Министерство общего и профессионального образования Российской Федерации Московский физико-технический институт (Государственный Университет)

Бакалаврская диссертация

Экситоны в графене в сильном магнитном поле

Студент 328 гр. Имакаев М.В.

Научные руководители: д.ф.-м.н., профессор Иорданский С.В.

Москва, 2007г.

Содержание

Вве	сдение	1
2 Зонная структура графена		2
2.1	Особенности зонной структуры	2
2.2	Графен в магнитном поле	4
Вы	числение спектра	5
3.1	Гамильтониан системы	5
3.2	Вычисление матричных элементов Кулоновского взаимо-	
	действия	7
3.3	Уравнение Шредингера	9
3.4	Энергия активации	10
3.5	Спектр экситона	11
Ана	ализ полученного выражения	12
4.1	Ассимптотики	12
4.2	Критерий применимости	12
	Вве Зон 2.1 2.2 Выг 3.1 3.2 3.3 3.4 3.5 Ана 4.1 4.2	Введение Зонная структура графена 2.1 Особенности зонной структуры 2.2 Графен в магнитном поле 2.2 Графен в магнитном поле Вычисление спектра 3.1 Гамильтониан системы 3.2 Вычисление матричных элементов Кулоновского взаимодействия 3.3 Уравнение Шредингера 3.4 Энергия активации 3.5 Спектр экситона Анализ полученного выражения 4.1 Ассимптотики 4.2 Критерий применимости

1 Введение

Графен - это монослой углерода, образующий гексагональную кристаллическую решетку. До 2005 года считалось, что графен, как двумерный кристалл, неустойчив, и не может быть получен в лаборатории. В 2005 году группа ученых смогла получить образцы графена на подложке из SiO_2 [1]. С этого момента началось активное теоретическое и экспериментальное изучение графена.

Графен обладает множеством необычных свойств, возникающих изза его зонной структуры. Спектр носителей в графене вблизи поверхности Ферми линеен, что соответствует безмассовым релятивистским частицам. Зона проводимости и валентная зона соприкасаются в двух неэквивалентных углах зоны бриллюэна.

Необычный закон дисперсии в графене требует пересмотра большого числа явлений, присущих нормальным металлам. В данной работе речь пойдет о спектре экситонов в сильном магнитном поле.

В качестве основного состояния возьмем состояние, в котором нулевой уровень Ландау целиком заполнен, а первый полностью свободен. В случае несмещенного ферми-уровня нулевой уровень Ландау заполнен наполовину, однако, его всегда можно сместить с помощью затворного напряжения. В случае не целиком заполненного уровня Ландау решение задачи чрезвычайно затруднено из-за многократного вырождения нулевого состояния системы.

Будем представлять экситон, как переброс электрона с нулевого уровня Ландау на первый. Получившееся возбуждение будет электронеитрально, поэтому, в отличие от электрона, оно должно обладать законом дисперсии в магнитном поле. В нулевом приближении энергия возбуждения не зависит от q, и равна энергии первого уровня Ландау. Кулоновское взаимодействие вносит поправку в энергию, и она становится зависящей от импульса экситона. Задачей моей работы было найти эту поправку, и посмотреть, выполняется ли в случае графена теорема Кона $V^{(1)}(q = 0) = 0$, т.е. кулоновское взаимодействие не дает поправки к энергии экситона с импульсом, равным нулю.

2 Зонная структура графена

2.1 Особенности зонной структуры

В приближении сильно связанных электронов полная волновая функция всех электронов кристалла запишется в виде суммы волновых функций электронов из разных подрешеток.

$$\psi = \phi_1 + \lambda \phi_2$$

где коэффициент λ - вариационный параметр. Входящие в уравнение волновые функции ϕ_1 и ϕ_2 запишутся в виде суммы волновых функций отдельных электронов в различных подрешетках кристалла

$$\phi_1 = \sum_A e^{2\pi i \mathbf{k} \cdot \mathbf{r}_A} X(\mathbf{r} - \mathbf{r}_A))$$
$$\phi_2 = \sum_B e^{2\pi i \mathbf{k} \cdot \mathbf{r}_B} X(\mathbf{r} - \mathbf{r}_B).$$

