Спектры волновой турбулентности на поверхности воды.

А.О. Короткевич

Центр инженерной физики, Сколтех, Москва, Россия. A.Korotkevich@Skoltech.ru ИТФ им. Л. Д. Ландау РАН, Черноголовка, Россия.

20-е марта, 2025,

Курс "Теория конденсированного состояния: современные проблемы".

Skoltech Center for Engineering Physics

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

Волновая турбулентность: вовлечены разные масштабы

Волновая турбулентность: вовлечены разные масштабы

- 32

・ロト ・ 同ト ・ ヨト ・ ヨト

Мотивация.

Идеи Ричардсона-Колмогорова

Почему это важно?

Спектры волновой турбулентности...

Цель предсказания ветрового волнения

Волны на воде. Формулировка задачи.

Рассмотрим потенциальное течение идеальной несжимаемой жидкости бесконечной глубины со свободной поверхностью. Мы используем стандартные обозначения для потенциала скорости $\phi(\vec{r}, z, t), \vec{r} = (x, y); \vec{v} = \nabla \phi$ и отклонения поверхности по высоте $\eta(\vec{r}, t)$.

Крутизна поверхности: $\mu=\sqrt{\langle |
abla \eta(ec{r},t)|^2
angle}pprox 0.1-$ средний наклон.

Благодаря несжимаемости потенциал скорости ϕ удовлетворяет уравнению Лапласа $\nabla \cdot \vec{v} = 0$:

$$\nabla^2 \phi = 0 \tag{1}$$

в области занимаемой жидкостью:

$$-\infty < z < \eta(\vec{r}), \quad \vec{r} = (x, y).$$
 (2)

Граничные условия на потенциал следующие:

$$\frac{\partial \eta}{\partial t} + \left(\frac{\partial \phi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial \eta}{\partial y} \right) \Big|_{z=\eta} = \frac{\partial \phi}{\partial z} \Big|_{z=\eta}, \qquad (3)$$
$$\left(\frac{\partial \phi}{\partial t} + \frac{1}{2} (\nabla \phi)^2 \right) \Big|_{z=\eta} - g\eta = 0, \qquad \phi_z |_{z\to-\infty} = 0. \qquad (4)$$

Здесь $\eta = \eta(x, y, t)$ — это отклонение поверхности по вертикали от состояния покоя (z = 0).

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

8/36

Энергия системы

Полная энергия системы может быть представлена в следующем виде:

H=T+U,

Кинетическая энергия:

$$T = rac{
ho}{2} \int \mathrm{d}^2 r \int\limits_{-\infty}^{\eta} (
abla \phi)^2 \mathrm{d} z,$$

Потенциальная энергия в поле тяжести:

$$U = rac{
ho}{2}g\int \eta^2 \mathrm{d}^2 r,$$

здесь g — это ускорения свободного падения. Отнормируем к единичной плотности ho = 1.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Разложение гамильтониана.

В. Е. Захаровым (1967) было показано, что при таких допущениях жидкость является гамильтоновской системой:

$$\frac{\partial \eta}{\partial t} = \frac{\delta H}{\delta \psi}, \quad \frac{\partial \psi}{\partial t} = -\frac{\delta H}{\delta \eta},$$

где $\psi = \phi(\vec{r}, \eta(\vec{r}, t), t)$ — это потенциал скорости на поверхности жидкости. Для вычисления значения ψ надо решить уравнение Лапласа в области с изменяющейся формой поверхности η . Можно упростить ситуацию используя разложение гамильтониана (или оператора Дирихле-Неймана) по степеням «крутизны» (здесь $\Delta = \nabla^2$ и $\hat{k} = \sqrt{-\Delta}$):

$$H = \frac{1}{2} \int \left(g\eta^2 + \psi \hat{k} \psi \right) d^2 r +$$

+
$$\frac{1}{2} \int \eta \left[|\nabla \psi|^2 - (\hat{k} \psi)^2 \right] d^2 r +$$

+
$$\frac{1}{2} \int \eta (\hat{k} \psi) \left[\hat{k} (\eta (\hat{k} \psi)) + \eta \Delta \psi \right] d^2 r$$

Полный вывод с капиллярностью можно найти в статье КАО, Phys. Rev. Lett., **130**, 264002 (2023): arXiv:2211.16567

10/36

Динамические уравнения.

