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Turbulence — chaotic state of a fluid appearing

at high Reynolds numbers
Re=VL/v.

Water: v = 1072 e¢m?/s. Air: v = 0.15 em?/s.
Flow In a pipe: transition to turbulence

at Re ~ 103. In turbulent regime drag is
independent of v: F ~ pV2L2.



Energy is pumped into a fluid at the integral
scale L. Power per unit mass e ~ V3/L.
What further?? Strong non-linear interaction
produces eddies of smaller and smaller
sizes and velocities v,. Direct cascade or
energy cascade. The cascade is stopped

by viscosity at a scale r;: rgqvy ~ v. Large

value of Re leads to an inequality r; < L.



Scales between L and r; — inertial interval.
Characterized by chaotic behavior of eddies.
It is convenient to characterize statistical
properties of the flow in the inertial interval
by the structure functions

Sn(r) = (lv(r1) —v(r2)[").

Angular brackets mean averaging over
time. The observation time should be larger
than the formation time ~ L/V.




Though just scales of the order L are
relevant from the engineering viewpoint,
the properties of the turbulence are sensitive
to geometry there. At smaller scales the
situation is more universal. T here the model
of statistically homogeneous and isotropic
turbulence is applied. Kolmogorov theorem,

T =72 —T1

([(v2 — v1)r/r]>) = —(4/5)er,



Therefore S5 ~ er. Hypothesis: S,, ~ (er)™/3
(normal scaling). Then, particularly,

g~ (V3/e)1/4 ~ Re=3/4L,

Thus, inertial interval exists at Re > 1.
Kolmogorov spectrum:

(v(r1)v(rp)) ~ /dk exp(ikr)62/3k_5/3.



In reality the structure functions deviate

from the normal scaling
Sn ~ (er)™3(L/r)m o rén,

where &, > 0 for n > 3. The structure
functions are much larger than in accordance

with the normal scaling. Intermittency!
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We pass to two-dimensional turbulence.

Thin fluid layers or films (say, soap film).

An Interesting object — atmosphere at
scales larger than its width (near 10 km).

It is convenient to describe a two-dimensional
flow in terms of its vorticity w = 0zvy —

Oyvg, that is a scalar. It characterizes completely
a two-dimensional flow due to incompressibility
OzVx + Oyvy = O.



Two-dimensional hydrodynamics is described

by the equation for the vorticity w
Otw + vVw =V X f—I—I/VQw—ozw,

where v Is velocity, f Is pumping force
per unit mass, r IS viscosity and « IS
bottom friction coefficient. We assume
that the pumping force is correlated at a

scale [ and is random in time.



There are two quadratic dissipationless
Integrals of motion, energy and enstrophy:

/dw dy v2, /dw dy w?.

Pumped turbulence — two cascades: enstrophy
flows to small scales whereas energy flows
to large scales, being dissipated by viscosity

and friction, respectively (Kraichnan 1967,
Leith 1968, Batchelor 1969).



Constancy of the energy and enstrophy
fluxes imply the proportionality laws

((v1 —vo)wiwo) xr, 1<
(Jor —vol?) <, 7>
Suggest the normal scaling v{ — vy x r

in the direct cascade and vy — v5 o r1/3
INn the inverse cascade. The spectrum

(v1vp) = /gkeikrﬂ’(k),

T



Then E(k) o« k3 for the direct (enstrophy)
cascade E(k) o« k—°/3 for the inverse (energy)
cascade. Direct cascade — logarithmic correlation
functions of vorticity (Falkovich, Lebedev

1994). Inverse cascade — an absence of
anomalous scaling (Paret and Tabeling

1998, Boffetta, Celani and Vergassola 2000).
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In an unbounded system the inverse cascade
IS terminated by the friction at the scale

1/20-3/2 where ¢ is the energy

Lo ~ €
production rate per unit mass. If the size
box L < L, then the energy accumulates
at L: experiment (Shats, Xia, Punzmann
and Falkovich 2007) and numerics (Chertkov,
Connaughton, Kolokolov and Lebedev 2007).

