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Turbulence � chaotic state of a �uid appearing

at high Reynolds numbers

Re = V L/ν.

Water: ν = 10−2 cm2/s. Air: ν = 0.15 cm2/s.

Flow in a pipe: transition to turbulence

at Re ∼ 103. In turbulent regime drag is

independent of ν: F ∼ ρV 2L2.



Energy is pumped into a �uid at the integral

scale L. Power per unit mass ε ∼ V 3/L.

What further?? Strong non-linear interaction

produces eddies of smaller and smaller

sizes and velocities vr. Direct cascade or

energy cascade. The cascade is stopped

by viscosity at a scale rd: rdvd ∼ ν. Large
value of Re leads to an inequality rd� L.



Scales between L and rd � inertial interval.

Characterized by chaotic behavior of eddies.

It is convenient to characterize statistical

properties of the �ow in the inertial interval

by the structure functions

Sn(r) = 〈|v(r1)− v(r2)|n〉.

Angular brackets mean averaging over

time. The observation time should be larger

than the formation time ∼ L/V .



Though just scales of the order L are

relevant from the engineering viewpoint,

the properties of the turbulence are sensitive

to geometry there. At smaller scales the

situation is more universal. There the model

of statistically homogeneous and isotropic

turbulence is applied. Kolmogorov theorem,

r = r2 − r1

〈[(v2 − v1)r/r]3〉 = −(4/5)εr,



Therefore S3 ∼ εr. Hypothesis: Sn ∼ (εr)n/3

(normal scaling). Then, particularly,

rd ∼ (ν3/ε)1/4 ∼ Re−3/4L.

Thus, inertial interval exists at Re� 1.

Kolmogorov spectrum:

〈v(r1)v(r2)〉 ∼
�
dk exp(ikr)ε2/3k−5/3.



In reality the structure functions deviate

from the normal scaling

Sn ∼ (εr)n/3(L/r)ξn ∝ rζn,

where ξn > 0 for n > 3. The structure

functions are much larger than in accordance

with the normal scaling. Intermittency!





We pass to two-dimensional turbulence.

Thin �uid layers or �lms (say, soap �lm).

An interesting object � atmosphere at

scales larger than its width (near 10 km).

It is convenient to describe a two-dimensional

�ow in terms of its vorticity ω = ∂xvy −
∂yvx, that is a scalar. It characterizes completely

a two-dimensional �ow due to incompressibility

∂xvx + ∂yvy = 0.



Two-dimensional hydrodynamics is described

by the equation for the vorticity ω

∂tω + v∇ω = ∇× f + ν∇2ω − αω,

where v is velocity, f is pumping force

per unit mass, ν is viscosity and α is

bottom friction coe�cient. We assume

that the pumping force is correlated at a

scale l and is random in time.



There are two quadratic dissipationless

integrals of motion, energy and enstrophy:

�
dx dy v2,

�
dx dy ω2.

Pumped turbulence � two cascades: enstrophy

�ows to small scales whereas energy �ows

to large scales, being dissipated by viscosity

and friction, respectively (Kraichnan 1967,

Leith 1968, Batchelor 1969).



Constancy of the energy and enstrophy

�uxes imply the proportionality laws

〈(v1 − v2)ω1ω2〉 ∝ r, r � l;

〈|v1 − v2|3〉 ∝ r, r � l.

Suggest the normal scaling v1 − v2 ∝ r

in the direct cascade and v1 − v2 ∝ r1/3

in the inverse cascade. The spectrum

〈v1v2〉 =

�
dk

2π
eikrE(k),



Then E(k) ∝ k−3 for the direct (enstrophy)

cascade E(k) ∝ k−5/3 for the inverse (energy)

cascade. Direct cascade � logarithmic correlation

functions of vorticity (Falkovich, Lebedev

1994). Inverse cascade � an absence of

anomalous scaling (Paret and Tabeling

1998, Bo�etta, Celani and Vergassola 2000).
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In an unbounded system the inverse cascade

is terminated by the friction at the scale

Lα ∼ ε1/2α−3/2 where ε is the energy

production rate per unit mass. If the size

box L < Lα then the energy accumulates

at L: experiment (Shats, Xia, Punzmann

and Falkovich 2007) and numerics (Chertkov,

Connaughton, Kolokolov and Lebedev 2007).