Здесь \mathbf{r}_A и \mathbf{r}_B - радиус-векторы направленные на узлы кристаллической решетки, а $X(\mathbf{r} - \mathbf{r}_A)$ и $X(\mathbf{r} - \mathbf{r}_B)$ - волновые функции электронов, локализованных вблизи этих узлов. В приближении сильно связанных электронов мы можем пренебречь перекрытием волновых функций соседних атомов.

$$\int X(\mathbf{r} - \mathbf{r}_A) X(\mathbf{r} - \mathbf{r}_B) d\mathbf{r} = 0$$

Теперь, подставив в уравнение Шредингера $H\psi = E\psi$ нашу волновую функцию, получим для энергетического спектра носителей и неизвестного параметра λ следующую систему уравнений:

$$H_{11} + \lambda H_{12} = ES \tag{1}$$
$$H_{21} + \lambda H_{22} = \lambda ES,$$

где используются следующие обозначения для интегралов:

$$H_{jj} = \int \phi_j^* H \phi_j d\mathbf{r} H_{12} = H_{21}^* = \int \phi_1^* H \phi_2 d\mathbf{r} S = \int \phi_j^* \phi_j d\mathbf{r}.$$
(2)

Решим эту систему относительно Е:

$$E = \frac{1}{2S} \left(H_{11} + H_{22} \pm \sqrt{(H_{11} - H_{22})^2 + 4|H_{12}|^2} \right)$$

Здесь можно сделать некие упрощения:

$$S = N,
H_{11} = H_{22},
H'_{11} = H'_{22} = \frac{1}{N}H_{11} = \frac{1}{N}H_{22},
H'_{12} = \frac{1}{N}H_{12},$$
(3)

где N - число ячеек в кристалле.

Отсюда приходим к уравнению:

$$E = H_{11}^{'} \pm |H_{12}^{'}|.$$

Учтем только перекрытие между ближайшими атомами, пренебрегая перекрытием внутри одной подрешетки (поскольку атомы этой же подрешетки находятся дальше, чем атомы другой подрешетки).

$$E = \pm |H'_{12}|.$$

Интеграл перекрытия можно представить в виде:

$$\gamma_0 = -\int X^*(\mathbf{r} - \rho) H X(\mathbf{r}) d\mathbf{r},$$

где ρ - радиус-вектор направленный в позиции ближайших соседей. Для величины $H_{12}^{'}$ получим:

$$H_{12}' = \frac{1}{N} \sum_{A,B} \exp\left[-2\pi i \mathbf{k} \cdot (\mathbf{r}_A - \mathbf{r}_B)\right] \int X^* (\mathbf{r} - \mathbf{r}_A) H X(\mathbf{r} - \mathbf{r}_B) d\mathbf{r}.$$

Подставив сюда координаты ближайших соседей, получим:

$$H'_{12} = -\gamma_0 \left(\exp\left[-2i\pi k_x (a/\sqrt{3})\right] + 2\cos\pi k_y a \exp\left[2i\pi k_x (a/\sqrt{3})\right] \right).$$

В итоге, получаем следующий энергетический спектр:

$$E = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2 \pi k_y a + 4\cos \pi k_y a \cos \pi k_x \sqrt{3}a\right)}$$
(4)

где знак <+> соответствует электронам, а <-> -дыркам.

Вблизи углов зоны, что соответствует волновым векторам $\left(\pm \frac{a}{\sqrt{3}}, \pm \frac{a}{3}\right)$ и $\left(0, \pm \frac{2a}{3}\right)$, закон дисперсии получается линейным.

