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A simple quasiequilibrium model is presented that accounts in some detail for the observed tempera-
ture dependence of the crossover from 2e to e periodicity (vs gate charge) in the current through a
single-electron tunneling transistor with a mesoscopic superconducting island.

The single-electron tunneling transistor consists of a
small metallic island weakly coupled to two bias leads by
high-resistance, low-capacitance tunnel junctions, and
capacitively coupled to a gate electrode by a capacitance
C;. The current I through the device for a given bias
voltage V is a periodic function of the voltage ¥, on the
gate electrode. If the island is of normal metal, the
period corresponds to a change in the gate charge
Qy=C,V, by a single electronic charge e, whereas if the
island is superconducting, the period can be 2e or e, de-
pending on the temperature and the bias voltage across
the two tunnel junctions. Qualitatively, the period is 2e if
as many electrons as possible on the superconducting is-
land are paired; the period becomes e when at least one
excess quasiparticle is present, whether by injection at
high bias voltages or by thermal excitation as the temper-
ature is raised. In this paper we present a simple model
calculation which gives insight into how this crossover in
period takes place as a function of temperature in the
limit of low bias voltage, together with some illustrative
experimental data.

To calculate the actual device current I(V, V,) theoret-
ically, it is necessary to make a kinetic calculation, 1'?
solving a master equation to find the self-consistent
steady-state nonequilibrium populations of all relevant
states, and the resulting current. However, in the limit of
low bias voltage, state populations will be near to the
V' =0 equilibrium values for the same gate voltage V.
At sufficiently low bias voltages, we expect the current
through the device to be proportional to ¥V with a
coefficient® which is a function of V, and T, dependent on
the equilibrium populations. Thus, we expect that the
period (e or 2e) of the current will be determined by the
period with which the populations vary with V,, allowing
us to use the periodicity of the equilibrium populations as
a proxy for the periodicity of the current at low bias volt-
ages. The enormous simplification which this entails is
the motivation for pursuing this approach, even if it is
limited to finding the period of I(V, ), without being able
to find its magnitude and wave form. It seems likely that
an analytic prescription could be developed for calculat-
ing the linear response dI/dV|,_, as a function of V,
based on the knowledge of the equilibrium populations,
but that remains for future work.

We start by recalling that if the island is in the normal
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state, with V=0, the part of the electrostatic energy
which depends on n, the number of excess electrons on
the island, is given by
Q
E, l—o —n

 (Qp—ne)?
- e

E 2Cs

i
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Here Qy=—C,V,+Qy is the charge induced by the
gate plus any intrinsic offset charge Q, from charged im-
purities, e is the charge of the electron including its sign,
C is the total capacitance of the island to the bias leads
and the gate electrode, and E,=e?/2Cs characterizes
the Coulomb charging energy. As is evident from the
plot in Fig. 1(a), this expression is minimized if ne always
takes on the value nearest to Q,. Thus, as V, is swept, n
changes by unity every time Q, passes through a half-
integral value. This leads to a variation of the popula-
tions, and hence of the current I (Vg) at fixed bias V,
which is e periodic.

If the island is a superconductor, the above results are
modified by the electron pairing. If the total number N
of conduction electrons on the island is even, the BCS
ground state is fully paired; if NV is odd, the ground state
must include one quasiparticle above the energy gap A.
To describe this distinction, Averin and Nazarov* intro-
duced an explicit additive energy term, which has the
value A in odd-N states, and zero in even-N states. As
can be seen from Figs. 1(b) and 1(c), this has the effect of
introducing a 2e periodicity in the energy level diagram,
and hence in the populations of the various possible
states. This in turn should be reflected in a 2e periodicity
in the low-voltage current through the device at low tem-
peratures, but at sufficiently high temperatures we expect
to recover the e periodicity of the normal state. The ob-
jective of this paper is to clarify the nature of this transi-
tion from 2e to e periodicity with increasing temperature.