Coherent structures are formed!



The coherent velocity profile arises at
a time t ~ t; = L[2/3¢1/3. After that
the major part of the pumped energy
IS accumulated at scales ~ L. Therefore
typical large-scale velocity ~ /et increases
as time grows. The stage is terminated
at time t ~ o~ 1. After that some steady
(statistically homogeneous in time) state

IS realized.



In the steady state one can find an average
velocity profile. Both, experiment and numerics,
show that the vortices are isotropic iIn
average: the mean polar velocity U and

the mean vorticity €2 are functions of the
separation from the vortex center r. There

IS the hyperbolic region where the average
velocity is estimated as \/% and the average
vorticity 2 is estimated as \/e/a/L.
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In numerics ( ) the vortex
diameters are approximately 1/10 of the
box size. Our numerics gives the average
flow profile inside the vortex. T here exists
the region of scales where the universal

lis observed.

behavior U = const and €2 o< r™
In the vortex core (determined by viscosity)
the average vorticity €2 is saturated and

the average velocity U tends to zero.
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In the universal region of the vortex u, v <
U. It is a consequence of the large value
of the mean velocity gradient ~ U/r, growing
toward the center of the vortex. The relative
strength of fluctuations increases as r
grows and on the periphery where r ~ L,
fluctuations become of the order of the

average flow.
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Smallness of fluctuations enables one to
construct a consistent theory of the coherent
vortex (Kolokolov and Lebedev 2016). It

leads to the profile

U =,3¢/a,

for pumping, short correlated in time. It
IS In accordance with the numerics. Now

we examine other types of pumping.



There is a tendency in 2d turbulence of
forming coherent structures: creation of
order from chaos. Main features of the
process are understood. However, there
IS a lot of questions: influence of the
box geometry, of the pumping types, of
Inhomogeneity. If we are thinking about
atmosphere, we should take into account

Koriolis forces and landscape.



Rotating fluid. In the rotating 3d fluid the
Inertial waves propagate with the frequency
2C2cosf, where €2 — angular velocity and
0 is the angle between the direction of
the wave propagation and the rotation
axis. Thus there is a 2d subsystem with
zero frequency that behaves as a 2d fluid.

T herefore one expects coherent structures.



One examines a laser beam propagating

In turbulent atmosphere. There is the diffraction
of the beam on fluctuations of the refractive
iIndex, induced by pressure fluctuations.

They are a random field whose properties

are described statistically. T herefore, theoretical
predictions of the behavior of the laser

beam concern mean values, which are

obtained by averaging.



Due to the large value of the speed of

iIght the propagation time of the laser

beam is extremely small. Say for the distance
3 km it is near 1072 s. It is smaller than

all characteristic turbulent times. T herefore
one can treat the turbulent state as static
during the beam propagation. Besides,
the refractive index varies rapidly along

the beam trajectory.



T he typical viscous length in the turbulent
atmosphere is 1074 m. We assume that
the laser beam width is larger than the
length. Then the refractive index varies
essentially in the lateral plane inside the
beam as well. Thus the refractive index
fluctuations are functions of the lateral
coordinates » and of the coordinate z in

the direction of the beam propagation.



Diffraction of the laser beam on the refractive
iIndex fluctuations leads to its distortions.

At large enough distances the beam is
separated on speckles that are bright spots
on the background of weaker intensity.

T he typical intensity of the electromagnetic
field in a cross-section of the strongly
distorted laser beam is presented in the

figure.






The turbulent state of the atmosphere

varies on times larger than the beam propagation
time. The structure of the beam varies

as well. We are interested in quantities
averaged over times larger than the characteristic
times of the atmosphere fluctuations. Such
averaging reveals statistical properties of

the propagation process, we are interested

n.