Coherent structures are formed!



The coherent velocity pro�le arises at

a time t ∼ tL = L2/3ε−1/3. After that

the major part of the pumped energy

is accumulated at scales ∼ L. Therefore

typical large-scale velocity ∼
√
εt increases

as time grows. The stage is terminated

at time t ∼ α−1. After that some steady

(statistically homogeneous in time) state

is realized.



In the steady state one can �nd an average

velocity pro�le. Both, experiment and numerics,

show that the vortices are isotropic in

average: the mean polar velocity U and

the mean vorticity Ω are functions of the

separation from the vortex center r. There

is the hyperbolic region where the average

velocity is estimated as
√
ε/α and the average

vorticity Ω is estimated as
√
ε/α/L.



1

-0.5 -0.25 0 0.25 0.5

x/L

-0.5

-0.25

0

0.25

0.5

y
/L

-1

-0.5

0

0.5

1



In numerics (Laurie at al. 2014) the vortex

diameters are approximately 1/10 of the

box size. Our numerics gives the average

�ow pro�le inside the vortex. There exists

the region of scales where the universal

behavior U = const and Ω ∝ r−1 is observed.

In the vortex core (determined by viscosity)

the average vorticity Ω is saturated and

the average velocity U tends to zero.
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In the universal region of the vortex u, v �
U . It is a consequence of the large value

of the mean velocity gradient ∼ U/r, growing
toward the center of the vortex. The relative

strength of �uctuations increases as r

grows and on the periphery where r ∼ L,
�uctuations become of the order of the

average �ow.
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Smallness of �uctuations enables one to

construct a consistent theory of the coherent

vortex (Kolokolov and Lebedev 2016). It

leads to the pro�le

U =
√

3ε/α,

for pumping, short correlated in time. It

is in accordance with the numerics. Now

we examine other types of pumping.



There is a tendency in 2d turbulence of

forming coherent structures: creation of

order from chaos. Main features of the

process are understood. However, there

is a lot of questions: in�uence of the

box geometry, of the pumping types, of

inhomogeneity. If we are thinking about

atmosphere, we should take into account

Koriolis forces and landscape.



Rotating �uid. In the rotating 3d �uid the

inertial waves propagate with the frequency

2Ω cos θ, where Ω � angular velocity and

θ is the angle between the direction of

the wave propagation and the rotation

axis. Thus there is a 2d subsystem with

zero frequency that behaves as a 2d �uid.

Therefore one expects coherent structures.



One examines a laser beam propagating

in turbulent atmosphere. There is the di�raction

of the beam on �uctuations of the refractive

index, induced by pressure �uctuations.

They are a random �eld whose properties

are described statistically. Therefore, theoretical

predictions of the behavior of the laser

beam concern mean values, which are

obtained by averaging.



Due to the large value of the speed of

light the propagation time of the laser

beam is extremely small. Say for the distance

3 km it is near 10−5 s. It is smaller than

all characteristic turbulent times. Therefore

one can treat the turbulent state as static

during the beam propagation. Besides,

the refractive index varies rapidly along

the beam trajectory.



The typical viscous length in the turbulent

atmosphere is 10−4 m. We assume that

the laser beam width is larger than the

length. Then the refractive index varies

essentially in the lateral plane inside the

beam as well. Thus the refractive index

�uctuations are functions of the lateral

coordinates r and of the coordinate z in

the direction of the beam propagation.



Di�raction of the laser beam on the refractive

index �uctuations leads to its distortions.

At large enough distances the beam is

separated on speckles that are bright spots

on the background of weaker intensity.

The typical intensity of the electromagnetic

�eld in a cross-section of the strongly

distorted laser beam is presented in the

�gure.





The turbulent state of the atmosphere

varies on times larger than the beam propagation

time. The structure of the beam varies

as well. We are interested in quantities

averaged over times larger than the characteristic

times of the atmosphere �uctuations. Such

averaging reveals statistical properties of

the propagation process, we are interested

in.



The starting point of the theoretical analysis

is the equation for the envelop Ψ of the

electromagnetic �eld varying on distances

much larger than the wavelength. The

intensity of the electromagnetic �eld is

I = |Ψ|2. The complex �eld Ψ depends

on r and z and tends to zero if we go

away from the beam in the lateral direction,

that is at large r.