Although 2e-periodic currents in an SSS transistor
(i.e., one in which leads and island are both supercon-
ducting) had been reported earlier by Geerligs et al.,’
this even-odd electron number effect on the tunnel
current was first clearly demonstrated and interpreted by
Tuominen et al.,®7 also using an SSS device. Their work
showed that the 2e periodicity changed to an e periodici-
ty upon warming through a temperature T*, far below
T,, where A(T*)=~A(0)>>kzT and the material is still
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strongly superconducting. Empirically, T* was found to
be essentially the temperature at which a single thermal
quasiparticle is excited in the whole sample. Some more
recent data illustrating this effect in an NSN transistor
are shown in Fig. 2. [The bias voltage (125 pV) used to
obtain data with excellent signal/noise ratio is too large
for this quasiequilibrium analysis to be strictly applicable,
but it should still be qualitatively correct.] We now ex-
amine the physics which leads to the changeover from a
2e- to an e-periodic dependence at this particular 7.

For simplicity, we restrict our attention to the case
A> E_, for which Fig. 1(c) displays the relevant low-lying
energy levels. For all values of Q, the ground state has
an even number of electrons, and is nondegenerate (except
at the level crossings where Q, /e is an odd integer). In
contrast, the lowest states with an odd number of elec-
trons have a high statistical weight N, because the
quasiparticle states form a quasicontinuum above the en-
ergy gap. This N.g~10* is essentially® the total number
of quasiparticle states within kT above the gap in the
entire island volume (typically ~3X107!% cm3). Taking
account of the multiplicity of levels, the probability of
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FIG. 1. The n-dependent part of the system energy E as a
function of the gate charge Q, at T=0. (a) Normal island,
showing e periodicity of energy levels; (b) superconducting is-
land, with A <E_; (c) superconducting island, with A>E_. In
both (b) and (c), the energy level structure shows 2e periodicity.
At the lowest-lying degeneracy points where two adjacent pa-
rabolas cross, the value of » in the ground state changes, and
charge transport can occur at 7=0 without an energy barrier.
Shading indicates schematically the presence of a continuum of
low-lying quasiparticle states above the energy gap in the case
of n=o0dd, or in the normal state. [For simplicity, we assume
that the parities of N and n are the same.]
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finding the system in one of these odd-n levels relative to
the probability of being in the even-n ground state is
~Nge SE/*T where AE(Q,) is the energy difference
from the even-n ground state up to the lowest odd-n
state.’ Since the average of AE (Q,) over Q, is simply A,
the heuristic criterion based on approximately one
thermally excited quasiparticle suggests defining a
zero-order estimate kpzT§ =A/InN.. Upon inserting
N.z~10* and the BCS value A=1.76k,T,, one finds
Ts=(A/kg)/In(N4)=T,/5, in good agreement with
experimental data.

Although this simple argument gives the correct
answer, it is not clear exactly how it relates to the experi-
ment, in which the periodicity of the measured current
with Q /e is the issue, while the simple theoretical esti-
mate above is obtained after averaging over Q,. Physical-
ly, two distinct energies are competing with the thermal
energy: the energy gap A opposes creation of quasiparti-
cles, and the Coulomb energy E, tries to make the charge
or electron number match the gate charge Q,. In the
normal state, A=0, and Q alone controls the number of
electrons, subject to thermal rounding, as described
above. In the present case, we assume A > E_, so that the
ground state must contain the even number of electrons
closest to that specified by Q,. At T >0, quasiparticles
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FIG. 2. Current through an NSN single-electron transistor
with Al island vs gate charge Q, at temperatures from 50 to 300
mK (bias voltage V=125 uV). Curves have been displaced up-
ward successively for clarity. Note that the transition from 2e
periodicity to e periodicity occurs in the rather narrow tempera-
ture range 240—-270 mK near T*, where the even-odd free ener-
gy difference F, is going to zero.
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can be thermally excited. It is useful to separate the
effect of E, which enters only when comparing states
differing in charge by te, from the effect of A, which is
present for any excitation. In cases where the charge is
changed, Fig. 1(c) shows that E, raises the energy of
odd-n states relative to even-n states by an amount which
is 2e periodic in Q,, and which can be written explicitly
as

Ey(Qo)=(1—2|Q,/e|)E, (2)

if Qg/e is restricted to the representative range
—1<Qy/e <+1. This E;(Q,) has the property that
Ey (Qy)=—Ey(Qy+e), so that it averages to zero over
Q,, as stated above. The expression (2) can be extended
periodically to describe arbitrarily large Q, values.

