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Dynamics of three-dimensional Ising spin glasses in ther-tidal equilibrium

Andrew T. Ogielski
AT& T Bell Laboratories, Murray Hill, Rem Jersey 07974

(Received 10 July 1985)

I present an analysis of the dynamic behavior of short-range Ising spin glasses observed in sto-
chastic simulations. The time dependence of the order parameter q(t) = (S„(0)S„(t))—which is the
same as that of the structure factor —and the time dependence of the related dynamic correlation
functions have been recorded with good statistics and very long observation times. The spin-glass
model with a symmetric distribution of discrete nearest-neighbor +J interactions on a simple-cubic
lattice was used. Simulations were performed with a special fast computer, allowing for the first-
time investigation of the equilibrium dynamics for a wide range of temperatures (0.7 & kT/J & 5.0)
and lattice sizes (&, 16, 32, and 64 ). I have found that the empirical formula
q(t)=ct "exp( cots) wit—h temperature-dependent exponents x(T) and p(T) describes the decay
very well at all temperatures above the spin-glass transition. In the spin-glass phase, only the alge-
braic decay q(t) =ct " could be observed, with different temperature dependences of the exponent
x (T). The dynamic scaling hypothesis and finite-size scaling explain well the observed temperature
and size dependence of the data, and the functional form of the correlation functions is com-
patible with the scaling form if corrections to scaling are taken into account. The scaling behavior
and the dynamic and static critical exponents found in my simulations are in reasonable agreement
with recent experiments performed on insulating spin glasses, showing that despite its simplicity the
discrete model of spin glasses analyzed in this work displays behavior similar to that seen in nature.

I. INTRODUCTION

Although slow, nonexponential relaxation has become
an important symptom of the "spin-glass syndrome, "' our
understanding of the dynamics of spin glasses is not quite
satisfactory, neither on the experimental nor on the
theoretical level. In recent years a number of experi-
ments have been performed and more data on equilibri-
um dynamics has become available. Nonexponential de-
cay of dynamic correlation functions 5 and rapid growth
of correlation times as the temperature approaches Ts
from above have been clearly established. In the absence
of a satisfactory theoretical description, however, the data
do not allow one to determine unambiguously the shape of
the correlation functions, nor the temperature dependence
of correlation times, and quite often several distinct,
currently popular fits may describe the results equally
well in the reported frequency and temperature range. '

Moreover, in principle there is no reason to expect some
universal behavior among all materials called spin glasses,
and determination of classes of systems displaying similar
dynamics has not yet been achieved.

On the theoretical side, only the dynamics of the
infinite-range mean-field theory of spin glasses has been
analyzed in some detail, ' predicting exponential decay of
correlations and critical slowing down, ~cc(T —Ts)
above Tz with the dynamic exponent zv=2, and algebraic
decay of correlation functions below Ts, with an exponent
which decreases with temperature from the value of —,

' at
Tg. In general, mean-field exponents need not describe
real three-dimensional systems, and indeed experimenta1
data do not agree with mean-field-theory predictions. A
phenornenological renormalization group was proposed

for short-range spin glasses, ' where scaling of the energy
barriers V with the length scale was used to characterize
the temperature dependence of the correlation times de-
fined by the Kramers relation r ~ ( V/T). Such arguments
imply; (i) simple Arrhenius behavior at low temperatures
for dimensions lower than the lower critical dimension
(LCD), i.e., V is roughly constant, (ii) exponential growth
r-exp(c/T ) at the LCD, and (iii) the usual critical slow-

ing down above the LCD. Extrapolations from the high-
temperature behavior were employed"' to suggest that
two-dimensional short-range Ising spin glasses belong to
class (i), but a more marginal behavior cannot be exclud-
ed. ' ' Earlier analysis of average correlation times in the
three-dimensional model' excluded the simple Arrhenius
behavior (i), and an attempt to fit the data taken at not
too low temperatures to an exponential form (ii) would re-
quire that the power of temperature in the exponent be
much higher than 3. Of all predictions of phenomenolog-
ical renorrnalization only the critical behavior,
w- ( T —Ts ) '", is consistent with numerical data.
Another exponential law, r-exp(c/T' ), with an unspeci-
fied exponent zv appeared in the content of the so-called
zero-temperature transition hypothesis. ' Both numeri-
cal' ' and experimental data taken well above T=O
were fitted to this form, and indeed this parametrization
could be used in this temperature regime with sufficiently
high values of zv, but it appears accidental because the
static behavior predicted in Ref. 16 does not agree well
with observed low-temperature behavior.

The fluctuation dynamics of spin glasses was also con-
sidered separately, without reference to static correlations.
Difficulties with the classical Arrhenius law in describing
experimental spin-glass data led to the introduction' of
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the Vogel-Fulcher (VF) law, ' r=~oexp[EO/( T—To)].
This phenomenological relation has long been known in
the literature devoted to viscous fluids and glasses. The
meaning of the parameter To is not entirely clear. A
comparison of fits to certain experimentally determined
characteristic times for various spin glasses above Tg indi-
cates that critical slowing down describes the data better
than the VF law. Large deviations from the VF law close
to T have been reported earlier' but no comparison to
alternative fits was performed.

More recently, several papers addressed the more gen-
eral issue of plausible mechanisms of relaxation in ran-
dom systems, producing various estimates of the asymp-
totic behavior of dynamic correlation functions. An
analysis of dilute Ising ferromagnets based on the con-
cept of isolated rigid clusters of spins was extended to Is-
ing spin glasses. ' I will discuss predictions of this work
later in Sec. V, and only say here that independent cluster
models do not seem suitable for the description of three-
dimensional spin glasses.

Another class of models designed to explain the dynam-
ics of glassy systems by hierarchical rather than indepen-
dent parallel relaxation processes has been proposed in
Ref. 22, and various types of nonexponential relaxation
functions were obtained, including the Kohlrausch func-
tion exp( cot~), 0&P&—l. It is plausible that general
scaling ideas contained in that work can be applied to
analyze the stochastic dynamics of spin glasses. This
brief introduction certainly does not exhaust all ideas and
models invoked to explain the puzzling features of spin-
glass dynamics; these may be found in references provided
in cited papers.

In this report I consider equilibrium dynamics of fluc-
tuations in three-dimensional short-range Ising spin
glasses both above and below the transition temperature
Tg. Nonequilibrium relaxation far below Ts will not be
addressed. I present the results of simulations of a model
spin glass with a simple Hamiltonian, controlled distribu-
tion of disorder variables and stochastic dynamics, which
is presumably adequate for modeling of real physical
dynamic processes. The plan of the paper is as follows.
In Sec. II, I explain the spin-glass model and its dynamics,
which have been implemented in computer simulations.
Section III contains some important technical details. In
Sec. IV, I provide a short summary of static equilibrium
properties of three-dimensional Ising spin glasses recently
determined in Monte Carlo simulations. Dynamic corre-
lation functions are analyzed in Sec. V. Various defini-
tions of correlation time are reviewed in Sec. VI, and the
temperature dependence of computed spin-glass correla-
tion times is analyzed. Scaling of dynamic correlation
functions is discussed in Sec. VII. Finally, in Sec. VIII
comparison with recent experiments is performed. Main
results are summarized in Sec. IX.