We assume that the beam intensity is

small and neglect the non-linear e�ects.

Then the equation for the envelop is the

linear �Schr�odinger� equation

i∂zΨ + (∂2
x + ∂2

y )Ψ + ξΨ = 0,

for an appropriate choice of the units

for the coordinates. Here the factor ξ

represents the refractive index �uctuations.



The equation has to be supplemented

by an initial condition Ψin (determined

by the laser output) that we put to the

point z = 0. Typically, one deals with a

Gaussian pro�le of the envelop

Ψin(r) ∝ exp
(
−r2/l2

)
,

where l is the initial beam width. More

complicated initial conditions are possible.



At solving the equation for the envelop

Ψ the refractive index ξ is assumed to be

dependent solely on r, z since the propagation

time is small. However, the refractive index

ξ chaotically varies as time goes on time

scales much larger than the propagation

time. As a consequence, the envelop Ψ

becomes dependent on time as well.



We examine statistic of the intensity I =

|Ψ|2 at some distance from the source.

The complete statistic of the intensity is

determined by its moments 〈In〉, where
angular brackets mean averaging over time.

To get the moments one should �nd Ψ

for a given realization of ξ(r, z) and then

average In over realizations of ξ(r, z).



Solving the equation for Ψ(r) by iterations

on an interval z1 < z < z2, we get

∆Ψ(r) = i(z2 − z1)(∂2
x + ∂2

y )Ψ(r, z1)

+i

� z2

z1

dz ξ(r, z)Ψ(r, z1)

−
� z2

z1

dz

� z

z1

dζ ξ(r, z)ξ(r, ζ)Ψ(r, z1).

Here we kept �rst contributions to the

increment ∆Ψ, assuming that it is small.



The main contribution to the refractive

index �uctuations ξ(r, z) goes from the

integral scale of turbulence. The �uctuations

of such scales produce homogeneous phase

shifts of Ψ and are, consequently, irrelevant,

since the homogeneous phase shift does

not contribute to the observable quantities

like the intensity I = |Ψ|2.



The �uctuations ξ(r, z) with the scale of

the order of the beam width are relevant.

The quantity enters the increment ∆Ψ

via the integrals
�
dz ξ. If the propagation

distance z2 − z1 is much larger than the

beam width, then the integral
�
dz ξ (a

sum of big number of random variables)

possesses a Gaussian statistic due to the

Central limit theorem.



Since 〈ξ〉 = 0, the statistic of
�
dz ξ is

completely characterized by its pair correlation

function. At an appropriate choice of units

〈
�
dz

(
ξ(r1, z)− ξ(r2, z)

)2〉 = 2(z2−z1)rc12.

Here we have taken the di�erence of ξ

in close points to exclude the irrelevant

big homogeneous contribution to ξ and

r12 = |r1 − r2|.



The average value is proportional to the

�rst power of z2−z1 since the characteristic

length of ξ along the propagation direction

is much smaller than z2−z1. In the lateral

direction the correlation function is power-

like, it is explained by the scaling properties

of �uctuations in the inertial interval of

turbulence. For the Kolmogorov spectrum

the exponent c is c = 5/3.



It is impossible to obtain a closed equation

for the intensity I = |Ψ|2. That is why

one should �rst formulate and solve the

equations for the correlation functions of

the envelop Ψ. Then it is possible to

extract the moments 〈In〉 by merging points

in the correlation functions. Of course it

is extremely hard program that cannot

be realized up to the end.



Due to the strong �uctuations of the

phase of Ψ the averages like 〈Ψ〉 are zero.
Thus the simplest object is the pair correlation

function

F (r1, r2, z) = 〈Ψ(r1, z)Ψ?(r2, z)〉,

where Ψ? is complex conjugated to Ψ.

The �rst moment of the intensity 〈I〉 is
expressed as 〈I〉 = F (z, r, r).



Taking the increment of Ψ1Ψ?
2, averaging

it and passing from the increment to the

di�erential equation, one obtains

∂zF = i(∇2
1 −∇2

2)F − rc12F,

where ∇2 = ∂2
x + ∂2

y . The �rst term

describes the homogeneous di�raction whereas

the second term describes the di�raction

on the �uctuations of the refractive index.