The precise physical criterion for the transition from
2e to e periodicity is that the probability of an odd num-
ber of electrons at Q, be the same as the probability of an
even number of electrons at (Q,+e) for all Q,, just as
would be the case in the normal state. To allow a simple
analytic computation of these probabilities, we again re-
place the exact system of energy levels by a model in
which, for —1=(Q,/e) =1, the ground state is a nonde-
generate state with n=0, and the quasicontinuum of ex-
cited states above the gap is modeled by a single level
with degeneracy N, and n =1 or —1 depending on the
sign of Q,. [These are the states indicated by the two
lowest parabolas at |Q,| <e in Fig. 1(c).] In the typical
case where kyT <<E_,, we can ignore all charge states
with n values other than these. We also assume that
kpT <<A, but because of the large statistical weight N 4
of the excited states, we need to take account of any num-
ber (so long as it is <<N.) of quasiparticle excitations
above these even and odd ground states. We also assume
the island is in (weak) tunneling contact with a particle
reservoir at ¥ =0, so that the island can contain either an
even or odd number of electrons.

By constructing forms in which either the even or odd
terms cancel, we can then write down partial partition
sums for even and odd » separately as

—A/ky T N —A/kyT N,
Zyen=[(1te By i+ (1—e B /2=200n
(3a)
and
ZOdd:e—EO/kBT[(1+e—A/kBT)Neﬁ._(1~e~A/kBT)Neﬁ]/2
=e—E0/kB:ngdd ’ (3b)

where Z° refers to the corresponding partition sum with
E,=0. These model results should be quite accurate, so
long as kg T <<A. It follows that the relative probability
of odd to even numbers of electrons will be

Poad(Q0) _ Zoad _ —Ey/kyT Z 344

= e
Peven( QO ) Zeven ZO

even
~Eo/kgT,~Fo/kyT

) 4)

where F, is the odd/even free energy difference intro-
duced by Tuominen et al.,® namely

=e
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Fo=kpTIn(ZY,,/Z%,) . Q)

At low temperatures, the leading terms in the binomial
expansions dominate, and we find

FOzA—'kBTlnNeﬂ':kBlnNeﬂ‘(Tg_T) . (Sa)

In this approximation F, drops linearly to zero at the
T§ =A/kg(InN ) defined above, but if more terms in
the expansion are included, Fy(7T) goes to zero only
asymptotically, but very rapidly, as T exceeds T'§. A plot
of Fo(T) for typical parameters is shown in Fig. 3(a).

As noted above, the appropriate test for the presence
of 2e nperiodicity is the ratio of probabilities
P 3i(Q0)/Peyen(Qpte), which reduces to unity for all
values of Q, if there is overall e periodicity. Recalling
that Ey(Q,+e)=—Ey(Q,), after a little algebra one ob-
tains

Poaa(Qo) 140 T Fo/ kT ©)
Peen(Qote) 1+eEO/kBTeF0/kBT
~1— 2 - FolT) (6a)
(14e EoQVkaTy | TkyT |’