II. ISING SPIN-GLASS MODEL AND ITS DYNAMICS

I will discuss a model of spin glasses defined by the
Hamiltonian

8= —g J„yS„Sy—h QS„
Xy

with Ising spins S„=+ 1, and with discrete random
nearest-neighbor interactions J„„=+J distributed in-
dependently on bonds of a simple cubic lattice with proba-
bility —, for each value. Periodic boundary conditions are
used throughout, and the magnetic field h is held equal to
zero. It is noted that although simple, this model contains
the essential features of spin glasses: randomness and
frustration. Moreover, restriction to discrete J~r should
not seriously limit the generality of results at finite tem-
peratures, because the spin-glass correlation length
diverges at a finite temperature k~Tg/J-1. 15—1.20 in
this model. ' ' ( Tg has been determined by a variety of
methods and the result always lies in this interval; now it
seems that the best choice is kzTg/J =1.17—1.18. )

Monte Carlo simulation =ssentially the only estab-
lished method currently available for investigation of sta-
tistical properties of the model (1)—is intrinsically
dynamical in nature. The simulation is an ergodic, irredu-
cible Markov process with homogeneous discrete time
evolution. A single time step corresponds to one attempt
to change the state of a single spin, and the evolution of
the system is described by the master equation (which
despite its name is merely a restatement of the Markovian
property)

P(cr, t+1)=g W(o
~

o'')P(o. ', t),

P(rr, t =0)=Po(cr)

for the probability distribution P(u, t) defined on the
phase space, i.e., space of all states o.= IS„I.If evolution
of a single state is of interest, we put Po(o)=5(o 00).
The transition-matrix element W(o'~cr) represents the
conditional probability of state cr going into state o' in a
single time step. I used the single-spin-flip heat-bath
Monte Carlo method, where W(o'~o)=0 unless states
cr, o' differ by no more than one spin, and the probability
of a single-spin change S„—+S„' depends only on the
current value of a local field acting on S, and not on S„
itself,

Prob(S„'=+1)=e"/(e "+e "),
f„=—g J„ySy+h

. y

With such transition probabilities the detailed balance
condition is satisfied, and for any initial distribution
Po(o) the "running" distribution P(o, t) converges to the.
equilibrium Boltzmann distribution as t —+ Oo.

The time unit used in this paper, Monte Carlo step per
spin (MCS), corresponds to a, time in which each spin was
given one chance to change its state. This unit aggregates
some 10 —10 spin-spin updates for lattice sizes discussed
here, which justifies the use of continuous time variable in
analysis of the data.

In order to characterize the dynamics of equilibrium
thermal fluctuations I will analyze the average properties
of trajectories in phase space, with initial states distribut-
ed according to Boltzmann distribution and evolving ac-
cording to (2). This is achieved through the study of
dynamic correlation functions. The average spin-spin
correlations
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G (x y,—t) = (S„(0)Sy(t) )
qe'&'" —&' d~e-' 'S q m

are particularly important. Here an explanation of nota-
tion is in order. Throughout this paper the angular brack-
ets represent averages over the ensemble of trajectories in
thermal equilibrium when used for time-dependent quan-
tities, or static equilibrium averages when used for time-
independent quantities. In both cases the bar denotes con-
figurationa averaging over all random bond realizations,
and/or spatial averaging over one sample, whichever is
appropriate. This averaging is essential, because, in gen-
eral, the nonaveraged correlations (S»(0)S&(t)) for dis-
tinct pairs of sites x,y (but with fixed separation x —y)
will have a broad range of values, reflecting the inhomo-
geneity of the lattice and lack of translation invariance.
This simple observation has several important conse-
quences for spin glasses with symmetric distributions of
ferromagnetic and antiferromagnetic interactions J»».

(1) The distribution of values of (S»(0)S~(t)) for dis-
tinct spin pairs and with r =x —y and time t fixed is also
symmetric, giving upon averaging over disorder

(S»(0)Sy(~)) =5»y(S»(0)S»(&) ) .

In other words, the structure factor S(q,co) is indepen-
dent of momentum transfer q. This has been seen experi-
mentally in materials with negligible residual short-range
order, and indeed should be a criterion for experimental
characterization of "good" maximally frustrated spin
glasses.

(2) As a consequence, the equilibrium (dc) susceptibility
must follow the Curie law

Such behavior was observed in my simulations.
(3) According to (5), it is sufficient to consider the func-

tion

q(&) =(S (0)S (&))=—g (S„(0)S„(&)).
1

V
„

(1) (2)qii= QS» S» =Nit Nii (9)

where N„(N») denotes the number of spins having the
same (opposite) orientation in both states, than the func-
tion d(ai, oz)=N» has all properties of a metric defining
the distance on the phase space. A related geometrical
realization of the phase space can be given: If the states cr

are identified with corners of a hypercube in a V-

dimensional space, the metric d(o&, oz) is equal to the
ininimal number of edges connecting corners o i and a'i.
Such a model of phase space may be useful to visualize
the time evolution of a state as a random walk on a V-

dimensional unit hypercube, and also establishes a rela-
tionship with Shannon's information theory: If Ising
spins are given values of O, l rather than +1, d (o i, cr2) be-
comes the Hamming distance, various dynamically de-
fined entropies and dimensions can be employed to
characterize the time evolution, etc.

Another useful correlation function which is studied
characterizes the fluctuations of the order parameter q (r)
around its. average value, and in this sense plays the role
of the order-parameter correlation function. It is the
time-dependent nonlinear susceptibility

Xsa()) X=S(0)S(t,) l,V (10)

(12)

which has been so named because it converges asymptoti-
cally to the usual static nonlinear susceptibility