2.2 Графен в магнитном поле

Поскольку закон дисперсии в графене вблизи углов зоны линейный, то электроны в этой области подчиняются уравнению Дирака. Мы пренебрегаем наличием двух неэквивалентных волновых векторов в первой зоне бриллюэна, и рассматриваем возбуждения только в окрестности одного конуса. Уравнение Дирака для электронов и дырок в окрестности одного конуса примет следующий вид:

$$H_{0} = -i\hbar v \begin{pmatrix} \sigma \nabla & 0\\ 0 & -\sigma \nabla \end{pmatrix} = \\ = -i\hbar v \begin{pmatrix} 0 & \nabla_{x} - i\nabla_{y} & 0 & 0\\ \nabla_{x} + i\nabla_{y} & 0 & 0 & 0\\ 0 & 0 & 0 & -\nabla_{x} + i\nabla_{y}\\ 0 & 0 & -\nabla_{x} - i\nabla_{y} & 0 \end{pmatrix}$$
(5)

Четыре компоненты соответствуют амплитуде каждой из двух частиц (электрона и дырки) на каждой из двух подрешеток. Уравнения для электронов и дырок в магнитном поле оказываются независимыми. Тогда, решив получившееся уравнение с учетом магнитного поля, получим уровни энергии:

$$E_n = \sqrt{2ev_F^2 Bn} \tag{6}$$

Тут и далее полагаем $\hbar = c = 1$.

Уровни Ландау для уравнения Дирака получились неэквидистантными. Мы будем рассматривать возбуждения с заполненного нулевого на свободный первый уровень Ландау. В нулевом приближении эти возбуждения имеют энергию:

$$E^{(0)} = \sqrt{2ev_f^2 B} \tag{7}$$

Волновые функции графена в магнитном поле даются комбинациями волновых функций для классической частицы в магнитном поле. Это легко понять следующим образом: если гамильтониан (5) возвести в квадрат, то, с точностью до сдвига энергии, мы получим гамильтониан классической частицы в магнитном поле.

Волновые функции имеют следующий вид:

$$\Psi = \frac{1}{\sqrt{2}} \left\{ \begin{array}{c} \eta_{|n|,p}(\mathbf{r}) \\ \pm \eta_{|n|-1,p}(\mathbf{r}) \end{array} \right\}$$
(8)

при $n \neq 0$ либо

$$\Psi = \left\{ \begin{array}{c} \eta_{0,p}(\mathbf{r}) \\ 0 \end{array} \right\} \tag{9}$$

при n = 0, где знак <+> соответствует валентной зоне, а <-> соответствует зоне проводимости, а

$$\eta_{n,p} = \frac{1}{\sqrt{L}} \exp{(ipy)} \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp{(-(x+p)^2/2)} H_n(x+p)$$
(10)

- волнвые функции классической частицы в магнитном поле.

Здесь и далее выберем следующий масштаб измерения длины:

$$\lambda_H = \sqrt{\frac{1}{e|H|}}\tag{11}$$

Это приведет к замене:

$$x \to x\lambda_H, \qquad y \to y\lambda_H, \qquad p \to p/\lambda_H.$$
 (12)

Двум компонентам волновой функции соответствуют амплитуды волновой функции на двух подрешетках в приближении сильной связи.

3 Вычисление спектра

3.1 Гамильтониан системы

Воспользуемся тем же методом, что использовался в статье [2] для решения аналогичной задаче в случае нормального металла. Запишем оператор межэлектронного взаимодействия через пси-операторы:

$$H_{int} = \frac{1}{2} \int \int \hat{\Psi}^{+}(\mathbf{r}_{1}) \hat{\Psi}^{+}(\mathbf{r}_{2}) V(\mathbf{r}_{2} - \mathbf{r}_{1}) \hat{\Psi}(\mathbf{r}_{2}) \hat{\Psi}(\mathbf{r}_{1})$$
(13)

Разложим операторы $\hat{\Psi}$ и $\hat{\Psi}^+$ по операторам рождения и уничтожения, причем оставим только операторы рождения и уничтожения на нулевои и первом уровнях Ландау:

$$\hat{\Psi}(\mathbf{r}) = \sum_{p} \left[\hat{a}_{0p} \psi_{0p}(\mathbf{r}) + \hat{a}_{1p} \psi_{1p}(\mathbf{r}) \right]$$
(14)

В качестве волновой функции $\psi(\mathbf{r})$ следует подставить волновую функцию электрона, полученную из двухкомпонентной волновой функции суммированием по двум подрешеткам в приближении сильной связи.