В этом случае динамические уравнения принимают следующий вид:

$$\begin{split} \dot{\eta} &= \hat{k}\psi - (\nabla(\eta\nabla\psi)) - \hat{k}[\eta\hat{k}\psi] + \\ &+ \hat{k}(\eta\hat{k}[\eta\hat{k}\psi]) + \frac{1}{2}\Delta[\eta^2\hat{k}\psi] + \frac{1}{2}\hat{k}[\eta^2\Delta\psi], \\ \dot{\psi} &= -g\eta - \frac{1}{2}\left[(\nabla\psi)^2 - (\hat{k}\psi)^2\right] - \\ &- [\hat{k}\psi]\hat{k}[\eta\hat{k}\psi] - [\eta\hat{k}\psi]\Delta\psi. \end{split}$$

Введём преобразование Фурье:

$$\psi_{\vec{k}} = \frac{1}{2\pi} \int \psi_{\vec{r}} \mathrm{e}^{\mathrm{i}\vec{k}\vec{r}} \mathrm{d}^2 r, \quad \eta_{\vec{k}} = \frac{1}{2\pi} \int \eta_{\vec{r}} \mathrm{e}^{\mathrm{i}\vec{k}\vec{r}} \mathrm{d}^2 r.$$

イロト イポト イヨト イヨト

Нормальные переменные

 $\psi(\vec{r},t)$ и $\eta(\vec{r},t)$ — это действительные функции, $\Rightarrow \psi_{\vec{k}} = \psi^*_{-\vec{k}}, \eta_{\vec{k}} = \eta^*_{-\vec{k}}$ — эрмитова симметрия.

Удобно ввести канонические (нормальные) переменные $a_{\vec{k}}$ следующим образом:

$$a_{\vec{k}} = \sqrt{\frac{\omega_k}{2k}} \eta_{\vec{k}} + i \sqrt{\frac{k}{2\omega_k}} \psi_{\vec{k}},$$
где $\omega_k = \sqrt{gk}.$
 $i\dot{a}_{\vec{k}} = \frac{\delta H}{\delta a_{\vec{k}}^*}$ — уравнения Гамильтона,
 $a_{\vec{k}}$ — элементарное возбуждение (плоская волна).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Гамильтонинан в нормальных переменных.

$$H_{0} = \int \omega_{k} |a_{\vec{k}}|^{2} d\vec{k},$$

$$H_{1} = \frac{1}{2} \frac{1}{2\pi} \int C_{\vec{k}_{1}\vec{k}_{2}}^{\vec{k}_{0}} (a_{\vec{k}_{1}}a_{\vec{k}_{2}}a_{\vec{k}_{0}}^{*} + a_{\vec{k}_{1}}^{*}a_{\vec{k}_{2}}^{*}a_{\vec{k}_{0}}) \delta(\vec{k}_{1} + \vec{k}_{2} - \vec{k}_{0}) d\vec{k}_{1} d\vec{k}_{2} d\vec{k}_{0} + \dots,$$

$$H_{2} = \frac{1}{4} \frac{1}{(2\pi)^{2}} \int D_{\vec{k}_{1}\vec{k}_{2}\vec{k}_{3}\vec{k}_{4}} a_{\vec{k}_{1}}a_{\vec{k}_{2}}a_{\vec{k}_{3}}^{*}a_{\vec{k}_{4}}^{*} \delta(\vec{k}_{1} + \vec{k}_{2} - \vec{k}_{3} - \vec{k}_{4}) d\vec{k}_{1} d\vec{k}_{2} d\vec{k}_{3} d\vec{k}_{4} + \dots$$