Xso(t)= —g( S( )OS~( )0S„(t)S,(t))1

V

~ —g (S„Sy)'=iso.
~~~ V„

For finite systems the order parameter q(t) cannot be
used to detect any long-range spin-glass ordering [cf. (8)],
because it always decays to zero. It is advantageous to
test the rigidity of low-temperature states with another
correlation function

q = lim lim (S„(0)S„(t))
taboo V~oo

(8)

and ever since has played the central role in development
of theoretical ideas about spin glasses.

It is worthwhile to make a digression on the geometric in-
terpretation of q(t): it is a measure of the average dis-
tance traveled by the system in the phase space in time t.
Such metric construction is particularly appealing for Is-
ing spins, and indeed has been very successful in the
development of the mean-field theory of spin glasses. If
we define the "overlap" qi2 of two states oi ——fS„"'Jand
a'z ——[S„"'J,

It has been employed by Edwards and Anderson to de-
fine the spin-glass order parameter q without the notion of
the ordering fieLd:

If there is long-range order (in the V~ oo limit), then for
finite systems the statistically significant equilibrium
states should have large overlaps of both signs, and while
q(t) will average virtually to zero at very long times, its
average absolute value will decay to a size-dependent 'limit

Q=( ~q(oo)
~

). The existence of long-range spin-glass
order will be signaled by convergence of Q to a nonzero
value with increasing lattice size, and conversely Q will
scale to zero at temperatures at which no long-range order
exists. The quantity Q=(1/V)Xso could be used equally
well for this purpose.

Dynamic correlation functions (7), (10), and (12) record-
ed in my simulations will be analyzed in the following
sections. First, however, the static and dynamic behavior
of the three-dimensional Ising spin glasses observed in re-
cent simulations will be reviewed and updated. Further, I
will briefly describe some technical details of the compu-
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tations, which may be useful for critical evaluation of re-
sults and for comparison with related work. 0.5

I I I
I

I I I I I I I I I

III. RESULTS: STATIC AND DYNAMIC BEHAVIOR

Dynamics of fluctuations should be discussed in the
context of static equilibrium behavior. As everywhere else
in this work I consider only the case of zero external mag-
netic field, i.e., temperature T is the only thermodynamic
variable controlling the behavior of the system. This sec-
tion is based on results of recent Monte Carlo simula-
tions. ' ' These results are extended and updated by in-
clusion of new numerical data.

The behavior of the model (1) of spin glasses can be
described as follows. One can identify three distinct tem-
peratures, T, =4.511.. . , Tz —1.80, and Tg —1.175
separating the regions with different static and dynamic
behavior (Fig. 1). First, at temperatures higher than the
Curie point T, of the nonrandom ferromagnetic Ising
model the simple paramagnetic behavior is observed, and
the relaxation functions display the exponential decay law.
As the temperature is lowered below T„anew type of
behavior is observed in the interval extending roughly to
temperature T~ =1.80 which is marked by a broad max-
iinuin of the specific heat C„,shown in Fig. 2. In this in-
terval the effects of inhomogeneous lattice, which can be
characterized by local fluctuations in the density of frus-
trated plaquetts (and possibly can be related to the so-
called Griffiths singularities ) already influence the
behavior of the system, and are most easily seen in the
nonexponential asymptotic decay of relaxation functions.
However, in this regime the static spin-glass correlation
length as well as correlation times are very small, and in-
crease only very slowly as temperature is decreased. The
temperature region around the specific-heat maximum
marks the onset of the dramatic growth of correlation
times, as well as rapid growth of correlation length g and
nonlinear susceptibility XsG as temperature is decreased.
The divergence of correlation time —which will be dis-
cussed in Sec. IV—is displayed in Fig. 3. These diver-
gences are very well described by scaling and power laws,
with the spin-glass transition temperature in the range
1.15—1.20; current best power-law fits as well as best
finite-size scaling plots (i.e., with minimal scatter of
points, and without corrections to scaling) suggest the
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FIG. 2. Temperature dependence of the specific heat C„.
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midpoint value Ts ——1.175+0.025. With this choice of
Ts the fits and finite-size scaling (the latter, in principle,
can give better exponent estimates) give the following
values for the critical exponents: v= 1.3+0.1,
g= —0.22+0.05, y=2. 9+0.3 and from scaling relations
a= —1.9+0.3. Error estimates for the critical exponents
reflect the uncertainty of the exact location of Tg rather
than statistical scatter of the data. Finite-size scaling of
the static nonlinear susceptibility XsG, from which the ex-
ponents i1 and y are derived, is illustrated in Fig. 4. If the
exponent p can be defined (see below), this would give
P=0.5. In fact, since only le'ading divergences are con-
sidered, these numbers should be more correctly referred
to as effective exponents. The value of the dynamic ex-
ponent z is connected to definition of correlation tiine,
and will be discussed in Sec. VI.

The region below Tg is called the spin-glass phase.
Much less is known about thermodynamic properties of
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FIG. 1. Graphical representation of distinct temperature re-
gimes observed in the three-dimensional Ising spin glass.

FIG. 3. Temperature dependence of the correlation time v.,
defined by Eq. (21).
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FIG, 4. Static nonlinear susceptibility PsG for lattices of size
8, 16, 32, and 64 (left) is plotted in the scaling form (right).
The parameters are T~ =1.175, v=1.3, and y=2.9.

this phase, since most of the knowledge is based on the
finite-size-scaling analysis done for rather small lattice
sizes, and for sizes L ) 16 only at temperatures not lower
than T=1.0. The reason for these difficulties is that the
quantities used for scaling are obtained as asymptotic time
limits of various dynamic correlation functions [as in Eq.
(11)], and relaxation becomes unbearably slow below Ts.
So far, finite-size-scaling results ' ' limited to a narrow
temperature region below Tg are consistent with the hy-
pothesis that the spin-glass phase may be always critical,
i.e., characterized by vanishing static order parameter, yet
with infinite correlation length and infinite correlation
time. Such states should display algebraic decay of static
and dynamic correlations. There is not enough evidence
for the algebraic decay of static correlations; in fact, in
some bond realizations of 32 lattices the low-temperature
state appeared to be more "rigid, " as previously report-
ed."

Much greater lattice sizes and lower temperatures are
required to clarify this point. For times up to about 10s
MCS, however, the decay of dynamic correlations appears
to be algebraic in the spin-glass phase.

It should be stressed that dynamics of the spin-glass
phase is very different from the behavior of ordinary non-
random systems in the ordered low-temperature state.
There one has two time scales for T & T, and g «L, one
independent of L, and the other diverging as L~co
(what corresponds to diverging energy barriers between
distinct pure ordered states). The spin-glass phase is dif-
ferent: One cannot make such a separation and the situa-
tion is better characterized by the notion of "continuum
of time scales. " Separation into "fast" and "slow" degrees
of freedom seems to be arbitrary and meaningless, and in
finite systems the time scales where relaxation functions
have values already appropriate for the infinite-volume
limit smoothly roll over into faster decay due to finite
size.

and other quantities along a single trajectory evolving
from the state I S„(0)j are taken at intervals shorter than
the "longest time scale, " the consecutive data points are
strongly correlated, also at very long times. (Here the
longest time scale is determined in a heuristic manner as
the range of times in which single overlaps begin to as-
sume negative values and fluctuate around zero, as shown
in Fig. 5.) This requires that averaging must be done over

