thus justifies keeping only the leading term in H 3
in the nonlinear magnetization.) This criterion has

already been used by Berton et al. [4] for the determi-
nation of y by magnetocaloric effect in CuMn. On the
other hand, Chamberlin et al. [33] in their D.C.

magnetization work on AgMn 2.6 % and AgMn 4 %,
have studied the inflexion point of M(T) as a function
of the magnetic field in the low field regime. They find

where b = 0.51 ± 0.1 and 0.56 ± 0.1 for the 2.6 at. %
and 4.0 at. % samples. They interpret this T;(H) line
as a cross-over line without trying to relate the expo-
nent b to the critical exponents of the spin glass
transition. This can be done using relation (21) and one
obtains :

y = 2/0.51 - 2 = 1.9 ± 0.3 for the 2.6 at. % sample
and

y = 2/0.56 - 2 = 1.8 ± 0.3 for the 4 at. % sample.

These values are in agreement with our own deter-
mination of y on AgMn using a completely inde-
pendent criterion. One can note that like our own
analysis, the analysis of Chamberlin et ale is restricted
to the range of temperatures and fields where (T - Tg)/
T g  10 -1 and MNJM  10 -1.

3.6.2 Maximum of M(T). - In [34] we have shown
that the field dependence of the maximum of the
magnetization can be related to the critical exponents
of the spin glass transition.
When fl  1 this maximum is found to coincide

with Tg in the limit of zero magnetic field and to move
up in temperature with increasing field.

When fl &#x3E; 1, the maximum of M(T) is predicted at
a temperature lower than Tg where the magnetization
becomes irreversible.

In our 0.5 % AgMn sample (see Fig. 4 and Fig. 18)
the low field limit of the maximum of M(T) coincides
(within better than 0.5 %) with the occurrence of
irreversibility and moves down in temperature with
increasing magnetic field. This behaviour can only
be understood if P = 1 (the mean field value), which
indeed confirms our previous determination. This

experimental fact has already been observed by
Chamberlin et ale [33] for the 2.6 and 4 at. % systems.
Furthermore the low field dependence of the

maximum of M(T) is found to follow an H 2/3 law
approximately. Such a behaviour is in agreement
with the H 2/y+fl power law expected in that case [34]4
the critical exponents y and P being determined from
our nonlinear magnetization data.

Although these analyses are less precise and more
qualitative, they yield complementary and indepen-
dent information which confirms our determination
of the critical exponents from the analysis of magne-
tization isotherms.

3.7 EVALUATION OF THE OTHER CRITICAL EXPONENTS.
- From the knowledge of the exponents P, y and 6,
other critical exponents can be calculated from the
scaling relations.
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Fig. 18. - Set of curves yielding the temperature depen-
dence of the field cooled magnetization for the 0.5 at. % sam-
ple at various values of the magnetic fields, the origins
on the Y axis have been arbitrarily shifted Insert : field
dependence of the maximum of the field cooled magneti-
zation.

3.7.1. - Exponent of the specific heat. - C(T)
a(T - Tg)-a ; it can be deduced from the relation :

This result yields a specific heat anomaly of its third
temperature derivative and is thus in agreement with
the absence of anomaly observed experimentally [35].
3.7.2 Exponents concerning the correlation length
ç(T) : the scaling behaviour of the spatial correlation
function of the spin glass order parameter is expected
to be in the vicinity of Tg :

with

q and v can be deduced from the relations :

which yields

These values can be compared to the values v = 1.2
and q = 0 obtained by Ogielski et al. [16] in their

numerical simulations of a 3-dimensional Ising spin
glass.

3. 8 COMPARISON OF CRITICAL EXPONENTS DETERMINED
BY D.C. MEASUREMENTS AND BY A.C. MEASUREMENTS. -
A.C. susceptibility measurements, with a D.C. applied
field varying between 1 and 800 gauss superimposed
on the A.C. exciting field (f = 32 Hz), were also done
on the 0.7 at. % sample in collaboration with Beau-
villain and Renard on the same set up they used for
their study of A1203MnOSi02 [7]. In the absence of
frequency dependence effects, one expects that the
A.C. susceptibility depends on the D.C. applied field
H like :

with the notations of 3.1 and 3.2.
The amplitude of the H2 term of dM/dH : a(T)

is well described between Tg and 1.1 Tg by : §(7J oc
(T - Tg)--P with 7 = 1.8 ± 0.1 (see figure 19) which
is a little lower than the value y = 2.2 obtained by our
D.C. analysis. The nonlinear part of the susceptibility
at Tg plotted on a double logarithmic scale presents

Fig. 19. - Temperature dependence of the quadratic term
in field of dM/dH measured by A.C. susceptibility on AgMn
0.7 % between T g and 1.1 T g.
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Fig. 20. - Field dependence of dM/dH measured by A.C.
susceptibility at T = T g (note the curvature observed in the
low field range), compared to the non linear magnetization
measured by our D.C. technique.

a slight curvature (see figure 20) in low field. Its analysis
between 100 and 800 gauss yields 5 = 3 ± 0.2 compa-
tible with our D.C. results. An analysis in the range of
fields below 100 gauss would yield a value of 6 = 2.
This result should be compared to the result of Mulder
et al. on CuMn [36] whose similar analysis of the field
dependence of XAC at T = Tg yields 6 = 2 in the range
of magnetic fields where XNL/XO  2 x 10-2. We
attribute this disagreement between the A.C. and D.C.
determinations of 6 in low magnetic fields to frequency
dependent effects.

