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Static scaling in a short-range Ising spin glass
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The nonlinear ac susceptibility y'„I of the short-range Ising spin glass Feo &Mno, TiO, has been
measured using a superconducting-quantum-interference-device magnetometer. The spin-glass tem-
perature, Tg, and the critical exponent y were estimated from the temperature dependence of the
quadratic field term of y'„&, yielding Tg =20.70 and y=4.0. Static-scaling analyses, using different
scaling equations, gave similar results. Using y and results from previous dynamic-scaling analyses,
a number of critical exponents have been obtained through different scaling relations, e.g. , 6=8.4
and v=1.7. The results support the existence of a finite-temperature phase transition in a three-
dimensional Ising spin glass.
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The response to an applied time varying magnetic field,
H =H0+h singlet, where co is the angular frequency, can
be calculated using Eq. (1). For h/Ho «1, the ampli-
tude of the ac component of the magnetization M„can
be written:

~~ =+0k +3+2H0h +5+4H0h +7y6H0h + (3)

DifFerentiating with respect to the time varying field gives

y'(co) =8M /t)h =y +3y H +5y H +7y H +
(4)

The question whether the spin-glass transition is a true
phase transition or a gradual freezing of the magnetic
moments has been discussed during two decades of
research. To describe critical phenomena in magnetic
systems, the Ising model has played a major part. Con-
cerning Ising spin-glass systems, no analytical solution to
the problem exists. However, utilizing Ising models, both
Monte Carlo (MC) simulations' and high-temperature
series expansions give strong indications of a phase tran-
sition at a finite temperature. Therefore, comparative
studies on spin-glass materials that closely image a 3D Is-
ing model system are of utmost importance to shed realis-
tic light on this problem.

The magnetization in a spin-glass system may be ex-
pressed in odd powers of the magnetizing field, H:

M =yoH+y2H +y4H +y6H +
If a phase transition occurs at a finite temperature, T,
the linear susceptibility term y0 is nondivergent, whereas
the cubic term g2 and higher-order terms diverge in the
critical region. ' Thus, to investigate a possible critical
behavior in a spin glass, the adequate quantity to measure
is the nonlinear susceptibility, g„&, defined as follows:

In accordance with Eq. (2), we define the nonlinear ac
susceptibility y„'& as

aM„
+nl +0

In the low-field limit (HO~0), yz always dominates y'„t.
With increasing field the inAuence of higher-order terms
becomes significant, and a deviation from an H0 depen-
dence will be observed. As the temperature approaches
T, this deviation begins at continuously lower fields.

In this paper we present measurements of the nonlinear
ac susceptibility of the short-range Ising spin-glass
Fe0 5Mn0 5TiO3. , Static- and dynamic-scaling analyses in
the vicinity of T yields good scaling behaviors with con-
sistent values of the critical exponents and support the
existence of a phase transition at a finite temperature.
Comparisons are made with results from MC simulations
on a 3D short-range Ising spin-glass system. '

The magnetic structure of Fe0 5Mn0 ~Ti03 is most con-
veniently described by a hexagonal unit cell, with the
spins aligned along the c axis. The spin-glass behavior is
due to a random mixture of ferro and antiferromagnetic
interactions within the hexagonal layers, causing bond
disorder. The compound is regarded as a good model
system for a 3D Ising spin glass. ' The sample used in
this study was a single crystal in the shape of a rectangu-
lar parallelepiped, 2X2X5 mm, with its long axis paral-
lel to the c axis.

The ac susceptibility measurements were made, using a
superconducting-quantum-interference-device (SQUID)
magnetometer, with a small ac field superimposed on a
static field and both fields applied along the c axis of the
crystal. The frequency of the ac field, co/2~, was either
1.7 Hz or 0.01 Hz. The ac magnetizing coil was wound
directly onto the sample, which was glued on a sapphire
rod and placed into a third-order gradiometer connected
to the signal coil of the SQUID. In order to improve the
resolution of the measurement, a second coil was wound
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on the sapphire rod and centered in another section of
the gradiometer to compensate out most of the influence
of y0 on the measured signal. The components of the ac
susceptibility, y'(co) and y"(co), were simultaneously
detected by a PAR 5204 lock-in amplifier (co/2vr=1. 7
Hz) or a digital lock-in amplifier (co/2~=0. 01 Hz). The
signal-to-noise ratios [hy(co)/y(co)] were 5 X 10
(co/2m=1. 7 Hz) and 1X10 (co/2rr=0. 01 Hz), respec-
tively. The temperature was varied within the range 20.6
K (T (23.4 K. g',

&
was measured as a function of in-

creasing field, 2 G &H0 & 100 G, at a constant tempera-
ture. The magnitude of the ac field was kept at a con-
stant value of 0.1 G throughout the experiment, ensuring
the COnditiOn Of h /H0 &(1.