I I I
l

I I I I( i I I
I

1III

0.2—

~ ~
~l ~ ~

-0.2—

some others, not discussed here, were recorded for lattices
of sizes 8, 16, 32, and 64 . Since local fluctuations of
frustration density in random bond realizations are re-
sponsible for the shape of averaged correlation functions,
the data analyzed here were recorded for at least 64 dis-
tinct 8 lattices, 32 distinct 16 lattices, two distinct 32
lattices, and one 64 lattice. At higher temperatures more
realizations were often used, but at low temperatures the
extremely slow relaxation rate made it virtually impossible
to include more realizations in configurational averaging.
It is believed, and supported by error estimates, that in-
crease of the number of samples would not change signifi-
cantly the estimated average correlation functions, but a
chance of systematic deviations can be excluded only with
probabilistic arguments and not rigorously. Nevertheless,
with such range of lattice sizes it has been possible to es-
tablish for each lattice size L ( V =L ) the lowest tem-
perature and the longest time down to which the averaged
correlation functions do not differ from analogous func-
tion recorded on samples of larger size by more than sta-
tistical errors, and thus are not expected to differ from the
limiting infinite-volume form.

The other technical points which deserve attention are
recording of time correlations for individual bond realiza-
tion prior to configurational averaging, and assuring that
measurements are performed in thermal equilibrium.
First, since successive measurements of overlaps

(1/V) g &„(0)&„(t)

IV. TECHNICAL DETAILS
lO . lO

I I I I I IIII
lo7

I I I I I I I

los

Computations were performed with a fast special pur-
pose computer designed and built at ATILT Bell Labora-
tories by J. H. Condon and the author specially for simu-
lations of various random spin systems. Description of
this machine can be found elsewhere.

Correlation functions q(t), XsG(t), ( l
q(t)

l ), and also

TlME (MCS)

FIG. 5. Tail of a single trajectory (1/ V) Q„S„(0)S„(t),for
T=1.35 and a 32 lattice. The "longest time scale" is heuristi-
cally determined as the decade of time in which the overlaps be-
gin to fluctuate around zero. Dots represent q (t) averaged over
170 trajectories.
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many statistically independent trajectories, originating
from initial states drawn independently from the equilibri-
um Boltzmann distribution. Second, care has been taken
to assure that measurements have been performed in
thermal equilibrium, which is a nontrivial problem for
this slowly relaxing system. The entropy factor, rather
than the energy value, is essential for correct thermo-
dynamic averaging, because of very high degeneracy of
energy levels. The required Boltzmann distribution of ini-
tial states was obtained as follows. Slow cooling to low
temperatures at which measurements were done was
performed with small temperature decrements
(KT=0.01—O.OS), and after each change the system was
allowed to relax to equilibrium over a time longer than the
longest time scale determined at the previous temperature
stop. Once the equilibrium state was established at the re-
quired temperature, the measurements were performed
over a time often several orders of magnitude longer than
the time in which q(t) decays virtually to zero. A collec-
tion of independent equilibrium states was saved and
stored at each temperature, and thus successive cooling
and measurement cycles could be initialized with already
relaxed configurations, rather than beginning again at
high temperatures.

Obviously, for each lattice size a value of low tempera-
ture was finally reached at which the relaxation became so
slow that complete correlation functions could no longer
be recorded. At this point measurements were discontin-
ued. An exception was made for the short- and
intermediate-time measurements for 32 lattices below
T=1.10, since the comparison with results obtained in
fully relaxed 16 lattices showed that the functional form
of correlation functions and these temperatures and in
these time regimes is not visibly modified by possible
nonequilibrium effects.

IU00

IQ 2
CT

IO

IO-4
IO l5
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FIG. 6. Dynamic correlation functions q (t) at high tempera-
tures. From bottom to top, T=5.0, 4.5, 4.0, 3.5, 3.0, and 2.0.
Error bars are shown unless smaller than point size. Continuous
lines are fits described in the text. Lattice size 64 .

V. THE SHAPE OF DYNAMIC
CORRELATION FUNCTIONS

0.2

Time dependence of dynamic correlation functions q (t)
and XsG(t) at different temperatures is discussed in this
section. The averaging of correlation functions over suffi-
ciently many random bond realizations has been per-
formed to obtain reproducible results. For each individu-
al bond realization averaging has been done over many
statistically independent trajectories. Typically between
20 and 500 initial states were taken depending upon lattice
size and time range studied. The variation among single
trajectories is strongly damped by spatial averaging in-
cluded in definitions (7) and (10), when dynamic fluctua-
tions occur on length scales much shorter than the lattice
size; however, at long times were fluctuations are due to
correlated processes occurring on longest length scales
present at a given temperature, much averaging has to be
done to obtain smooth time dependence of correlation
functions, as can be readily seen from Fig. S.

The autocorrelation functions q (t) at temperatures
above Tg and lattice size 64 are shown in Figs. 6 and 7.
All recorded data points are shown together with statisti-
cal error bars. Continuous lines correspond to fits
described later in this section. At short times and at
higher temperatures the errors are smaller than the
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TIME (MeS)

FIG. 7. Dynamic correlation functions q (t) above Tg.
Short-time behavior is well seen in the semilogarithmic plot
(top), long-time behavior can be seen only in the log-log plot
(bottom). Data points are shown together with error bars.
From left -to right, the temperatures are T=2.50, 2.00, 1.80,
1.70, 1.60, 1.50, 1.45, 1.40, 1.35, and 1.30. Lattice size 64 .
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FIG. 8. Dynamic correlation functions q(t) for temperatures
around and below Tg. Data are shown together with error bars.
Temperatures T=1.30, 1.25, 1.20, 1.10, 1.00, 0.90, and 0.70
(from bottom to top). Lattice size 32 .

linewidth. Comparison with analogous sets of functions
recorded for smaller lattice sizes (performed like that in
Fig. 9) has shown that for temperatures T~ 1.30 the data
in Figs. 6 and 7 are not influenced by finite-size effects,
i.e., the shape of correlation functions is the same as for
the infinite-volume liinit. This observation is additionally
supported by the observation that the correlation length is
not greater than about 15 lattice spacings at the lowest
temperature displayed ( T= 1.30).

Time dependence of q(t) around, and below Ts is
shown in Fig. 8, this time for lattice size 32 . For tem-
peratures below T=1.10 the decay has not been followed
until q(t) essentially decays to zero (within errors) as it
has been done for higher temperatures, because even for
this finite lattice and my fast computer this would require
an astronomical coinputing time. Smaller lattices, howev-
er, still relax completely below Tg, i.e., negative contribu-
tions to q(t) are frequently recorded. This finite-size ef-
fect is shown in Fig. 9, when I compare the correlation
functions q (t) at fixed temperature and time as the lattice
size changes. I conclude that the plots of q(t) shown in
Fig. 8 are not influenced by finite-size effects for T & Ts,
while finite size clearly speeds up the relaxation at long
times in plots corresponding to temperatures little above
Tg ( T= 1.30, 1.25, 1.20 in Fig. 8).

A look at the log-log plots of q (t) shown in Figs. 7 and
8 tells us that as temperature is decreased the longer part
of the decay can be very well approximated by straight
lines. This is a sign of developing scale-invariant fluctua-
tions reflected in the power-law decay of correlation func-
tions. Also, another important information is contained
in Figs. 8 and 9. One cannot identify any simple descrip-
tion of fluctuations at low temperatures in terms of well-
separated "fast" and "slow" time scales as some authors