4. Discussion of the results.

4.1 CAN WE ELIMINATE THE POSSIBILITY OF A ZERO
TEMPERATURE TRANSITION ? - In the preceding sec-
tion we have analysed our results within the framework
of the existence of a phase transition at Tg. We have
tried to extract the critical exponents from our data in
as many as possible independent ways according
to this finite temperature phase transition hypothesis.
As far as we have done we have not met with any
contradiction. In the following we compare our results
to some of the predictions of the Tg = 0 scaling
hypothesis. Binder and Kinzel have analysed their
numerical results of the bidimensional Ising spin glass
model in such a framework and suggested extending
it to the analysis of experimental data as well [11 to 13].

4 .1.1 Temperature dependence of the H 3 term of the
nonlinear magnetization. - The coefficient of the qua-
dratic term of MNL/H = a(T) is plotted against
temperature on a double logarithmic scale in figure 21.
One can make two points :

1) this plot appears to be nonlinear even when the
temperature varies by a factor smaller than 1. 3.

. d Log a .

2) The quantity d Log a /Log T varies from 15 to 30 in the
same temperature range. The T = 0 scaling hypo-
thesis prediction a(7) = T-Y* would thus yield
unphysical values for the critical exponent (y* &#x3E; 30).

Fig. 21. - Non linear susceptibility as a function of tempe-
rature between T g and 1.3 T g on a double logarithmic scale,
the value of y deduced from the Tc = 0 scaling hypothesis
is higher than 30.

In figure 22 a(T) is plotted on a semilogarithmic
scale. The curvature observed shows that a(T) cannot
be described by :

as expected at the lower critical dimension [37]. In our
case a possible fit for a(T) could be a(T) = ea.(TfTg)(1
with Q = 3.1 ± 0.4 and a = 10 which again is unphy-
sical. We therefore conclude that our observation of a
three order of magnitude increase of a(T) over a
small temperature range (between 1.02 and 1.3 Tg)
is ruling out any reasonable analysis with a zero
transition temperature.

4.1. 2 Field dependence of the magnetization. - Ano-
ther prediction of the scaling at T = 0 is that at low
temperature and in the low field regime the magnetiza-
tion is expected to vary like :

where x ~ 0.3 in the bidimensional spin glass Ising
model [12]. Figure 23 shows M/H versus H plotted
on a double logarithmic scale. The strong curvature
observed, in a region of field where the nonlinear
magnetization is well described by a-H 2/3 law (see
3.1), shows that (28) is completely inadequate to
describe the magnetization, contrary to the statement
of Binder and Kinzel in [12] who tried to fit our data
of reference [3] on AgMn 10.6 % with expression (28)
on a limited range of fields.

4.2 COMPARISON WITH OTHER SYSTEMS. - In table II
we present a list of the experimental determinations
of the critical exponents of the spin glass transition.
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Fig. 22. - Analysis of the non linear susceptibility in the
hypothesis of the lower critical dimension scaling. Log (a(T))
function of 1/T.

The wide spectrum of the values of these socalled
« universal exponents » could be taken in itself as an
argument against the phase transition. One however
has to take into account :
- The diversity of the systems, either crystalline

or amorphous, insulating or metallic, and accordingly
the diversity of the techniques used, either D.C. or A.C.
- Most seriously, the diversity of the range of

temperature and magnetic field studied.
The influence of the spatial disorder of the magnetic

atoms on the critical behaviour has already been
pointed out in the study of amorphous ferroma-
gnets [40]. The critical exponents were found to be
strongly dependent on the temperature range studied.
The universal value of y was found only in the very
vicinity of Tr. The analysis of the data outside of the
very vicinity of Tg yields values of y up to 50 % above
the universal value. Fiihnle et al. [41] suggest that a
similar behaviour should be expected in spin glasses
yielding strong temperature and system dependences
on the exponent of the divergence of the nonlinear
susceptibility.

In some cases (see Table II) the critical exponents
were determined from A.C. susceptibility measure-
ments (analysis of the response at 3 co or of the varia-

tion of dM as a function of an applied D.C. magneticdH pp

Fig. 23. - M/H at T x Tg for the 0.4 at. % sample is

plotted versus magnetic field on a double logarithmic scale ;
note the strong curvature observed which excludes any
reasonable fit M/H oc H-x.

field). One can note that the values of y and 6 obtained
with these techniques are generally lower and closer
to the mean field ones than the values determined from
D.C. magnetization measurements. The most striking
example is the value of 6 in Cu-Mn which is found
equal to 5 in [5] and 2 in [35]. One may argue that
frequency dependences in the vicinity of Tg can alter
the analysis. This is the reason why Beauvillain et ale
restricted their A.C. analysis on A1203MnOS’02 (at
69 Hz) in a range of temperature above 1.1 Tg where
frequency effects are negligible. Our own A.C. analysis
on AgMn 0.7 % however yields critical exponents
which are compatible within 10 % with the values
determined by D.C. magnetization measurements in
the same range of magnetic fields and temperatures
(see 3.6). The problem of frequency dependences can
thus not explain the observed disagreement in CuMn
between the different estimations of 6. A.C. suscepti-
bility measurements are generally made in the very
neighbourhood of Tg and in low applied D.C. magnetic
fields, in contrast with D.C. measurements where the
analysis was made in a wide range of magnetic field
and temperature.