Figure 1(a) shows y'(co) vs temperature for two
difFerent frequencies of the ac field and with H0=0 G
(open symbols) and Ho =20 G (solid symbols). Also indi-
cated is the field-cooled (FC) susceptibility, gFc (trian-
gles). The FC curve was obtained by stepwise cooling the

sample in a small static field, Ho = 1 G. At each tempera-
ture, T & T, the slow spin-glass dynamics is character-
ized by a maximum relaxation time, ~,„. The FC sus-
ceptibility probes the equilibrium susceptibility, g, , only
when the time at constant temperature is longer than

Here, the temperature decrement was 0.1 K and
the time at constant temperature 1000 s. According to
previous zero-field-cooled (ZFC) magnetization measure-
ments on the same sample, ~ „=1000 s at 21.4 K.
Hence, at all temperatures above 21.4 K, pFc equals p q.
The g'(co) curves in Fig. 1(a) deviate from the FC curve
and exhibit cusps at certain temperatures, Tf(co), which
decrease with decreasing frequency. Consulting this
figure, it is seen that the curves using the frequencies 0.01
and 1.7 Hz start to deviate from the equilibrium suscepti-
bility below 22.0 K and 22.9 K, respectively. Below these
temperatures, dynamic efFects contribute to the measured
nonlinear susceptibilities and the data cannot be used in
analyses of the static critical behavior. In Fig. 1(b), the
imaginary part of the ac susceptibility, y"(co), vs temper-
ature is visualized. In zero field, the inAection point of
the g"(co) curve is located at nearly the same temperature
as the cusp of the corresponding g'(co) curve. The
suppression of y"(co) with increasing field is striking.

Figure 2 displays log, o(y„'1/g„c) vs log, o(H0) at some
different temperatures above T ( =20.70 K). The data
at temperatures 1.067 (T/T ( 1.097 (open symbols)
and l. 116(T/T ( 1.211 (solid symbols) originate from
measurements using co/2~=0. 01 Hz and co/2~= 1.7 Hz,
respectively. According to the discussion above,
should, in the low-field limit, have a quadratic depen-
dence on H0, since g2 is the leading term. As can be seen
in the figure, this is indeed the case. Only at the lowest
temperature (1.067 T ), a clear deviation from pure Ho
behavior is noticed. A more pronounced deviation is al-
ways anticipated at higher fields and/or lower tempera-
tures.
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FIG. 1. The real part, g'(co), and imaginary part, g"(co), of
the ac susceptibility vs temperature. The circles and squares
correspond to two diA'erent frequencies of the ac field,
co/2~=0. 01 Hz and ~/2~=1. 7 Hz, respectively, (h =0. 1 G).
The solid symbols mark a superposed static field Ho =20 G, the
open, HO=0 G. T~ =20.70 K. (a) p'(cu) and FC susceptibility,
gFc(Ho=1 G), vs temperature. S%%uo of the value of gFc at Tg is
indicated. (b) y"(co) vs temperature. l%%uo of the value of gFc at
T is indicated.
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FIG. 2. loglo(g'„i/yFc) vs log&0(Ho) at diferent temperatures
within the range 1.067 & T/Tg & 1.211. The curves correspond-
ing to the three lower temperatures (open symbols) were ob-
tained from ac susceptibility measurements using co/2~=0. 01
Hz, the other curves (solid symbols) from measurements using
co/2m = 1.7 Hz.
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Close to T, the coefficient of the Ho term, y2, is ex-
pected to diverge according to the critical scaling law: '

where t is the reduced temperature [(T/T )
—1] and y is

a critical exponent. y2(T) was deduced from the initial
slopes of y'„I vs Ho plots. These values of g2 are
displayed in Fig. 3, showing log, o(