suggested: One sees a continuum of time scales building
up the algebraic decay law, and the influence of finite size
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FIG. 9. Effect of finite-lattice size on relaxation below the
transition temperature Tg. Data for T=1.10 and lattice sizes
8, 16, and 32 are shown: it is seen that for a 16 lattice (mid-
dle plot) relaxation is not affected by finite size for times t & 10
MCS, and relaxation in 32 lattices (top) is not likely to be af-
fected for all times shown ( t & 10 MCS). Relaxation of smaller
lattices of size 8 is considerably faster and thus strongly influ-
enced by finite size.

q(t) =c (13)

Here all four parameters c, x, co, and p may depend on
temperature. The data points for correlation functions

does not appear as an easily identifiable L-dependent
long-time scale reflecting the energy barriers between dis-
tinct ordered states, but rather a smooth rollover of the
algebraic decay into a faster decay induced by a finite-size
cutoff is seen at longer times.

Let us now return to the long-time tails of q(t) at
T & Tg, shown in Figs. 6 and 7. In order to see if at
asymptotic times q (t) decays exponentially —and to get a
hint at possible alternative nonexponential decay laws —it
is advantageous to display the ratio r(t) = t /lnq (t)—
versus time t in a doubly logarithmic plot, because for
(asymptotically) exponential decay such curves would ap-
pear as (asymptotically) horizontal straight lines. Note
that the standard way of looking into exponential
decay —plots of lnq(t) versus time —is not good here, be-
cause such a method effectively displays only one decade
of data.

The plots of —t/lnq(t) versus t are shown in Fig. 10.
The lines of data points clearly do not bend and do not
flatten out at all. The straight lines seen in Fig. 10 not
only show that the decay is never exponential, they clearly
indicate that at longer times the function ~(t) = t/lnq (t)—
is well described by a fractional power of t, t' ~ with
0&p& 1, and that exponent p slowly decreases with tem-
perature.

It is a simple matter now to combine the scale-invariant
decay observed at shorter times with the asymptotic
Kohlrausch behavior, and to propose the empirical for-
mula
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FIG. 10. Correlation functions q(t) shown before in Fig. 7
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Data points would appear as horizontal lines if
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FIG. 12. Temperature dependence of the exponent x defined
by Eq. (13) above T~, and determined from the algebraic decay
of q{t) around and below Tg. The arrows mark Tg and T, as
in Fig. 11.

q (t) at each value of the temperature in the range
1.30& T&5.0, were carefully fitted to the function (13)
using the weighted nonlinear least-squares method. The
best fits are shown together with the data in Figs. 6 and 7.
The fits are excellent, and as can be seen they hold tightly
both at short and at long times. In the limit of t~0 the
fitting function (13) should be modified in order to satisfy
the normalization q(0) =1, but this is not essential and it
can be seen that (13) describes the data very well even for
times of order 1 MCS. Time scales shorter than 1 MCS
are of no interest here. Below Tg, i.e., for T & 1.10, the
correlation functions shown in Fig. 8 were fitted to the
power law q(t)=ct

Temperature dependence of exponents p(T) and x (T) is
presented in Figs. 11 and 12. Several features are worth
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FICx. 11. Temperature dependence of the exponent P defined
in Eq. (13). The arrows mark the spin-glass transition tempera-
ture Tg and the Curie point T, of nonrandom Ising model.

stressing. First, as temperature approaches T, =4.511.. .
(the Curie point of the nonrandoin Ising model) from
below, exponent p(T) tends to a constant value p= 1, i.e.,
as expected usual exponential decay is seen above T, .
Second, both exponents change linearly with temperature
T [or with (T —Tg)] in a very good approximation as
temperature approaches Tg from above. Third, a change
in the temperature dependence of exponents x (T) is seen
below Tg.

Discussion of the shape of correlation functions q(t)
presented so far in this section can be repeated mutatis
mutandis for the normalized time-dependent nonlinear
susceptibility,

[XsG(t)—XsG(t = a) )]I[& XsG(t = co )] . —

Normalization is necessary in order to compare different
lattice sizes, because XsG(0)= V. Normalized data have
been also fitted to functional form (13) above Ts with
very good results, the only obvious difference is that at
each temperature the corresponding exponent x(T) is
twice as large as the exponent for q(t) (cf. Fig. 17). One
set of Xso(t) data is shown for illustrative purposes in Fig.
13, where asymptotic decay to a constant value XsG, as-
sumed in Eq. (11), is easy to see. In fact, nonlinear sus-
ceptibilities determined in this manner for distinct lattice
sizes were used to find finite-size-scaling functions and
static critical exponents.

Time dependence of the averaged absolute value of
overlaps ( l

q(t)
l ) defined by Eq. (12) looks similar to

that of XsG(t), and the asymptotic value Q = (
l q( oo )

l )
can be easily determined. One or two decades of time are
required in the asymptotic region to ascertain that there is
no further decay. The values of Q for different lattice
sizes are plotted in Fig. 14. As expected, at higher tem-
peratures the "order parameter" Q scales quickly to zero
with increasing lattice size. However, in the narrow range

I
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FIG. 13. Decay of the dynamic nonlinear susceptibility
gsG(t) with time. Data points averaged over 32 distinct lattices
of size 16, for temperatures T=2.0 (bottom), 1.8, 1.6, 1.5, 1.4,
1.3, 1.2, and 1.1 (top).

of temperatures below Tg one does not see a rapid conver-
gence of Q to a nonzero limit, which is expected to hap-
pen in ordinary transitions to an ordered state. The issue
of the existence of a genuine long-range order below Tg
would be resolved if low-temperature data were available
for larger lattice sizes, this is not possible at present. Data
shown in Fig. 14 are consistent with the hypothesis that
spin-glass phase remains in the critical state below Tg.

Further analysis of the dynamic correlation functions in
the framework of dynamic scaling theory will be
presented in Sec. VII. . Below, several qualitative observa-
tions on the nature of relaxation processes will be provid-
ed.

The information gathered during recording of correla-
tion functions for individual bond realizations (before
configurational averaging) can be used for a tentative ex-
planation how the long-time Kohlrausch behavior
exp( rot~—) arises from averaging over fluctuations. It ap-
pears that in the d=3 spin-glass case this form is due to
averaging over approximately independent relaxation pro-
cesses occurring "in parallel" in different geometric envi-
ronments in the random lattice. For each fixed, small re-
gion the asymptotic behavior of locally defined "q (t)" is
different, and not necessarily of form (13), only after
averaging over all distinct local bond configurations the
form (13) is obtained. The functional form of the aver-
aged correlation function is reproducible: even when dif-
ferent lattice sizes are compared at temperatures where
the correlation length is much shorter than the lattice
sizes, and finite-size effects cannot be seen, the same
shape is observed once the averaging over sufficiently
many bond realizations has been performed.

A more direct demonstration that the long-time
Kohlrausch behavior arises from averaging over indepen-
dent fluctuating regions of the lattice has been achieved as
follows. I have recorded with high precision the correla-
tion functions independently on 32 distinct lattices of size
16 at T=2.00; at this temperature the nonexponential de-
cay is clearly seen, but correlation length g is of the order
of few lattice lattice spacings. All individually recorded
functions q(t) are plotted together in Fig. 15(a) for loga-
rithmically spaced values of time. While only a very
small spread of values is seen for short times, differences
among distinct bond realizations produce a substantial
scatter of values of q(t) at longer times. Nevertheless,
after averaging these individual functions q(t) one obtains
a smooth Kohlrausch function, exactly the same as