$$a_{\vec{k}_{1}}a_{\vec{k}_{2}}a_{\vec{k}_{3}}^{*}a_{\vec{k}_{4}}^{*} a_{\vec{k}_{2}}^{*} a_{\vec{k}_{3}}a_{\vec{k}_{4}}^{*} \delta(\vec{k}_{1} + \vec{k}_{2} - \vec{k}_{3} - \vec{k}_{4}) d\vec{k}_{1} d\vec{k}_{2} d\vec{k}_{3} d\vec{k}_{4} + \dots$$

3

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Резонансные условия

Давайте посмотрим, что значит "слабая нелинейность" и какие у этого последствия:

$$(a_{\vec{k}_1}a_{\vec{k}_2}a_{\vec{k}_0}^* + a_{\vec{k}_1}^*a_{\vec{k}_2}^*a_{\vec{k}_0})\delta(\vec{k}_1 + \vec{k}_2 - \vec{k}_0)$$
$$a_{\vec{k}}(t) = A_{\vec{k}}(t)e^{i\omega_k t} \Rightarrow a_{\vec{k}_0}^*a_{\vec{k}_1}a_{\vec{k}_2} = A_{\vec{k}_0}^*A_{\vec{k}_1}A_{\vec{k}_2}e^{i(\omega_{k_0}-\omega_{k_1}-\omega_{k_2})t}$$

Резонансные условия для трёхволного взаимодействия (слияние и распад):

$$\omega_{k_0} = \omega_{k_1} + \omega_{k_2}, \quad \vec{k_0} = \vec{k_1} + \vec{k_2}.$$

Резонансные условия для четырёхволнового взаимодействия (рассеяние два в два):

$$\omega_{k_1} + \omega_{k_2} = \omega_{k_3} + \omega_{k_4}, \quad \vec{k}_1 + \vec{k}_2 = \vec{k}_3 + \vec{k}_4.$$

イロト イポト イヨト イヨト

Каноническое преобразование Преобразование к нормальной форме (Пуанкаре)

Закон дисперсии (линейной) в случае гравитационных волн на глубокой воде $\omega_k = \sqrt{gk}$ является "не распадным" и уравнения: $\omega_{k_1} = \omega_{k_2} + \omega_{k_3}$, $\vec{k_1} = \vec{k_2} + \vec{k_3}$ не имеют действительных нетривиальных решений. Это означает, что в пределе малой нелинейности кубические члены гамильтониана могут быть исключены подходящим каноническим преобразованием (показана только одна диаграмма): $a(\vec{k}, t) \longrightarrow b(\vec{k}, t)$.

Парная корреляционная функция

Для статистического описания стохастического волнового поля можно использовать парную (авто-)корреляционную функцию

$$\langle a_{\vec{k}}a^*_{\vec{k}'}\rangle = n_k\delta(\vec{k}-\vec{k}').$$

Функция $n_{\vec{k}}$ является измеримой величиной, прямо связанной с наблюдаемой корреляционными функциями. Например, из определения $a_{\vec{k}}$ можно получить следующее выражение:

$$I_k = \langle |\eta_{\vec{k}}|^2 \rangle = rac{k}{2\omega_k}(n_k + n_{-k}).$$

Для вывода кинетического уравнения описывающего гравитационные волны на воде удобно ввести другую корреляционную функцию:

$$\langle b_{\vec{k}}b^*_{\vec{k}'}\rangle = N_k\delta(\vec{k}-\vec{k}').$$

・ロット (雪) (日) (日) (日)