$$\psi(\mathbf{r}) = \left\{ \begin{array}{c} \psi_1(\mathbf{r}) \\ \psi_2(\mathbf{r}) \end{array} \right\} = \sum_A \psi_1(\mathbf{r}_A) X(\mathbf{r} - \mathbf{r}_A) + \sum_B \psi_2(\mathbf{r}_B) X(\mathbf{r} - \mathbf{r}_B), \quad (15)$$

где суммирование ведется по всем узлам подрешеток A и B, а $X(\mathbf{r})$ - волновая функция электрона, локализованного на одном из узлов решетки.

Подставив в (13) волновые функции из (14), получим:

$$H_{int} = \sum_{p,p',q_y} \frac{1}{2} V_0(p,p',p'-q_y,p+q_y) \hat{a}^+_{0,p} \hat{a}^+_{0,p'} \hat{a}_{0,p'-q_y} \hat{a}_{0,p+q_y} + (V_{0110}(p,p',p'+q_y,p-q_y) - V_{0101}(p,p',p-q_y,p'+q_y)) \times \\ \times \hat{a}^+_{0,p} \hat{a}^+_{1,p'} \hat{a}_{1,p'+q_y} \hat{a}_{0,p-q_y}, \quad (16)$$

где матричные элементы V определяются согласно:

$$V_{abcd}(p, p_1, p_2, p_3) = \int \int \psi_{a, p_1}^*(\mathbf{r_1}) \psi_{b, p_2}^*(\mathbf{r_2}) V(\mathbf{r_2} - \mathbf{r_1}) \psi_{c, p_3}(\mathbf{r_2}) \psi_{d, p_3}(\mathbf{r_1}) d^3 \mathbf{r_1} d^3 \mathbf{r_2}.$$
 (17)

Обозначим через $U_{abcd}(p, p_1, p_2, p_3)$ матричный элемент кулоновского взаимодействия между классическими осциляторными функциями $\eta_n(p)$:

$$U_{abcd}(p, p_1, p_2, p_3) = \int \int \eta_{a, p_1}^*(\mathbf{r_1}) \eta_{b, p_2}^*(\mathbf{r_2}) V(\mathbf{r_2} - \mathbf{r_1}) \eta_{c, p_3}(\mathbf{r_2}) \eta_{d, p_3}(\mathbf{r_1}) d^3 \mathbf{r_1} d^3 \mathbf{r_2}$$
(18)

Рассмотрим следующий интеграл, и преобразуем его с помощью (8) и (9). Пусть для примера n, m > 0.

$$I = \int \psi_{n,p}(\mathbf{r})\psi_{m,p'}(\mathbf{r})V(\mathbf{r})d^{3}\mathbf{r} =$$

= $C \int \left(\sum_{A} \eta_{n,p}(\mathbf{r}_{A})X(\mathbf{r}-\mathbf{r}_{a}) + \sum_{B} \eta_{n-1,p}(\mathbf{r}_{B})X(\mathbf{r}-\mathbf{r}_{B})\right) \times$
 $\times \left(\sum_{A} \eta_{m,p'}(\mathbf{r}_{A})X(\mathbf{r}-\mathbf{r}_{a}) + \sum_{B} \eta_{m-1,p'}(\mathbf{r}_{B})X(\mathbf{r}-\mathbf{r}_{B})\right)V(\mathbf{r})d^{3}\mathbf{r}$ (19)

Поскольку электроны сильно локализованы то перекрытием атомарных волновых функций X(r) между соседними атомами, можно пренебречь. Соответственно, можно перебречь перекрытием волновых функций между разными подрешетками. Тогда произведение двух сумм сведется к одной. Учитывая, что функции $\eta_{m,p}$ меняются медленно на атомарных масштабах, можно перейти обратно от суммирования к интегрированию, и, учитывая нормировку ψ , получим:

$$I = \frac{1}{2} \int \eta_{n,p}(\mathbf{r}) \eta_{m,p}(\mathbf{r}) V(\mathbf{r}) d^3 \mathbf{r} + \frac{1}{2} \int (\eta_{n-1,p}(\mathbf{r}) \eta_{m-1,p}(\mathbf{r}) V(\mathbf{r}) d^3 \mathbf{r}$$

В случае, если n = 0 или m = 0 последний интеграл занулится, а коэффициент перед первым будет равен $\frac{1}{\sqrt{2}}$. Если же m = n = 0, то этот коэффициент будет равен единице.