recorded for other sizes, and in particular the same as that
fitted to data recorded on a 64 lattice. This effect of con-
figurational averaging is demonstrated in Fig. 15(b).
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FIG. 14. Temperature dependence of the "order parameter"
( I

q(IIo)
t

) for lattice sizes L=8 (top curve), 16, and 32 (bot-
tom curve). The lines are guides for the eye only. The arrow
marks spin-glass transition temperature T~.

FIG. 15. (a) Correlation functions q(t) 'recorded for 32 dis-
tinct 16 lattices at T=2.00. Logarithrnically spaced data
points are connected by straight-line segments. Each curve
represents the average over 512 trajectories. Substantial fan-out
of values at long times is seen. (b) The circles correspond to
data of (a) averaged over bond realizations. They are superim-
posed on the fit to q (t) recorded for size 64, shown in Fig. 7.
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It can also be seen that the long-time behavior of the re-
laxation functions above Tg does not result from averag-
ing over the contributions of independently relaxing, vir-
tually decoupled "rigid unfrustrated compact clusters, " as
was proposed in Ref. 21. The asymptotic exponential log-
arithmic behavior, q(t)-A exp[ 8(—l nt) ] proposed by
these authors does not match any part of the long-time
tails of observed correlation functions shown in Figs. 6
and 7. (Of course, one does not expect this function to ap-
proximate the data at shorter times. ) Disagreement with
predictions of Ref. 21 indicates that the approximation of
the d=3 spin-glass model at higher temperature (but
lower than the Curie point T, of the pure system) by a
collection of independent, "rigid" unfrustrated clusters of
tightly coupled spins is not suitable, and does not describe
well the processes which actually take place.

I have also examined directly the local spin-spin corre-
lation functions (S~S„)for all pairs of sites x,x' and dif-
ferent separations x —x' in order to see how spin correla-
tions (S„S„)are correlated with random lattices on
which they "live." This was done for a couple of 32 lat-
tices and a wide range of temperatures. Although the dis-
tribution of values of local correlations at a fixed distance
and temperature is very broad, this analysis did not show
any obvious candidates for strongly correlated compact
clusters of spins which would be only weakly coupled to
the rest of the lattice. An extended account of the investi-
gation of "geometry of spin-glass ordering" will be
presented in a separate publication.

VI. THE CORRELATION TIMES

In this section the temperature dependence of dynamic
correlations will be examined. First, however, the very
notion of the correlation time will be reviewed. The defi-
nition of the correlation time, just like the definition of
the (static) correlation length g, is not unique. Various
definitions of the latter were elegantly discussed in Ref.
35, where the notions of the "true correlation range" and
"effective correlation range" were compared, as well as
other definitions of g based on different moments of the
spatial correlation function of the local order parameter
were introduced. The situation with dynamic correlations
is similar.

Using a continuous (rather than discrete) time version
of the master equation

Bt
P(o, t) = g I (o

~

o')P(o', t),

(S„(0)S„(t))= g ~
(S„P„)~'e-"'. (16)

f dyy +'p(y)= f dt t"q(t) (18)

and also can be obtained from measurements of ac suscep-
tibilities at low frequencies (see Sec. VIII), as well as from
some other experiments. Normalization is not necessary
in (18), since q(0)=1.

The simplest characterization of the distribution p(r) is
the average correlation time

r,„=f dy yp(y) = f dt q(t) . (19)

Although this formula gives more weight to shorter time
scales than to long-time behavior, it is substantially less
sensitive to noise in the data and to the choice of upper
cutoff in numerical integration. It should be noted, how-
ever, that ~„is not equal to the correlation time ~ appear-
ing in conventional scaling formulas. The dynamic scal-
ing hypothesis, valid for T~Tz and t &&1, can be writ-
ten in the following form for the position-independent
correlation function q (t):

It is more convenient and customary to use the correlation
times r= 1/co, and to write, after configurational averag-
1ng

q (t) = (S„(0)S„(t)) = f dip(r)e

The weights p(r) are interpreted here as the averaged
correlation coefficients of individual spins with exponen-
tially relaxing eigenvectors of I and are normalized by

f dr p(r) = 1.
For any finite system, as well as for some infinite sys-

tems, there will be a gap between the smallest eigenvalue
coo and 0. This would make it possible to define the long-
est relaxation time r,„=1/coo, which is a direct analogue
of the "true correlation range" of Ref. 35. The actual ob-
servation of asymptotic exponential decay, exp( —t/r, „),
however, is possible only if the gap is sufficiently wide.
Even for finite systems the appearance of nonexponential
decay will result from dense clustering of eigenvalues
close to co=0. In such a situation one must deal with the
entire distribution of correlation times p(r) in order to
characterize the dynamics of fluctuations. It is con-
venient to describe the distribution in terms of its mo-
ments, because they provide a direct link between theory
and experiment. The moments have a simple representa-
tion

the dynamic correlation functions can be represented in
the spectral form as a superposition of exponential fac-
tors. Consider the eigenvectors and eigenvalues of the sto-
chastic matrix I:

(20)

pl (
~

o')P„( ')= —coP„(o), (15)
r=(T —Ts)

where co )0. One can introduce the scalar product, which
coincides with thermodynamic averaging, and orthonor-
malize the eigenvectors P„.Straightforward eigenvector
expansion gives then the following representation of the
single-spin autocorrelation function,

Here z is the dynamic critical exponent. Note that I put a
factor of —, in the definition of exponent x: this should be
present because for spin glasses q (t) plays the role of the
order parameter rather than order-parameter correlation
function appearing in Ref. 34; an analogous factor of —,

'

can be seen in the case of simple ferromagnets when relax-
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r= f "dt tq(t) f
= f, 4~'p(~ f, @vs(~),

which is different from r,„.Nevertheless, if dynamic
scaling holds, one can determine the dynamic exponent z
from r,„aswell, since

dt q(t)

(21)

ation of magnetization, (M(t) ), is compared to the mag-
netization correlation function, (M(0)M(t) ). Formula
(20) is valuable, since it allows determination of the
dynamic exponent z from algebraic decay of dynamic
correlations close to the critical point.

Integration of the scaling form of the correlation func-
tion q(t) (together with proper normalization of the scal-
ing function) allows identification of the relevant correla-
tion time
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with exponent x defined in (20), and const
=f dyy 'Q(y). This relation has not been recognized
in earlier studies of spin glasses, and the exponent z quot-
ed previously' should be more properly named z„,with

z,„=z(1—x)=(2z —d +2—i) )/2 .
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FIG. 16. Power-law fits ~=c ( T —T~) '" and
—Z V 3z,„=c,„{T —Tg) " for the relaxation times. Lattice size 64,

T & 1.30.

Differences between various definitions of the correlation
time should also be remembered when scaling analysis of
experimental data is performed.

Three complementary methods will be used here to
determine the exponent z from correlation functions
described in the preceding section.

(1) r„(T)will be obtained from numerical integration
of the data for q (t) for use both in direct fitting and in
finite-size-scaling analysis.

(2) Correlation time r(T) defined in (21) as well as
another estimate of r,„will be obtained from integration
of the fitting function (13) for lattice size 64 .

(3) Exponent x, defined in (20), will be determined from
the power-law decay of q (t) or XsG(t) at T =Ts.

These three methods yield the estimates of exponent z in
combination with static critical exponents which were
quoted in sec. III, and therefore simultaneously provide
another consistency test Hnking the static and dynamic
critical behavior. The average correlation times r,„(T)for
lattice size 64 computed by numerical integration of the