—y2) vs log, o(t) for
three different choices of T . The best straight line is ob-
tained for T =20.70+0.20 K giving y=4. 0+0.3. This
value of T is close to the cusp temperature of the FC
curve shown in Fig. 1(a). To describe y„& in the critical
region, the following scaling equation has been pro-
posed:

0
T = 20.70 K

g

y= 4.0
p = 0.54

~O
0o g@0

I I I

5 6 7

log, [ H / t + (6 )]

(7)

G(x) is a scaling function and P is the critical exponent
of the spin-glass order parameter. G(x) is linear for
small x; i.e., in the region where p I ~HO. For x~ ~,
G(x)~x, where 5 is a critical exponent. A scaling
plot of y'„I according to Eq. (7) is displayed in Fig. 4. The
figure shows log &o(y„'I /t ~) vs log&o(IIO /t ~+ ~ ), using
T =20.70 K, y =4.0, and P=O. 54, yielding a good data
collapsing.

Using data from ac susceptibility measurements on the
same sample, covering eight decades of frequency, ' P
and T have earlier been estimated from dynamic-scaling
analyses. " The parameters extracted were z v =9.5,
13=0.7, and Tg =20.95 K. Recently, a new approach to
dynamic scaling has been proposed by Geschwind, Huse,
and Devlin (GHD), ' where [y"(T,co)T]co ~~' is scaled

A 8 C

B

-1.4

FIG. 3. log»( —y2) vs log»(t) for three different values of T~.
The best fit, indicated by a solid line, is obtained for T~ =20.70
K, yielding y =4.0.

FIG. 4. log»(y'„I/t ) vs log»(HO/t~+~). The figure shows
the data collapsing obtained using T~ =20.70 K, y=4. 0, and
P=0.54.

vs t/co' ', providing the possibility to make linear scal-
ing plots. In a logarithmic graph, all values are given
equal weight, despite the fact that small values, generally,
are less accurate. Since both P/zv and 1/zv typically are
of order 0.1, the new approach provides a linear scaling
plot where the experimental error can be included. GHD
also suggest a method for separate estimation of the ratio
P/zv through scaling of the peak values in y"(T,co) vs T
for different frequencies, which for our data gives
f3/zv=0 051+0 00. 5 Kee.ping . this value of 13/zv and us-
ing Tg =20.70 (Fig. 3), the best data collapsing according
to this new dynamic-scaling approach is achieved for
zv=10. 5+1.0. However, it should be noticed that lower
values of T (=20.5 K), with correspondingly higher
values of zv, will result in equally good data collapsing.
The reason for achieving different values of the critical
exponents and T in these two approaches to dynamic
scaling is not completely understood. In general, it is im-
portant to take into account the nonequilibrium charac-
ter of y"(co) within the critical region. ' The time depen-
dence of g"(co) will make results from scaling analyses
less reliable. Considering the best fit to log, o(

—y2) vs
log, o(t) and the outcome from dynamic scaling cited
above, we regard T~ =20.70+0.20 K as a reasonable re-
sult.

Since the results presented in this paper on the non-
linear susceptibility are low-field data, where gz dom-
inates, the influence of /3 on the static-scaling plots of y'„&

is weak. In order to accurately determine the value of P
from static-scaling plots, measurements must also be per-
formed in higher fields or in the limit t~0. As evident
from the discussion above, t ~0 would require measure-
ments in the ultralow frequency region to guarantee dy-
namic equilibrium. Guided by the results above, we
henceforth put P=0.54 in our analyses of y'„&. In gen-
eral, it is valuable to find methods to separately estimate
the different scaling parameters. Only making the com-
plete scaling plots, it is almost impossible to find one
unique set of Ualues, satisfying the condition of best data
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collapsing. For instance, T =20. 5 K, y =4.3, and
P=0.56 or T =20.95 K, y =3.60 and /3=0. 7, will give
equally good data collapsing as the one in Fig. 4.

As has been mentioned above, a logarithmic scaling
plot gives equal weight to all values of g'„&, although the
smaller values often are less accurate. In the present
case, this is to some extent balanced by the better resolu-
tion of the measurements at ro/2'= 1.7 Hz, used for tem-
peratures above 1.116 Tg. In order to better consider the
experimental error, a new static-scaling equation has re-
cently been proposed by Geschwind et al.