Отсюда легко понять, каким образом коэффиценты V_{abcd} выразятся через U_{abcd} :

$$V_0 = U_0$$

$$V_{0110} = \frac{1}{2} (U_{0110} + U_0)$$

$$V_{0101} = \frac{1}{2} U_{0101}.$$
(20)

3.2 Вычисление матричных элементов Кулоновского взаимодействия

Вычислим, для примера, матричный элемент U_{0110} (18).

$$V(\mathbf{r}) = \int \frac{d\mathbf{q}}{(2\pi)^2} V(q) \exp\left(i\mathbf{q}\mathbf{r}\right).$$
 (21)

Перейдем в (21) от интегрирования к суммированию по q_y и перепишем выражение для U_{0110} :

$$U_{0110} = \int dq_x \sum_{q_y} \frac{1}{2\pi L} V(\mathbf{q}) \int \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{L^2 \pi} \exp(iq_y(y_2 - y_1)) \times \\ \times \exp(iq_x(x_2 - x_1)) \exp(-ip_1 y_2) \exp(-ipy_1) \exp(ip'y_1) \exp(ip'_1 y_2) \times \\ \times \exp\left(\frac{-(x_1 + p)^2}{2} - \frac{(x_2 + p_1)^2}{2} - \frac{(x_2 + p'_1)^2}{2} - \frac{(x_1 + p')^2}{2}\right) \times \\ \times (x_2 + p'_1)(x_2 + p_1). \quad (22)$$

После интегрирования по y_1 и y_2 выражение будет ненулевым при условиях $q_y = p_1 - p'_1$, $q_y = p' - p$ и домножится на L^2 . Тогда суммирование по q_y оставит условие $p + p_1 - p' - p'_1 = 0$, обеспечивающую закон сохранения импульса по оси у. В дальнейшем при переходе от суммирования по одному свободному импульсу q_y к интегрированию, выражение домножится на $\frac{L}{2\pi}$. Интегрирование по x_1 и x_2 производится тривиально.

В результате интегрирования по *х* получим следующие матричные элементы:

$$U_0(p, p', p' - q_y, p + q_y) = \frac{1}{4\pi^2} \int dq_x V(\mathbf{q}) \exp\left(-\frac{\mathbf{q}^2}{2}\right) \exp\left(iq_x(p + q_y - p')\right),$$
(23)

$$U_{0110}(p, p', p' - q_y, p + q_y) = \frac{1}{4\pi^2} \int dq_x V(\mathbf{q}) \exp\left(-\frac{\mathbf{q}^2}{2}\right) \times \left(1 - \frac{\mathbf{q}^2}{2}\right) \exp\left(iq_x(p + q_y - p')\right), \quad (24)$$

$$U_{0101}(p, p', p + q_y, p' - q_y) = \frac{1}{4\pi^2} \int dq_x V\left(\sqrt{q_x^2 + (p' - p - q_y)^2}\right) \times \\ \times \exp\left(-\frac{q_x^2 + (p' - p - q_y)^2}{2}\right) \frac{q_x^2 + (p' - p - q_y)^2}{2} \exp\left(-iq_x q_y\right).$$
(25)

Аргументы $p - q_y$ и $p' - q_y$ у последнего матричного элемента переставлены, поскольку этот матричный элемент войдет в итоговое уравнение именно в таком виде, т.к. будет являться коэффициентом перед $\hat{a}_{0,r'}^+ \hat{a}_{1,r+q_y}^+ \hat{a}_{1,r} \hat{a}_{0,r'+q_y}$.