data [with log-linear extrapolation for T&1.40, where
value of q(t) and the cutoff time would be larger than
10 ] agree well with those computed by numerical in-
tegration of the fitting function (13).

For smaller lattice sizes finite-size effects at tempera-
tures close to Tg exclude any direct fitting procedure, and
only the values of ~,„(T)obtained by numerical integra-
tion of data are considered. The correlation times r(T)
for size 64 have been obtained by numerical integration
of the fitting function.

Power-law fits for ~,„(T)and ~(T) are presented in Fig.
16. The value Tg =1.175+0.025 has been used for plot-
ting. The error estimates for the exponents include the
uncertainty of the estimate of Tg, this error rather than

scatter of the data is the major source of the magnitude of
error bars. The fitting yields z v =7.9+1.0 and
z,„v=7.0+0.8, from which I get z =6.1+0.3 andz„=5.4+0.2.

Now I consider the average relaxation times for lattice
sizes 8, 16, 32, and 64 . The scaling function e(y), ap-
pearing in the finite-size dynamic scaling relation

„(T)=L"e[L' (T —T )/T ] (23)

x (Ts)=(d —2+i')/2z =0.065+0.005 .

Again, the error estimate results from uncertainty of the
Tg estimate, and not from scatter of the data. The rnid-
point value x ( Tz) =0.065 corresponds to Tz ——1.175. The
value of the dynamic exponent z obtained by this method
1s

has been obtained. The minimal scatter of data points is
achieved again by restricting Tg to the interval 1.15—1.20;
with this uncertainty and the choice of Tg

——1.175+0.025
I can align all data closest to a single curve by taking
v=1.3+0.1 and z,„=5.4+0.4, in good agreement with
the value of z,„vdetermined by direct power-law fit to
r,„(T)and with the estimate of v from analogous finite-
size-scaling analysis of nonlinear susceptibility, direct fit-
ting of g as well as finite-size scaling of the so-called re-
normalized coupling constant.

Exponents governing the algebraic decay of the order-
parameter function q(t) and its susceptibility XsG(t) are
shown in Fig. 17 for temperatures in the critical region
and below Tg. Exponents for XsG(t) are twice larger than
for q(t), as expected from scaling. Variation of x(T)
with temperature in the critical region above T& seems to
be linear to a very good approximation. Different tem-
perature dependence is observed below Tg. From this plot
we find
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FIG. 17. Exponents x(T) characterizing the algebraic decay
of q(t) (lower curve) and Pso{t). Exponents measured for non-
linear susceptibility are exactly twice larger than for q (t) at each
temperature. Straight lines are linear fits to the data in the criti-
cal region, a change of temperature dependence at Tz is well
seen.

VII. SCALING OF CORRELATION FUNCTIONS:
CORRECTIONS TO SCALING

In view of the success of the dynamic scaling hy-
pothesis in explaining the temperature dependence of
correlation times, it is important to see if other predic-
tions of dynamic scaling are also satisfied. The question
is: Is the empirically found shape of the relaxation func-
tions proposed in formula (13) consistent with the scaling

z =(7.7+0.5)(1+g)=6.0+0.8

when the estimate of ri= —0.22+0.05 quoted earlier is
used, and it agrees well with the number estimated from
the analysis of relaxation times.

Different methods of analysis described in this section
consistently support the view that the growth of correla-
tion times as T—+T~ is well described by critical slowing
down, and distinct methods used to determine the dynam-
ic exponents taken together yield the value of z =6.0+0.8,
and z,„=5.5+0.5 or equivalently that the exponents
which can be directly measured in experiments '. are
z,„v=7.2+0.1 and z v =7.9+ 1. Small differences be-
tween dynamic exponent estimates obtained from the de-
cay of q(t) at Tg on one hand and from correlation times
aboue Tg on the other can be attributed to corrections to
scaling, which are discussed in the next section.

law (20), if exponents x(T) and P(T) are temperature
dependent, as shown in Figs. 11, 12, and 17? In order to
reconcile the temperature dependence of the parameters
with scaling, we remind the reader that, generally speak-
ing, corrections to scaling should be included in (20), and
one should have instead, for T~T~,

q(t) =r "Q(ilr)[1+t 'Q&(r A)+ ] . (24)

The first- and higher-order correction terms are expected
to be responsible for the temperature dependence of pa-
rameters in the empirical formula for q(t) found in Sec.
V, which obviously is not written in the scaling form.
Such a working hypothesis is more natural at this stage
than an ad hoc assumption of some new anomalous
dynamic scaling hypothesis, because conventional dynam-
ic scaling predictions worked well in explaining the rela-
tion between the dynamic exponent z characterizing the
divergence of correlation times at Tg and the power-law
decay of dynamic correlations. It should be said, howev-
er, that deviations from conventional dynamic scaling are
not unthinkable for at least some random systems, and
indeed have been proposed recently for dilute magnets at
percolation threshold.

Now, formula (24) is not useful for fitting the data
when the form of functions Q, Q &, . . . , and the ex-
ponents are not known a priori; an approximation to (24)
obtained from Taylor expansions obviously contains so
many free parameters that anything could be "explained. "
Therefore, in order to see if the observed temperature
dependence of exponents x(T),P(T) is consistent with
corrections to scaling, I will proceed as follows. When T
approaches Tg, long-time tails of q(t) are strongly influ-
enced by finite-size corrections and cannot be used in the
scaling analysis which is appropriate for the infinite-
volume limit. But short- and intermediate-time behavior
is not affected by finite size for times t & 10 MCS already
for lattices of size 16 and 32 .

Therefore, the predictions of the conventional dynamic
scaling hypothesis that might apply to these time scales
can be verified, especially if not too many free parameters
need to be introduced. I have looked at the variation of
q(t) with temperature at fixed time t, since it is reason-
able to assume that if dynamic scaling holds, one should
have the expansion

q ( t; T)=q (t; Tg ) —a
& ( T —Tg )

' + (25)

Here one compares the value of the function q(t) at tem-
perature T above Tg with the value of q(t) exactly at Tg
at fixed time. The correction exponents b, ~, 5& and the
amplitude a

&
are, of course, independent of temperature.

In order to verify if formula (25) holds, I have exam-
ined the data in four decades of time: t=10, 96, 1024,
and 10240 MCS, and for temperatures in the range
1.20& T&1.50, which is quite generous as the dynamic
critical regime need not extend so far from Tg, which will
be taken to be Tg ——1.20 in this analysis. I have plotted
the differences q(t;Tg) q(t;T) as functions of t—and
T —Tg in order to test the hypothesis (25), viz. to see if

ln[ q ( t; Tz ) q( t; T) ]= u ( t) +b
&

l—n( T —Tg ),
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time scales, and are well probed by low-frequency ac sus-
ceptibility measurements. The simplest, and most corn-
monly used experimental measure of a "characteristic
time" 7- which is some sense describes the dynamic range
of fluctuations is obtained from the temperature Tf(v) at
which in-phase linear susceptibility X'(v) reaches a max-
imum at fixed frequency v by a relation ~(Tf ) =v '. At-
tempts were made to estimate the dynamic exponent
from the formula

r(Tf ) =~o(1—Ts/Tf ) (26)

~-3
IO I I I«ll I I I (1 »!t

IO lo IO 6 IO IO IO ~

t 4I

I (»«l I I I( ««l «!I »«l » 1(d'«l

IO ~ IQ IO IO IO

FIG. 18. Dynamic correlation functions q(t) from Fig. 7 are
plotted here in the scaling form c.q(t)=g(t/r). Parameters c
are obtained by matching the correlation functions so that
minimal scatter of points is obtained. Values of correlation
times v( T) were determined as described in Sec. VI.

In this section I will outline the relation of the present
work to experimental characterization of the dynamics of
spin glasses. One should keep in mind that samples used
in experiments may not satisfy the symmetry condition (5)
(which is important for comparison of results) due to
chemical clustering and residual short-range magnetic or-
der. This feature complicates the interpretation of experi-
mental data. Here I will assume a working hypothesis
that strongly cooperative phenomena and scaling observed