~ H 2P /( r +P ) G ( t /H 2 /(P+ y )
)nl 0 0

where G(x) is a scaling function, and G(x)~1 for x ~0
and G(x)=x r in the region where g'„~ ~Ho. Using Eq.
(8), it is possible to make a linear scaling plot of the data
from Fig. 4. Figure 5 shows a scaling plot of
y'„t/HoP 'r+P' vs t/Ho 'r+P' using T =20.70 K, y=4. 0,
and /3=0. 54, yielding a good data collapsing. Since the
values of 2/3/(y+/3) and 2/(y+/3) are 0.3 and 0.15, re-
spectively, the H0 dependence of the scaling plot is weak
and the curve resembles y'„I vs T. The exact value of the
exponent P has only a minor influence on the quality of
the data collapsing. Also, similar to static scaling ac-
cording to Eq. (7), it is impossible to find a unique set of
parameters that gives the ultimate data collapsing. If
there was no guidance from our separate estimate of T
and y from yz( T), e.g. , T =20.5 K, y =4.3, and P=O. 56
or Ts =20.95 K, y =3.60, and @=0.7 would give a com-
parably good data collapsing.

A number of estimates of y has been reported' '
forming a wide interval of values, y=4. 0 being among
the highest. One possible reason for achieving a too low
value of y is by using a too high value of Tg in Eq. (6),
e.g. , Fig. 3, curve A. MC simulations on a 3D Ising sys-
tem' have given y=2. 9+0.1. In those simulations the
average correlation time, ~„,was derived from the decay
of the spin correlation function (s(0)s(t)), measured
during 10 —10 MC steps. Tg was then calculated
through power-law scaling of ~„ in the range
1.1(T/Tg (2.0. However, this temperature interval is
likely to be out of the critical region and corrections to
conventional dynamic scaling are then needed' to esti-
mate the true value of y.

From our values of the critical exponents, y =4.0 and
P=0.54, it is possible to calculate related critical ex-
ponents. The exponent 6 is derived from
5=y/P+1=8. 4+1.5. Values of the same order of mag-
nitude have been reported earlier, although reports of
smaller values are in the majority. MC simulations' have
given 5=6.8+1.2. The specific-heat exponent is given by
the relation a=2 —2P —y, yielding a= —3. 1. Since the
specific heat scales as t, no divergence at T should be
observed, in accordance with experimental results on spin
glasses. ' Further, the correlation length of the spin-glass
order parameter scales as follows: g ~ t . The exponent
may be derived from v=(2 —a)/d, where d is the spatial
dimension. The result is v=1.7. Compared to the value
obtained from MC simulations on a Ising spin-glass sys-
tem, ' v = 1.3+0.1, our value is significantly higher.
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FlG. 5. g'„~/Hop~'~+p' vs t/Hp'r+p'. The figure shows the data collapsing obtained using T =20.70 K, y=4. 0, and /3=0. 54.
The insert figure displays a magnified part of the plot.
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From v and y it is possible to calculate g, governing the
long-distance behavior of the spatial correlation function
at Ts; q=2 —(ylv)= —0.35. The result from simula-
tions is g = —0.22. ' Finally, using v = 1.7 and
zv=10. 5,z is equal to 6.2, which is in good agreement
with both MC results' (z =6.0+0.5) and values from
other measurements reported, e.g. , z =S.3+0.8 (Ref. 2)
from measurements on a Ruderman-Kit tel-Kasuya-
Yosida (RKKY) spin glass.

The outcome of our analyses of the nonlinear suscepti-
bility of Feo 5Mno 5Ti03 supports the existence of a phase
transition at T . The best fit of the Ho term of g'„I ac-
cording to Eq. (6) yields ) =4.0+0.3 for T =20.70+0.20
K. Static scaling according to two different scaling equa-
tions, Eqs. (7) and (8), give good data collapsing in the
critical region using the same set of parameters; y =4.0,

/3=0. 54, and T =20.70 K. The values of the extracted
critical exponents should be representative for 3D Ising
spin glasses in general. Previous dynamic-scaling
analysis yields T~ =20.95 K, while a new approach to dy-
namic scaling suggests T to be lower, viz. T =20.70 K.
The reason for obtaining different values of the spin-glass
critical temperature and the critical exponents using
different approaches to dynamic scaling is not fully un-
derstood. One reason may be not taking into account the
nonequilibrium character of the quantity scaled within
the critical region. ' The time dependence of g"(co) in
the vicinity of (and below) Ts will be further investigated.
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