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Introduction

From our college years we are accustomed to classical definition of the Hall effect, namely the electric field E, passed
electric current j and the magnetic field B are mutually othogonal to each other,

jH ∝ [E× B] .

The effect is due to the magnetic part of the Lorentz force which curves fermion’s trajectories.

We will discuss other possibilities of the Hall effect, in which case only the electric current and electric field are

othogonal, while the magnetic field is in plane with the two. To the best of my knowledge such effect has been

experimentally observed for the first time in 2018.

We will also discuss linear magnetoconductivity in magnetic metals. It appeared that besides the Onsager relation there

has not been any knowledge of the mechanism behind the effect. It also appeared that despite century of working with

ferromagnets, there has not been any reports of the experimental observation of the effect until very recently. Was it

the elusive Joe effect, who knows.
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Spin
Spin has a geometric phase. If we consider evolution in parameter space defined by i = 1..N (for example, time), the
phase is

χ = −Im ln [〈i = 1|i = 2〉...〈i = n|i = n + 1〉...〈i = N − 1|i = N〉] ,

where |i〉 is the ket corresponding to the spin’s state at step i .

Adiabatic approximation: the overlap of neighboring states is smooth.

For example, spin S on the unit sphere.

H = −gB · S,

where B is the magnetic field.

|θ, φ〉 =

 cos
(
θ
2

)
sin
(
θ
2

)
e iφ

 ,
where θ, φ are polar and azimuthal angles.

Evolve it along a closed trajectory:
(1) from S = Sez to S = Sey ;
(2) from S = Sey to S = −Sez ;
(3) from S = −Sez to S = −Sey ;
(4) from S = −Sey to S = Sez ;

The phase along this path is

〈+z| + y〉 =
1
√

2
, 〈+y| − z〉 =

1
√

2
e
i π

2 , 〈−z| − y〉 =
1
√

2
e
i π

2 , 〈−y| + z〉 =
1
√

2
.

χ = −Im ln
[
e
i π

2 e
i π

2
]

= −π.

The spin didn’t come back to its initial state.
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Phase

This phase can’t be gauged away. Hence, if speaking of electron systems, the phase can potentially result in electric

currents (recall that imaginary part of the wave function corresponds to the current).

In solids the parameter space is the momentum space, for example, λ ∈ (kx , ky ) in 2D.

χ = −Im
∑
λ

ln〈uλ|uλ+dλ〉 → −Im

∮
P
〈uλ|∂λuλ〉dλ =

∮
P
〈uλ|i∂λuλ〉dλ

=

∫
S

Ω(λ)dS.

Stockes theorem was used and Ω = −2Im〈∂xu|∂y u〉 is the Berry curvature.

In order to operate with the spin’s phase we need coupling of the momentum with the spin through spin-momentum

locking, i.e. spin-orbit coupling or momentum dependent exchange in magnets.
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Anomalous velocity

The Berry curvature Ωk affects the semi-classical equations of motions of electron wave-packet.

ṙ =
∂εk

∂k
+ k̇× Ωk,

k̇ = eE +
e

c
ṙ × B,

where εk is electron’s dispersion, E and B are the electric and magnetic fields correspondingly.

The Berry curvature Ωk plays a role of an effective magnetic field in momentum space.

The Berry curvature Ωk introduces what is called the anomalous velocity, i.e. ṙanomalous ∝ eE× Ωk.

For a review see D. Xiao, M.C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010), Berry phase effects on electronic

properties.

jAHE = e2
∑
s

∫
k

[
Ωs;k × E

]
Fs;k, (1)

s− band index, Fs;k is the Fermi-Dirac distribution function.
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Spin-orbit coupling

Due to uncompensted electric potential gradients.

Rashba spin-orbit coupling

HR = λ
(
kxσy − kyσx

)
,

where λ is a constant.

2DEG

+V

-V

C3v spin-orbit coupling

H3v = αkx

(
k2
x − 3k2

y

)
σz ,

where α is a constant.
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Anomalous Hall effect in ferromagnets

Conventional model of 2DEG with Rashba spin-orbit coupling and ferromagnetic exchange interaction.

HFM =
k2

2m
+ λ

(
kxσy − kyσx

)
+ ∆kσz .