in the vicinity of spin-glass transition are not distorted too
much by possible effects of short-range clustering.

Fluctuations at temperatures close to Tg involve long-

with u(t)=lnaj+5ilnt. . First, for each value of time t
the data were plotted in the above form as functions of
ln(T —Tg) in order to see if straight lines are obtained,
and the slope A~ is the same for all times. Then I plotted
the intercepts u (t) versus lnt; they should lie on a straight
line with slope 5~.

I have found that even for this wide range of tempera-
tures ( Tz & T & 1.50) the strong scaling prediction (25) is
satisfied quite nicely for times t &103, while for longer
times systematic deviations get progressively larger at
higher temperatures. One would need higher-order
corrections in (25) to describe longer time scales and
higher temperatures. The fitted values of parameters are
also reasonable: a =2.65, 6&-1.1, and 6~-0.17.

In conclusion I would say that the shape of relaxation
functions q(t) determined in this work is consistent with
conventional dynamic scaling hypothesis if one allows for
non-negligible corrections in the scaling formula (24). In
fact the data shown in Fig. 7 can be plotted in the scaling
form (Fig. 18), but systematic deviation of data from what
should be a single curve are clearly seen at closer inspec-
tion.

VIII. EXPERIMENTAL SITUATION

X"(co)=XTf dip(r)
1 +CO

In the limit of small frequencies one obtains

lim —, = f d~ rp(r) =r,„.1 X"(co)
11!~0 CO X (CO)

(28)

This is the average correlation time, and definition (28)
coincides with formula (19) if condition (5) is (approxi-
mately) satisfied. The estimate of z,„vmeasured in the
En04Sro 6S sample is z,„v=7.2+0.5, which is in agree-
ment with the number 7.2+1 obtained in Monte Carlo
simulations. Very recently the same method has been
used in the experiment with Mn aluminosilicate spin
glass, and the value of z,„v=7.6+0.2 has been obtained
from the best fit. In both cases it has been found in addi-
tion that scaling laws for ~,„(T,H) are well satisfied.

It is interesting to note that also the correlation time ~
introduced in Eq. (21) could be obtained from these mea-
surements, if one uses another formula

1 XT—X'(CO)lim—
III~0 CO X (CO)

(29)

which is obtained from (27) in an analogous manner. It
would be very interesting to analyze experimental data us-
ing both methods; in fact Eq. (29) which [unlike (28)] in-
cludes terms of order (cor) in the expansion can be more
accurate at small, but finite frequencies.

At present experiments do not permit a good deter-
mination of. the shape of the dynamic correlation function
q (t). At least in principle, however, if the structure factor
S(q, co) is approximately independent of q one could cover
a fantastic range of times scales from 10 ' to about 1 sec
by combining the neutron spin echo, muon spin relaxa-

The trouble with formula (26) is that it is only a rather
crude approximation (even for exponentially relaxing sys-
tems) to any definition of correlation time based on mo-
ments of dynamic correlation functions, and thus it is not
very useful for comparison with theoretical predictions. I
expect that (26) can give only some feeling about the mag-
nitude of dynamic exponents which are defined by the
scaling relations. In contrast to (26), ac measurements can
be analyzed in a more sophisticated way to determine
directly the dynamic critical exponent. A method recent-
ly used begins with standard relations (co =2mv)

X'(co)=XT f dip(r) 1

1+CO

(27)
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tion, and ac susceptibility measurements. Existing compi-
lation of data for CuMn spin glass shows that decay is
certainly not exponential even at short times above Tg,
and that below Tg the correlation function does not ap-
pear to decay to a constant even at times of order 10
sec. More experimental data on the shape of correlation
functions would be most interesting.

IX. SUMMARY

I have presented the description of the dynamics of
equilibrium fluctuations in Ising spin glasses. For the
first time the analysis was performed in a wide range of
time scales, and for both high and low temperatures, in
large-scale Monte Carlo simulations. The computation
took. over half a year of time on the special purpose'com-
puter, which was necessary to probe the long-time
behavior and to reduce statistical errors. This amount of
computing can be roughly compared to several years of
the Cray-1 time. The results are encouraging, and the
simple-model Hamiltonian (1) appears to have a similar
relation to at least some real spin glasses as the ordinary
Ising model has to real nonrandom magnetic materials.

The main results can be summarized as follows.
(1) Decay of dynamic correlations is nonexponential

below the Curie point of the nonrandom Ising model.
Above Tg = 1.175+0.025 the empirical formula
q(t)=ct "exp[ cot~j, with t—emperature-dependent ex-
ponents x and P, provides an excellent fit to the data both
at short and long times. The power-law decay stretches to
ever longer times as the temperature approaches Tg.
Below Tg only power-law decay could be observed at all
time scales which are not influenced by finite-size effects,
and the temperature dependence of exponent x(T) was
found to be different from that seen above Tg. Nonex-
ponential decay can be formally described by a distribu-
tion of correlation times p(r), and it has been proposed
that in this system the asymptotic Kohlrausch function
results from averaging over approximately uncorrelated
contributions of localized fluctuations which are due to
local variations of the density of frustration in an inhomo-
geneous lattice. A model of independent rigid clusters
does not provide the appropriate description of these pro-
cesses.

(2) The correlation times diverge rapidly when tempera-
ture approaches Tg from above. The divergence is well
described by a power law r= ro( T/Tg —1 ) '", with
zv=7. 9+1 for a correlation time defined as the normal-
ized second moment of p(r). The average correlation time
diverges with the exponent z,„v=7.2+1. The dynamic

scaling hypothesis establishes the scaling laws involving
these two and other exponents, and I find that these rela-
tions are indeed satisfied when separately computed static
critical exponents are substituted.

(3) The dynamic correlation function does not scale in a
simple way. One can argue that this is due to corrections
to scaling, and while conventional dynamic scaling indeed
appears to be sufficient to explain the data, a possibility
that a modified scaling law should be used for random
systems like spin glasses cannot be excluded.

(4) The magnitude of critical exponents, and the rather
unusual behavior of the spin-glass phase below Tz are not
typical for a simple phase transition to a state with long-
range order. This suggests that d=3 is either a marginal
dimension, or close to it. So far, scaling arguments in-
volving a rather narrow range of temperatures below Tg
and lattice sizes I.& 16 are consistent with the hypothesis
that the spin-glass phase is always critical at all T & Tg,
i.e., that there is no true long-range order but rather that
static and dynamic correlations decay algebraically. An
earlier study showed that static correlation functions ap-
pear to decay to a constant below Tg. This could be an
effect of periodic boundary conditions, or of inadequate
number of samples used for configurational averaging.
On the other hand, the apparent critical behavior at
T & Tg could equally weil result from peculiar finite-size
effects, not unlike those seen in one-dimensional spin
glasses with long-range interactions. So far, the issue of
the nature of the spin-glass phase has not been completely
resolved. Further work, both conceptual and numerical,
is needed to clarify this point.

(5) Dynamic critical exponent z„v=7.2+1 is quite
close to the experimental value of about 7.0—7.5 recently
measured for two insulating spin glasses with short-range
exchange interactions. Let sophisticated experimental es-
timates of the dynamic exponent for metallic spin glasses
give smaller values. The static critical exponents obtained
from numerical simulations, in particular the nonlinear
susceptibility exponent y=3 and specific-heat exponent
a = —2 are also quite sensible when compared with exist-
ing experimental data. Further experimental work, at
lower frequencies and with higher precision, would be
very desirable.
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