The solution of the equation can be written

as the integral over the initial pro�le

F (r1, r2, z) =

�
d2q1 d

2q2GΨin(q1)Ψ?
in(q2).

Here Ψin(q1)Ψ?
in(q2) is the initial value

of the pair correlation function F and G is
the Green function. The representation

is a consequence of the linearity of the

equation for F .



It is possible to �nd the explicit expression

for the Green function

G =
1

16π2z2
exp

 i
2z

(r − q)(R− Q)

−z
� 1

0
dχ |χq + (1− χ)r|c

 ,
where q = q1 − q2, r = r1 − r2, Q =

(q1 + q2)/2, R = (R1 + R2)/2. Again, it

re�ects the interplay of two types of the

di�raction.



The expression enables one to draw some

conclusions concerning the beam structure

at z � 1. If the initial size of the beam

l . 1 then there are two characteristic

length. The separation r is estimated as

z−1/c, it is the size of the speckles. The

value of R is estimated as z1+1/c, it is the

beam width. Note that r � R at z � 1.



Analogously to the pair correlation function,

one can derive the equation for the forth-

order correlation function

F4(r1, r2, r3, r4, z) = 〈Ψ1Ψ2Ψ?
3Ψ?

4〉.

To obtain the second moment of the

intensity 〈I2〉, one should merge all the

points in the forth-order correlation function,

〈I2〉 = F4(r, r, r, r, z).



The equation is

∂zF4 = i(∇2
1 +∇2

2 −∇2
3 −∇2

4)F4

−[−rc12 + rc13 + rc14 − rc34 + rc23 + rc24]F4.

If r1 is close to r3 and r2 is close to

r4, then, due to the cancellations the

expression in square brackets is rc13 +rc24.

Thus F4 = F (r1, r3, z)F (r2, r4, z). Analogously

for close points 1,4 and 2,3.



We conclude that in the main approximation

the forth-order correlation function is

F4 = F (r1, r3, z)F (r2, r4, z)

+F (r1, r4, z)F (r2, r3, z).

The expression re�ects an absence of

correlations between the speckles. Merging

the points r1, r2, r3, r4,, we �nd the

relation 〈I2〉 = 2〈I〉2.



Analogously the higher order correlation

functions of the envelop 〈ΨΨ . . .Ψ?Ψ? . . . 〉
can be analyzed. The 2n-order correlation

functions can be presented in the main

approximation as the sum of n! products

of n pair correlation functions. Here n! is

the number of possible couplings. Merging

the points, we conclude that 〈In〉 = n!〈I〉n.



The moments correspond to the exponential

probability density function (PDF)

P (I) = 〈I〉−1 exp (−I/〈I〉) .

One can say that Ψ possesses a Gaussian

statistic at large z, converted to the exponential

one for I. Thus we con�rm the general

expectation that the complex �eld with

random phase possesses a Gaussian statistic.



Due to the multiplicative character of the

random �eld ξ one expects an anomalously

large probability of rare events, determining

large values of the intensity I. To �nd

the probability one should go outside the

established approximation. Formally, one

should take into account the neglected

terms in the equations for the high-order

correlation functions.



Relative corrections to the exponential

probability density function are controlled

by the parameter z−4/c+c (V.U.Zavorotnyi,

V.I.Klyatskin, V.I.Tatarskii, 1977), that

is small at large z. The corrections are

estimated as z−4/c+cI/〈I〉. When at increasing

the intensity I the parameter becomes of

order unity then the exponential PDF is

broken.



The case z−4/c+cI � 〈I〉 needs a special

analysis (I.V.Kolokolov, V.V.Lebedev, 2023).

The principal contribution to PDF is given

by special con�gurations of the �eld ξ,

leading to the stretched exponent

lnP (I) ∝ −I(4−c)(6−c).

The exponent here is equal to 7/13 for

the Kolmogorov spectrum.
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The result is illustrated by the �gure where

a deviation from the exponential PDF is

presented. It means an essential increase

of probability comparing to the exponential

PDF for I > z4/c−c〈I〉. If to extrapolate

the observation to z ∼ 1 then one could

expect anomalously high probabilities for

I larger than typical. It is a subject of

future investigations.