Статистическое описание

Связь между корреляционными функциями

Соотношение между $n_{\vec{k}}$ и $N_{\vec{k}}$ довольно простое (в случае глубокой воды):

$$rac{{m n}_{ec k}-{m N}_{ec k}}{{m n}_{ec k}}\simeq ilde{\mu}^2,$$

где $\tilde{\mu} = k_{sp}\sqrt{\langle |\eta|^2 \rangle} \simeq \mu$, здесь η — это отклонение поверхности. В случае слабой турбулентности $\mu \ll 1$, поэтому относительная разница меньше нескольких процентов. Во всех вычислениях мы будем пользоваться более простой функцией $n_{\vec{k}}$ для анализа.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ つへの

Кинетическое уравнение для гравитационных волн

Корреляционная функция $N_{\vec{k}}\langle |b_{\vec{k}}|^2 \rangle$ подчиняется кинетическому уравнению (Нордгейм, 1928; Пайерлс, 1929; Хассельманн, 1962)

$$\frac{\partial N_{\vec{k}}}{\partial t} = st(N, N, N) + f_p(\vec{k}) - f_d(\vec{k}),$$

Здесь:

$$st(N, N, N) = 4\pi \int \left| T_{\vec{k}_{2}, \vec{k}_{1}}^{\vec{k}_{2}, \vec{k}_{3}} \right|^{2} N_{\vec{k}} N_{\vec{k}_{1}} N_{\vec{k}_{2}} N_{\vec{k}_{3}} \left(\frac{1}{N_{\vec{k}}} + \frac{1}{N_{\vec{k}_{1}}} - \frac{1}{N_{\vec{k}_{2}}} - \frac{1}{N_{\vec{k}_{3}}} \right) \times \\ \times \delta(\vec{k} + \vec{k}_{1} - \vec{k}_{2} - \vec{k}_{3}) \delta(\omega_{k} + \omega_{k_{1}} - \omega_{k_{2}} - \omega_{k_{3}}) \mathrm{d}\vec{k}_{1} \mathrm{d}\vec{k}_{2} \mathrm{d}\vec{k}_{3}.$$

Данное кинетическое уравнение и его модификации являются основой для всех моделей предсказания ветрового волнения. Вся физика содержится в T и ω_k . НУШ, гравволны.

・ロト ・ 四ト ・ 日ト ・ 日 ・

Кинетическое уравнение для капиллярных волн

Другой закон дисперсии $\omega_k \sim k^{3/2}$, распадный процесс работает \Rightarrow можно ограничиться трёхволновыми процессами. Корреляционная функция $n_{\vec{k}} = \langle |a_{\vec{k}}|^2 \rangle$ подчиняется кинетическому уравнению для капиллярных волн (Захаров и Филоненко, 1966)

$$\frac{\partial n_{\vec{k}}}{\partial t} = st(n,n) + f_p(\vec{k}) - f_d(\vec{k}),$$

Здесь:

$$st(n,n) = 4\pi \int \left| V_{\vec{k}_1,\vec{k}_2}^{\vec{k}} \right|^2 n_{\vec{k}} n_{\vec{k}_1} n_{\vec{k}_2} \left(\frac{1}{n_{\vec{k}}} - \frac{1}{n_{\vec{k}_1}} - \frac{1}{n_{\vec{k}_2}} \right) \delta(\vec{k} - \vec{k}_1 - \vec{k}_2) \delta(\omega_k - \omega_{k_1} - \omega_{k_2}) \mathrm{d}\vec{k}_1 \mathrm{d}\vec{k}_2 + 8\pi \int \left| V_{\vec{k},\vec{k}_2}^{\vec{k}_1} \right|^2 n_{\vec{k}} n_{\vec{k}_1} n_{\vec{k}_2} \left(\frac{1}{n_{\vec{k}}} + \frac{1}{n_{\vec{k}_2}} - \frac{1}{n_{\vec{k}_1}} \right) \delta(\vec{k} + \vec{k}_2 - \vec{k}_1) \delta(\omega_k + \omega_{k_2} - \omega_{k_1}) \mathrm{d}\vec{k}_1 \mathrm{d}\vec{k}_2.$$

Опять вся физика содержится в V и ω_k . Используется для волн Россби (волны в атмосфере с учётом сферичности Земли).