2DEG

+V

-V M

The spinor structure corresponding to εk;± = k2

2m
±
√

(λk)2 + ∆2
k

Ψk,+ =

 cos
(
ξk
2

)
e iφk ,

− sin
(
ξk
2

)  , Ψk,− =

 sin
(
ξk
2

)
e iφk

cos
(
ξk
2

)  ,

where cos(ξk) =
∆k√

∆2
k

+λ2k2
and φk = arctan

(
ky
kx

)
is the phase.

For a ferromagnet ∆k = Mz , and there is an anomalous Hall effect in this model given by

jAHE ∝ [E×M] = Mz [E× ez ] .

For a review see N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539

(2010), Anomalous Hall effect.
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Magnetic field driven C3v in-plane Hall effect

Consider a model of 2DEG with Rashba spin-orbit coupling and C3v spin-orbit coupling and in-plane magnetic field,

H =
k2

2m
+ λ

(
kxσy − kyσx

)
+ αkx

(
k2
x − 3k2

y

)
σz + hxσx + hyσy ,

where hi = 1
2
gµBBi .

2DEG

+V

-V
B

There is an anomalous Hall effect in this model

jAHE ∝ By (B2
y − 3B2

x ) [E× ez ]

= B3
‖ cos(3φ) [E× ez ] .

Anisotropy relative to the crystal structure

when the magnetic field is tuned in the plane.

Signatures of the Hall effect capturing the C3v symmetry has been

recently observed in ferromagnetic system CuPt/CoPt bilayer. L.

Liu et al, Crystal Symmetry-Dependent In-Plane Hall Effect Nano

Letters 2024.

If αkx

(
k2
x − 3k2

y

)
σz → λDkxσz then

jAHE ∝ By [E× ez ] .

This effect has been experimentally observed in 2018 in ZrTe5 material.
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In-plane Hall effect. Experiment.

Figure: Anomalous Hall effect in ZrTe5. Left: regular. Right: in-plane when magnetic field is in plane with the electric

current and transverse to the current voltage drop. ZrTe5 is quasi two-dimensional.
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d-wave Hall effect in antiferromagnets

Square lattice antiferromagnet with Neel order in z− direction. RuO2 for example.
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For a review see Phys. Rev. X 12, 031042 (2022), Phys. Rev. X 12, 040501 (2022).
Hamiltonian of the model is

H =
k2

2m
+ λ(kxσy − kyσx ) + βσz kx ky + hxσx + hyσy ,

where hi = 1
2
gµBBi .

There is anomalous Hall effect

jAHE ∝ σDWHEβBxBy [ez × E] ,

which has the d − wave symmetry in magnetic field. In addition,

jLMC ∝ βBz
(
Ex ey + Ey ex

)
,

which is the linear magnetoconductivity. It is allowed by the Onsager relation.

D.L. Vorobev and V.A. Zyuzin, arxiv 2311.04890.
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LMC in ferromagnetic Weyl metals

Onsager relation for the conductivity tensor is σij (B,M) = σji (−B,−M). Therefore, if the time-reversal symmetry is

preserved in the system, longitudinal and non-Hall parts must be ∝ B2.

If there is a magnetization M in the system, i.e. the system is a ferromagnet, the most straightforward structure of the
linear magnetoconductivity is

δjLMC = α1(E ·M)B + α1(E · B)M + α2(B ·M)E.

Simplest model of magnetic Weyl metal is

H± = ±v(p · σ)± β1Mzpz + β2Mzp
2
zσz

has the effect. All three terms in the current δjLMC are present due to the β1 and β2. Somehow only the last two

have been recently experimentally observed in magnetic Weyl semimetal Co3Sn2S2 in PRL 126, 236601 (2021).
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Main message

Why worry about Hall effects? They don’t disappear if the current is passed along the main axes of the crystal. It is the

magnetic field which can nullify Hall effects. Recall that in-plane Hall effect is ∝ By [E× ez ], C3v in-plane Hall effect

is ∝ By (B2
y − 3B2

x ) [E× ez ], and d-wave Hall effect is ∝ BxBy [E× ez ].

Other transverse responses such as linear magnetoconductivity might disappear if the current is passed along the main

axes. This is true for jLMC ∝ Bz
(
Ex ey + Ey ex

)
when the current is passed at π

4
.

Can we utilize these effects to map out the symmetry of the crystal structure of the magnetic metal?
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