3.3 Уравнение Шредингера

Определим вакуум $|0\rangle$ как заполненный нулевой уровень Ландау, и свободный первый. В сильном магнитном поле спектр дискретен, и экситон представляет собой переброс одного электрона с нулевого на первый уровень Ландау. Общий вид этого возбуждения можно записать в следующем виде:

$$\Psi = \sum_{r,r'} C(r,r') \hat{a}^{+}_{1,r} \hat{a}_{0,r'} |0\rangle$$
(26)

При решении уравнения Шредингера $\hat{H}\Psi = \epsilon \Psi$ нам потребуются только те члены гамильтониана, которые сдвигают электрон-дырочную пару вдоль уровней Ландау, сохраняя ее вид.

За нуль отсчета энергии примем $\epsilon_0=\dot{H}\left|0\right>$ - энергию основного состояния без экситона.

Выберем из гамильтониана необходимые члены:

$$\hat{H} = \hat{H}_{q_u} + \hat{H}_0 \tag{27}$$

Где \hat{H}_{q_y} отвечает перемещению пары, а H_0 дает поправку, не перемещающую пару, а следовательно не зависящую от импульса экситона. H_0 представляет собой энергию активации, т.е. сдвиг невзаимодействующей пары электрон-дырка из-за кулоновского взаимодействия.

$$\hat{H}_{q_y} = \sum_{q_y} \left[\left(V_{0110}(r', r + q_y, r, r' + q_y) - V_{0101}(r', r + q_y, r' + q_y, r) \right) \times \\ \times \hat{a}^+_{0, r'} \hat{a}^+_{1, r + q_y} \hat{a}_{1, r} \hat{a}_{0, r' + q_y} \right].$$
(28)

$$\hat{H}_{0} = \sum_{p'} \left[\left(V_{0}(p', r', p', r') - V_{0}(p', r', r', p') \right) \hat{a}_{0,p'}^{+} + \hat{a}_{0,r'}^{+} \hat{a}_{0,p'} \hat{a}_{0,r'} \right] + \sum_{p'} \left[\left(V_{0110}(p', r, r, p') - V_{0101}(p', r, p', r) \right) \hat{a}_{0,p'}^{+} \hat{a}_{1,r}^{+} \hat{a}_{1,r} \hat{a}_{0,p'} \right].$$
(29)

Подействуем этим гамильтонианом на волновую функцию экситона. Поскольку фермивские операторы антикомутируют, то некоторые знаки в получившемся уравнении поменяются. При вычислении матричных элементов (23)-(25) мы учли, что получившееся выражение будет один раз интегрироваться по импульсу. В результате, уравнение Шредингера:

$$-\int (V_{0110}(r', r+q_y, r, r'+q_y) - V_{0101}(r', r+q_y, r'+q_y, r)) \times \\ \times C(r+q_y, r'+q_y) dq_y = (E-E_0)C(r, r'), \quad (30)$$

где

$$E_{0} = \int \left(V_{0110}(p', r, r, p') - V_{0101}(p', r, p', r) + V_{0}(p', r', p', r') - V_{0}(p', r', r', p') \right) dp'.$$
(31)

Данное уравнение связывает $C(r+q_y,r'+q'_y)$ и C(r,r').

3.4 Энергия активации

Подставив матричные элементы (20) в (31), получим (в том порядке, в котором члены встречаются в E_0):

$$E_{0} = \int \frac{1}{4\pi^{2}} dq_{x} dp' V(|q_{x}|) \exp\left(-\frac{q_{x}^{2}}{2}\right) \left(1 - \frac{q_{x}^{2}}{4}\right) \exp\left(iq_{x}p'\right) - \int \frac{1}{8\pi^{2}} dq^{2} V(\mathbf{q}) \exp\left(-\frac{\mathbf{q}^{2}}{2}\right) \left(\frac{\mathbf{q}^{2}}{2}\right) + \int \frac{1}{4\pi^{2}} d\mathbf{q}^{2} V(\mathbf{q}) \exp\left(\frac{\mathbf{q}^{2}}{2}\right) - \int \frac{1}{4\pi^{2}} dx_{x} dp' V(|q_{x}|) \exp\left(-\frac{q_{x}^{2}}{2}\right) \exp\left(iq_{x}p'\right).$$
(32)