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

19/36

Идеи Ричардсона-Колмогорова: масштабы и потоки.

Решения термодинамического равновесия.

Равномерное распределение волнового действия:

$$N_k = const.$$
 (5)

Равномерное распределение энергии:

$$e_k \simeq \omega_k N_k$$
 (in linear approximation), $\Rightarrow e_k = const \Leftrightarrow N_k = \frac{C}{\omega_k}$. (6)

Можно объединить оба спектра в один (Рэлей-Джинс):

$$N_k = \frac{C}{\mu + \omega_k}.\tag{7}$$

Очевидно, что данные равновесные решения соответствуют нулевым потокам энергии и волнового действия (числа частиц). Для именно турбулентности интерес представляют спектры соответствующие динамическому равновесию, т.е. постоянным потокам сохраняющихся величин.

А.О. Короткевич (Сколтех, Ландау)

Решения Колмогорова-Захарова

(3D жидкость, 2D поверхность, изотропные гравитационные волны, глубокая вода ⇒ четырёхволновой процесс 2 в 2).

$$ω_k = \lambda k^{\alpha}, \ T^{\varepsilon \vec{k}_2, \varepsilon \vec{k}_3}_{\varepsilon \vec{k}, \varepsilon \vec{k}_1} = \varepsilon^{\beta} T^{\vec{k}_2, \vec{k}_3}_{\vec{k}, \vec{k}_1}, \ d$$
- размерность \vec{k} . (8)

Для гравитационных волн на глубокой воде: $d = 2, \ \alpha = 1/2, \ \beta = 3.$ Прямой каскад энергии (от больших масштабов к малым, Захаров и Филоненко, 1967)

$$N_k^{(1)} = C_1 P^{1/3} k^{-\frac{2\beta}{3}-d} = C_1 P^{1/3} k^{-4}.$$
 (9)

Обратный каскад волнового действия (от малых масштабов к большим, Захаров и Заславский, 1982)

$$N_k^{(2)} = C_2 Q^{1/3} k^{-\frac{2\beta - \alpha}{3} - d} = C_2 Q^{1/3} k^{-23/6} \approx const \ k^{-3.83}.$$
 (10)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ つへの

Решение Колмогорова-Захарова-Филоненко (3D жидкость, 2D поверхность, изотропные капиллярные волны, глубокая вода ⇒ трёхволновой процесс 1 в 2 или 2 в 1).

$$\omega_k = \lambda k^{\alpha}, \ V_{\varepsilon \vec{k}_1, \varepsilon \vec{k}_2}^{\varepsilon \vec{k}} = \varepsilon^{\beta} V_{\vec{k}_1, \vec{k}_2}^{\vec{k}}, \ d$$
- размерность \vec{k} . (11)

Для капиллярных волн на глубокой воде: $d=2, \ lpha=3/2, \ eta=9/4.$

Прямой каскад энергии (от больших масштабов к малым, Захаров и Филоненко, 1966)

$$n_k = CP^{1/2}k^{-\beta-d} = C_1 P^{1/3}k^{-17/4}.$$
(12)

Отметим, что в данном случае обратного каскада нет, т.к. нет второй сохраняющейся величины – волнового действия (числа частиц), т.к. процесс взаимодействия волн распадный, т.е. число волн при взаимодействии изменяется.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

Вывод спектра прямого каскада из соображений размерности.