In order to emphasize this point we have plotted in
figure 24 the value of 6 versus the range of field used for
its determination, expressed in terms of MNL max/M. 6
appears as an increasing function of MNL/M varying
between 2 and 5 [49]. We have indeed shown in our
analysis on AgMn that the values of y = 2 and 6 = 3
could describe properly the critical behaviour on the
nonlinear magnetization, as far as the temperature and

field range analysis where restricted to T - Tg  0.1g y 
T g
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Fig. 24. - Measured values of the critical exponent 6 on
metallic spin glasses as a function of the range of magnetic
field used for its determination (expressed in MNL max/M).

and MNL/M  0.1. Taking data outside of that range
would have yielded higher exponents : y ~ 3, b ~ 5.
We think that this remark explains the disagreement
between our results on AgMn and the results of
Omari et al. on CuMn sincethese systems are otherwise
expected to be-Fave in very similar ways. We have
shown in Section 1 how the presence of regular terms
in the development of MNL(H, 7J could alter the
determination of critical exponents for (T - Tg)/
Tg &#x3E; 0.1 and H &#x3E; 0.1, yielding 30 % of error. How-
ever up to now it is not possible to evaluate the order
of magnitude of the regular terms in the R.K.K.Y.
metallic spin glasses. Thus the possibility of a real
physical crossover occurring at (T - Tg)/Tg &#x3E; 0.1
can not be excluded.
The torque experiments performed by N. de

Courtenay et al. [42] on CuMn and AgMn have shown
the existence of a crossover between two different

regimes below Tg at (Tg - T)/T 1 ~ 0.1 in their
determination of the irreversibility line. This crossover
is shifted towards higher fields and lower temperatures
by adding gold impurities which increase the aniso-
tropic character [43] of the interactions. It is thus

suggested that this crossover is indeed a crossover
between an Ising type of behaviour (in low field near
Tg) towards a Heisenberg type of behaviour in higher
magnetic field at lower temperature.

If one believes that the equation of the irreversibility
line is related to the values of the critical exponents (as
has been recently suggested by Fisher and Sompo-
linsky [44]) then one has to expect the same kind of
crossover between different values of critical expo-
nents to be observed on the nonlinear magnetization
as well [45].
The values of y and 6 that we determine in AgMn

below 1.1 Tg and low field would then be characteristic
of an Ising critical behaviour, as the values determined
at higher temperatures and magnetic fields would be
characteristic of a Heisenberg type of behaviour.
This conjecture has to be confirmed by further work
including the comparison of the nonlinear magnetiza-
tion of CuMnAu alloys for different gold concentra-
tions [46].

In conclusion we have shown that the nonlinear

magnetization of the AgMn system can be consistently
described by scaling theory with a nonzero transition
temperature. The values of critical exponents y = 2.2 ±
0.2 and ð = 3.1 :t 0.2 = 1 :t 0.1 are obtained when the
analysis is restricted to the range of temperatures and
fields (T - Tg)/Tg  0.1 and MNL/M  0.1.

Deviations towards higher apparent values of the
critical exponents are observed outside this range.
These deviations explain the discrepancy between the
values of the critical exponents determined by Omari
et al. on CuMn and ours. Such deviations due to the
presence of regular terms are also present in the mean
field equation of state. However further work is needed
for the physical understanding of an eventual crossover
between two different kinds of critical behaviour.
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Appendix.
One can note the difference existing between the mean
field equation of the spin glass transition and the mean
field equation of the classical ferromagnetic transition.
In the latter case, the development of M (H, T) is

exactly given by :

where a and b are independent of temperature (a = 1
and b = - 1/3). This justifies, in this case, the choice
of h’ and r’ as scaling variables. In this problem the
magnetization is indeed the order parameter while
in the spin glass problem the relation between the
magnetization and the spin glass order parameter is
not so direct.

Simple symmetry arguments show that the tempe-
rature and field dependence of the spin glass order
parameter occur through H2 and T2, and can be
developed as follows :

where
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Pn is a polynome of degree 2 n + 1 of the variable 1/i"
whose highest order term only is contained in the

scaling form :
developed in the power of

h,2/’t"4&#x3E; corrections appear already at second order. b
and c are different from zero.

The corrections to scaling appear sooner in the
development of q(H2, T") than in the development of
M(H, r) in the ferromagnetic case where they appear
only at order 5. Furthermore the relation between the
nonlinear magnetization and the order parameter
involve extra non trival mixtures of singular terms and
regular terms.
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