where the second form holds only for (Fy/kpT)<<1.
Clearly this ratio of probabilities goes to unity for all Q
as F, goes to zero above T'§, while the departure of this
ratio from unity below T'§ gives a measure of the strength
of the 2e periodicity. This analysis also shows that the
crossover from 2e to e periodicity largely occurs in a
small temperature range of width ~T§ /InN 4 near T§.
For typical numbers, this is only about a 10% range,
which is generally consistent with the data in Fig. 2. It is
interesting that both 7§ and the fractional width of the
crossover region approach zero only as 1/InN 4 as one
approaches the thermodynamic limit. Accordingly, the
limitation of the observability of the even-odd electron
number effect to mesoscopic samples does not stem from
the statistical factors involving A discussed here, but
rather from the need to have E, > k5 T in order to be able
to sweep the electron number by sweeping ¥V, (or Q).
With respect to (6), in the macroscopic limit as E,/kgT
and hence E,/ky T go to zero, the ratio of probabilities is
independent of V, and simply reflects the effect of the en-
ergy gap in favoring an even number of electrons; there is
no observable modulation with period 2e. Evidently, a
treatment of the observable consequences of the even-odd
parity effect must take account of E, as well as A.

By taking account of the Q, dependence of E(Q,),
one can get more detail by considering “point-wise
periodicity” as distinct from the concept of overall
periodicity considered above. For example, Ey(Q)
==xE, for the even- and odd-integer values of Q/e, re-
spectively, so that when comparing the current at Q,
with that at (Qy+e) and (Q,+2e), one finds pointwise 2e
periodicity at integer values of Q,/e. However, when
Qo /e is any half integer, E¢(Q,)=0, so that the current
at this Q, is the same as that at (Q,+e) and (Q,+2e),
showing pointwise e periodicity. Thus pointwise 2e
periodicity should be strongest and last to disappear at
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FIG. 3. (a) Normalized even-odd free energy difference
Fyo(T)/A vs temperature for typical parameters N .~ 15000
and A/ky =2.84 K, for which T'§ =300 mK. The inset shows a
magnified view of the approach to zero near T§. (b) Tempera-
ture dependence of the number of quasiparticles for odd and
even total numbers of conduction electrons for the same param-
eters as in (a). Note the rapid convergence to the macroscopic
limit just above Tg, where (N,, ) ~ 1 for even as well as odd N.

integer values of Q,/e. This prediction is confirmed in
the data of Fig. 2, in that the current at integer values of
Qy/e (i.e., the bottoms of the variations) retains a 2e-
periodic variation at ~260 mK, whereas the current at
half-integer values of Q,/e (i.e., the tops of the varia-
tions) already appears pointwise e periodic at that tem-
perature.
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As noted above, computer simulations of 7(Q,) data
involve solving a rather complex system of rate equa-
tions, rather than the purely equilibrium population
analysis given here. Nonetheless, similar conclusions
about the crossover from 2e to e periodicity are obtained
from these much more difficult calculations. In these
simulations, one assumes states with definite numbers of
particles and rapid relaxation of quasiparticles between
tunneling events so that the initial state for each event is
a canonical ensemble for the appropriate number of parti-
cles. In this fixed-n case, the expectation value of the
number of quasiparticles for odd and even n depends only
on A and 7, independent of E. or Q,. Plots of these
numbers for typical parameters are shown in Fig. 3(b).
This figure illustrates nicely that the crossover from 2e to
e periodicity occurs in the temperature range in which
the number of quasiparticles changes from O or 1, for
even or odd n, respectively, to a rapidly rising value
which is independent of the parity.

Although the exact form of the periodic current depen-
dence I1(Q,) depends on whether one is studying an SSS
or an NSN system, at low bias voltages the period (e vs
2e) should depend only on T/T*. In fact, the T* values
observed with SSS devices by Tuominen et al.® and by
Amar et al.'® are very similar to that seen for the NSN
device of Fig. 2.

According to Fig. 1(c), if the system follows the
minimum energy state while Q, is swept, it always stays
in states of even n, with two electrons entering or leaving
at each crossing point of the parabolas. On the other
hand, in Fig. 1(b), electrons enter one at a time, so that
the ground state visits both even- and odd-» states, but
the system is in even-n states for a greater fraction of the
sweep. Lafarge et al.!! used this effect to extract from
their data the temperature dependence of Fy(T),
confirming that the dependence (5) expected from this
analysis, and plotted in Fig. 3(a), is a good description.
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