Идея восходит к знаменитому выводу спектра развитой турбулентности в работе Колмогорова (1941). Однако в нашем случае есть дополнительный размерный параметр: ускорение свободного падения g или коэффициент поверхностного натяжения σ . Таким образом нам надо ввести дополнительную связь в систему. Мы можем извлечь её из формы кинетического уравнения. При *N*-взаимодействующих волн (четырёхволновой процесс для гравитационных волн и трёхволновой для капиллярных) связь скорости изменения волнового действия (числа частиц) или энергии выражается следующей зависимостью (см. на количество различных n_k в интеграле столкновений):

$$\dot{n}_{\vec{k}} \leftrightarrow n_{\vec{k}}^{N-1}, \Rightarrow \dot{E}_{\vec{k}} \leftrightarrow E_{\vec{k}}^{N-1}.$$
 (13)

Мы рассматриваем несжимаемую жидкость, поэтому плотность $\rho = const$, следовательно массу мы можем измерять в "литрах": $[m] \sim [I]^3$. Тогда для энергии:

$$[E] = \left[\frac{mv^2}{2}\right] \sim \frac{[l]^3[l]^2}{[l]^2} \sim \frac{[l]^5}{[l]^2}.$$

・ロット (雪) (山) (山)

Плотность энергии (на единицу площади, объёма и т.п.):

$$\left[\frac{E}{V}\right] \sim \frac{[E]}{[I]^d} \sim \frac{[I]^{5-d}}{[t]^2}.$$

Мы рассматриваем изотропный случай, поэтому спектр зависит только от радиуса волнового вектора $k = |\vec{k}|$. Проинтегрировав такой "радиальный" спектр плотности энергии по всем масштабам (напомним, что $k = 2\pi/L$, т.е. размерность $[k] \sim [l]^{-1}$) можно получить плотность энергии:

$$\frac{E}{V} = \int E_k^r \mathrm{d}k, \Rightarrow \left[\frac{E}{V}\right] \sim [E_k^r][I]^{-1}, \Rightarrow [E_k^r] \sim \frac{[I]^{6-d}}{[t]^2}.$$

Энергия – сохраняющаяся величина, так что для её спектральной плотности можно написать уравнение непрерывности в *k*-пространстве (такое же можно написать для спектральной плотности волнового действия в случае, если оно сохраняется):

$$\dot{E}_k^r + rac{\partial P}{\partial k} = 0, \Rightarrow rac{[P]}{[k]} \sim rac{[E_k^r]}{[t]}, \Rightarrow [P] \sim rac{[l]^{5-d}}{[t]^3}.$$

Здесь Р – это поток энергии.

А.О. Короткевич (Сколтех, Ландау)

Вспомним, как зависит скорость изменения спектра энергии от количества волн во взаимодействии N:

$$\dot{E}_{\vec{k}} \leftrightarrow E_{\vec{k}}^{N-1}.$$

Но из уравнения непрерывности следует, что и поток энергии ϵ связан так же, т.е. $P \leftrightarrow (E_k^r)^{N-1}$ или $E_k^r \leftrightarrow \P^{1/(N-1)}$ с точностью до размерной константы. Физическая размерная константа у нас входит только в дисперсионный закон. Обозначим её λ . Т.к. ситуация изотропна, то для частоты имеем:

$$\omega = \lambda k^{\alpha}, \Rightarrow [\lambda] \sim [t]^{-1} [I]^{\alpha}.$$

Используя всё предыдущее, радиальный спектр энергии можно искать в следующем виде (подразумеваем, что он степенной по *k*):

$$E_k^r \sim \lambda^x P^{1/(N-1)} k^y, \Rightarrow [E_k^r] \sim \frac{[l]^{6-d}}{[t]^2} \sim \frac{[l]^{\alpha x}}{[t]^x} \frac{[l]^{(5-d)/(N-1)}}{[t]^{3/(N-1)}} [l]^{-y}.$$

Разрешая соотношения относительно *x* и *y* получаем:

$$x = 2 - \frac{3}{N-1}, \quad y = -6 + d + 2\alpha + \frac{5 - d - 3\alpha}{N-1}, \Rightarrow E_k^r \sim P^{1/(N-1)} k^y. \tag{14}$$