T he starting point of the theoretical analysis
IS the equation for the envelop W of the
electromagnetic field varying on distances
much larger than the wavelength. The
Intensity of the electromagnetic field is
I = |W|?2. The complex field W depends
on r and z and tends to zero iIf we go
away from the beam in the lateral direction,

that is at large r.



We assume that the beam intensity is
small and neglect the non-linear effects.
Then the equation for the envelop is the

linear “Schrodinger’” equation
i0:W + (97 + 9;)W + £V = 0,

for an appropriate choice of the units
for the coordinates. Here the factor &

represents the refractive index fluctuations.



The equation has to be supplemented
by an initial condition W, (determined
by the laser output) that we put to the
point z = 0. Typically, one deals with a

Gaussian profile of the envelop
Wi (r) oc exp (—r?/1%)

where [ i1s the initial beam width. More

complicated initial conditions are possible.



At solving the equation for the envelop

W the refractive index £ is assumed to be
dependent solely on r, z since the propagation
time is small. However, the refractive index

¢ chaotically varies as time goes on time
scales much larger than the propagation
time. As a consequence, the envelop W

becomes dependent on time as well.



We examine statistic of the intensity I =
|2 at some distance from the source.
The complete statistic of the intensity is
determined by its moments (I™), where
angular brackets mean averaging over time.
To get the moments one should find W
for a given realization of £(r, z) and then

average I over realizations of £(r, 2).



Solving the equation for W(r) by iterations

on an interval z1 < z < 2o, we get

AV (r) = i(2p — 21) (07 + 97V (r, 21)
—I—i/ dz &(r, 2)W(r, z1)

1

Z5 z
_ / iz / d¢ £(r, 2)E(r, OW (r, 21).
z1 z1

Here we kept first contributions to the

Increment AW, assuming that it is small.



The main contribution to the refractive
index fluctuations &(r,z) goes from the
Integral scale of turbulence. The fluctuations
of such scales produce homogeneous phase
shifts of W and are, consequently, irrelevant,
since the homogeneous phase shift does
not contribute to the observable quantities
ike the intensity I = |W|?.



The fluctuations £(r, 2) with the scale of
the order of the beam width are relevant.
The quantity enters the increment AW
via the integrals [ dz . If the propagation
distance z» — z7 IS much larger than the
beam width, then the integral [dz¢ (a
sum of big number of random variables)
possesses a Gaussian statistic due to the

Central limit theorem.



Since (¢) = 0, the statistic of [dz¢ is
completely characterized by its pair correlation
function. At an appropriate choice of units

2

<: / d2(€(r1,2) — €(r2,2))| ) = 2(z2-21)rfn.

Here we have taken the difference of &

In close points to exclude the irrelevant
big homogeneous contribution to & and

r1o0 = |r1 — rol.



The average value is proportional to the
first power of zo—2z1 since the characteristic
length of £ along the propagation direction
IS much smaller than zo—2z4. In the |lateral
direction the correlation function is power-
like, 1t Is explained by the scaling properties
of fluctuations in the inertial interval of
turbulence. For the Kolmogorov spectrum

the exponent c is ¢ = 5/3.



It isimpossible to obtain a closed equation
for the intensity I = |W|?. That is why
one should first formulate and solve the
equations for the correlation functions of
the envelop W. Then it is possible to
extract the moments (I™) by merging points
In the correlation functions. Of course it
IS extremely hard program that cannot

be realized up to the end.



Due to the strong fluctuations of the

phase of W the averages like (V) are zero.

Thus the simplest object is the pair correlation

function
F(r1,r0,2) = (W(ry, 2)W(ry, 2)),

where W* is complex conjugated to W.
The first moment of the intensity (/) is

expressed as (I) = F(z,r,r).



Taking the increment of W W%, averaging
It and passing from the increment to the

differential equation, one obtains
0, F = (V% — V3)F —r§,F

where V2 = 97 + 97. The first term
describes the homogeneous diffraction whereas
the second term describes the diffraction

on the fluctuations of the refractive index.