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

Понимая, что связь обычной спектральной плотности энергии с радиально компонентой следующая $E_k^r \sim E_{\vec{k}} k^{d-1}$ и используя линейную связь спектральной плотности энергии и волнового действия, получаем спектр прямого каскада энергии:

$$E_{\vec{k}} = \omega_k n_{\vec{k}}, \Rightarrow n_{\vec{k}} \sim k^{-\alpha} E_{\vec{k}}, \Rightarrow n_{\vec{k}} \sim P^{1/(N-1)} k^{-5+\alpha+\frac{5-d-3\alpha}{N-1}}.$$
(15)

Для прямого каскада энергии гравитационных волн (N=4) на двумерной поверхности (d=2) глубокой трёхмерной жидкости ($\alpha=1/2$):

$$n_k \sim P^{1/3} k^{-4}.$$
 (16)

Что полностью совпадает с (9).

Для прямого каскада энергии капиллярных волн (N=3) на двумерной поверхности (d=2) глубокой трёхмерной жидкости (lpha=3/2):

$$n_k \sim P^{1/2} k^{-17/4}.$$
 (17)

Что, как и ожидалось, полностью совпадает с (12).

27 / 36

・ロト・西ト・モン・モー シック

Аргумент Fjørtoft-а: куда текут потоки?

Аргумент Fjørtoft-а: куда текут потоки?

Давайте рассмотрим ситуация, когда на масштабе k_f энергия и волновое действие вбрасывается в систему, а на масштабах k_- и k_+ они сгорают.

$$\varepsilon = \int \varepsilon_{\vec{k}} \mathrm{d}\vec{k}, \quad n = \int n_{\vec{k}} \mathrm{d}\vec{k}.$$

В слабонелинейном приближении:

 $\varepsilon_{\vec{k}} \approx \omega_k n_{\vec{k}}.$

Для простоты пусть $k_{-} \ll k_{f} \ll k_{+}$. Соответственно, есть два инерционных интервала (k_{-}, k_{f}) и (k_{f}, k_{+}) , где есть только перенос сохраняющихся величин потоком, за счёт нелинейного взаимодействия волн. В динамическом равновесии вся вбрасываемая энергия и всё вбрасываемое волновое действие сгораю:

$$\dot{\varepsilon}_{k_f} + \dot{\varepsilon}_{k_-} + \dot{\varepsilon}_{k_+} = 0, \quad \dot{n}_{k_f} + \dot{n}_{k_-} + \dot{n}_{k_+} = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

Потоки величин в инерционных интервалах постоянны (динамическое равновесие). Давайте посмотрим на большие масштабы k_- (помним, что $\varepsilon_{\vec{k}} \approx \omega_k n_{\vec{k}}$).

$$\dot{n}_{k_{+}} = -\dot{n}_{k_{f}} - \dot{n}_{k_{-}} \ \dot{\varepsilon}_{k_{f}} + \dot{\varepsilon}_{k_{-}} + \dot{\varepsilon}_{k_{+}} = 0, \ \omega_{k_{f}}\dot{n}_{k_{f}} + \omega_{k_{-}}\dot{n}_{k_{-}} - \omega_{k_{+}}\dot{n}_{k_{f}} - \omega_{k_{+}}\dot{n}_{k_{-}} = 0.$$

Отсюда получаем для соотношения скоростей "горения"волнового действия $(k_- \ll k_f \ll k_+)$:

$$\dot{n}_{k_f} = rac{\omega_{k_+} - \omega_{k_-}}{\omega_{k_f} - \omega_{k_+}} \dot{n}_{k_-}, \ \dot{n}_{k_f} \approx rac{\omega_{k_+}}{-\omega_{k_+}} \dot{n}_{k_-}$$

То есть вбрасываемое волновое действие сгорает в основном в области больших масштабов. На малых масштабах k_+ аналогичные рассуждения дают:

$$\dot{n}_{k_f} \approx rac{\omega_{k_+}}{-\omega_{k_f}} \dot{n}_{k_+}, \ \dot{\varepsilon}_{k_f} \approx -\dot{\varepsilon}_{k_+}.$$

Таким образом почти вся вбрасываемая в систему энергия сгорает в области малых масштабов.