T he solution of the equation can be written

as the integral over the initial profile

F(ry,ro,2) = /d2q1 d?qoG W, (1) W5, (g2).

Here W,,(q1)WV7, (g2) is the initial value
of the pair correlation function F' and ¢ is
the Green function. The representation
IS @ consequence of the linearity of the

equation for F.



It is possible to find the explicit expression
for the Green function

1
— eX
g 167222 P

o ()R- Q)

1 |
—z/O dx Ixa + (1 — )l

where g = q1 —q2, v = r1 —rp, Q =
(g1 +q2)/2, R = (R1 + R>)/2. Again, it
reflects the interplay of two types of the
diffraction.



T he expression enables one to draw some
conclusions concerning the beam structure
at z > 1. If the initial size of the beam
[ < 1 then there are two characteristic
length. The separation r is estimated as
»—1/¢ it is the size of the speckles. The
value of R is estimated as z1T1/¢ it is the

beam width. Note that r < R at z > 1.



Analogously to the pair correlation function,
one can derive the equation for the forth-

order correlation function
Fa(ry,m2,7r3,74,2) = (W1 WoW3Wy).

To obtain the second moment of the
intensity (I2), one should merge all the
points in the forth-order correlation function,
(I%Y = Fa(r,r,r,7,2).



The equation is

0:F4 = i(V%+ V5 — V35— Vi) F,

—[=rio +7i3 + 114 — 734 + 753 + 54] Fa.

If r1 is close to r3 and r, is close to
ra, then, due to the cancellations the
expression in square brackets is r{3+r5,.
Thus Fyp = F(rq1,7r3,2)F(ro,7r4,2). Analogously
for close points 1,4 and 2, 3.



We conclude that in the main approximation

the forth-order correlation function is

F4 — F(T]_,T3,Z)F(T2,T4,Z)
+F(T1,T4,Z>F(’P2,T3,Z>.

The expression reflects an absence of
correlations between the speckles. Merging

the points »1, ro, r3, 7ra,, we find the
relation (I2) = 2(I)?.



Analogously the higher order correlation
functions of the envelop (WW ... W*xWw> | )
can be analyzed. T he 2n-order correlation
functions can be presented in the main
approximation as the sum of n! products
of n pair correlation functions. Here n! is
the number of possible couplings. Merging

the points, we conclude that (I"™) = n!(I)".



The moments correspond to the exponential
probability density function (PDF)

P(I) = (I)" " exp (—1/(I)).

One can say that W possesses a Gaussian
statistic at large z, converted to the exponential
one for I. Thus we confirm the general
expectation that the complex field with

random phase possesses a Gaussian statistic.



Due to the multiplicative character of the
random field £ one expects an anomalously
large probability of rare events, determining
large values of the intensity I. To find
the probability one should go outside the
established approximation. Formally, one
should take into account the neglected
terms in the equations for the high-order

correlation functions.



Relative corrections to the exponential
probability density function are controlled

by the parameter y—4/ctc (V.U.Zavorotnyi,
V.I.Klyatskin, V.I.Tatarskii, 1977), that

IS small at large z. The corrections are
estimated as z—#/¢T¢[/(I). When at increasing
the intensity I the parameter becomes of
order unity then the exponential PDF is

broken.



The case z—*/¢T¢[ >> (I) needs a special
analysis (I.V.Kolokolov, V.V.Lebedev, 2023).
The principal contribution to PDF is given
by special configurations of the field &,

leading to the stretched exponent
In P(I) o —1(4=)(6—¢),

The exponent here is equal to 7/13 for

the Kolmogorov spectrum.
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Theresult is illustrated by the figure where
a deviation from the exponential PDF is
presented. It means an essential increase
of probability comparing to the exponential
PDF for I > z%/¢=¢(I). If to extrapolate
the observation to z ~ 1 then one could
expect anomalously high probabilities for
I larger than typical. It Is a subject of

future investigations.