Параметры численной схемы.

Давайте добавим накачку и затухание в динамические уравнения:

$$\begin{split} \dot{\eta} &= \hat{k}\psi - (\nabla(\eta\nabla\psi)) - \hat{k}[\eta\hat{k}\psi] + \\ &+ \hat{k}(\eta\hat{k}[\eta\hat{k}\psi]) + \frac{1}{2}\Delta[\eta^{2}\hat{k}\psi] + \frac{1}{2}\hat{k}[\eta^{2}\Delta\psi] - F^{-1}[\gamma_{k}\eta_{\vec{k}}], \\ \dot{\psi} &= -g\eta - \frac{1}{2}\left[(\nabla\psi)^{2} - (\hat{k}\psi)^{2} \right] - \\ &- [\hat{k}\psi]\hat{k}[\eta\hat{k}\psi] - [\eta\hat{k}\psi]\Delta\psi - F^{-1}[\gamma_{k}\psi_{\vec{k}}] + F^{-1}[f_{k}e^{iR_{\vec{k}}(t)}] \\ f_{k} &= 4F_{0}\frac{(k-k_{p1})(k_{p2}-k)}{(k_{p2}-k_{p1})^{2}}; \\ \gamma_{k} &= \gamma_{0}(k-k_{d})^{2}, \quad k > k_{d}. \end{split}$$

Здесь $R_{\vec{k}}(t)$ — равномерно распределённое случайное число в интервале $(0, 2\pi]$. Область моделирования $L_x = L_y = 2\pi$ с периодическими граничными условиями. Гамильтоновское интегрирование по времени: KAO, A.I. Dyachenko, and V.E. Zakharov, *Numerical simulation of surface waves instability on a homogeneous grid*, Physica D: Nonlinear Phenomena **321**, 51–66 (2016); arXiv:1212:2225.

А.О. Короткевич (Сколтех, Ландау)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ つ へ つ ト

Dyachenko, KAO, Zakharov, JETP Letter **77** (10), 546-550 (2003) (arXiv:physics/0308101); Dyachenko, KAO, Zakharov, PRL **92** (13), 134501 (2004) (arXiv:physics/0308099).

А.О. Короткевич (Сколтех, Ландау)

Спектры прямого и обратного каскада. Усреднённые по углу.

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

33 / 36

Спектры обратного каскада. Усреднение по углу. $t\simeq 10^6\,T_{
m p}$.

KAO, Phys. Rev. Lett., 130, 264002 (2023) (arXiv:2211.16567).

А.О. Короткевич (Сколтех, Ландау)

Спектры волновой турбулентности...

Спектры обратного каскада. Усреднённые по углу и отнормированные. $t\simeq 10^6\,T_{
m p}.$

А.О. Короткевич (Сколтех, Ландау)

35 / 36

Наименьшие квадараты: наклон для усреднённого по углу спектра.

μ	$k\in$	Средний наклон	Ошибка в наклоне
0.054	[17; 55]	-3.12	± 0.04
0.067	[16; 55]	-3.14	± 0.05
0.093	[12; 56]	-3.01	± 0.05
0.135	[11; 56]	-3.11	±0.04
Bce	170 точек	-3.07	±0.02

Таблица: Приближение наименьшими квадратами для различных симуляций. Вторая колонка показывает диапазон k между конденсатом и накачкой; the третья колонка даёт следний наклон α для $\langle |a_k|^2 \rangle \sim k^{\alpha}$; последняя колонка даёт оценку ошибки для приближения.

Аналитическое объяснение отклонения спектров от спектров KZ в рамках кинетического уравнения вот тут:

KAO, S. V. Nazarenko, Y. Pan, and J. Shatah, Journal of Fluid Mechanics, **992**, A1 (2024) (arXiv:2305.01930).

Все упомянутые статьи доступны на http://kao.itp.ac.ru