Первый и последний интегралы зануляются. Сосчитаем оставшиеся интегралы, подставив в них фурье-образ кулоновского взаимодействия (пусть e=1):

$$V(\mathbf{q}) = e^2 \frac{2\pi}{q\epsilon_0}$$

$$E_0 = \frac{e^2}{\epsilon_0} \frac{3}{8} \sqrt{2\pi}.$$
(33)

3.5 Спектр экситона

Подставим в уравнение (30) матричные элементы (20), выраженные через (23), (24) и (25):

$$-\frac{1}{4\pi^2} \int d\mathbf{q}^2 \frac{1}{2} V(\mathbf{q}) \exp\left(-\frac{\mathbf{q}^2}{2}\right) \exp\left(iq_x(r'-r)\right) \left(2 - \frac{\mathbf{q}^2}{2}\right) C(r+q_y,r'+q_y) + \frac{1}{4\pi^2} \frac{1}{2} \int d\mathbf{q}^2 V\left(\sqrt{q_x^2 + (r'-r)^2}\right) \exp\left(-\frac{q_x^2 + (r'-r)^2}{2}\right) \frac{q_x^2 + (r-r')^2}{2} \times \exp\left(-iq_x q_y\right) C(r+q_y,r'+q_y) = (E-E_0)C(r,r'). \quad (34)$$

Это уравнение связывает $C(r+q_y, r'+q'_y)$ и C(r, r'), тогда как подинтегральное выражение зависит только от r-r'.

Сделаем замену r + r' = 2u, $r - r' = k_y$. Тогда подинтегральное выражение зависит только от k_y , а уравнение связывает $C(k_y, u + q_y)$ и $C(k_y, u)$. Это подсказывает нам сделать преобразование Фурье по u, чтобы C в обоих частях уравнения сократилось:

$$f(\mathbf{k}) = \int du \exp\left(ik_x u\right) C(u, k_y) \tag{35}$$

В результате преобразования Фурье $f(\mathbf{k})$ сократится в обоих частях уравнения, а на месте $C(r + q_y, r' + q_y)$ останется $\exp(-iq_yk_x)$.

При преобразовании первого члена уравнения (34) используем замену $q_x \to q_y, \ q_y \to q_x.$

$$\int \frac{d\mathbf{q}}{8\pi^2} V(\mathbf{q}) \exp\left(-\frac{\mathbf{q}^2}{2}\right) \left(2 - \frac{\mathbf{q}^2}{2}\right) \exp\left(-i\mathbf{q}\mathbf{k}\right)$$
(36)

Преобразуем второй член:

$$\int d\mathbf{q} \frac{1}{8\pi^2} V\left(\sqrt{q_x^2 + k_y^2}\right) \exp\left(-\frac{q_x^2 + k_y^2}{2}\right) \frac{q_x^2 + k_y^2}{2} \exp\left(-iq_y(q_x + k_x)\right)$$

После интегрирования по q_y получим $2\pi\delta(q_x + k_x)$, тогда после интегрирования по q_x получим:

$$\frac{1}{4\pi}V(\mathbf{k})\exp\left(-\frac{\mathbf{k}^2}{2}\right)\frac{\mathbf{k}^2}{2}\tag{37}$$

Подставим в выражения (36) и (37) двумерный фурье-образ кулоновского взаимодействия(33).

Возьмем интеграл (36) возьмем, перейдя в цилиндрические координаты (он выразится через функции Бесселя мнимого аргумента):

$$\int e^2 \frac{dq d\varphi}{4\pi\epsilon_0} \exp\left(\frac{q^2}{2}\right) \left(2 - \frac{q^2}{2}\right) \exp(-iqk * \cos(\varphi)) = \\ = \frac{e^2 \sqrt{2\pi}}{2\epsilon_0} \left(\exp\left(-\frac{k^2}{4}\right)\right) \left(\frac{3}{4}I_0(\frac{k^2}{4}) + \frac{1}{8}k^2I_0(\frac{k^2}{4}) - \frac{1}{8}k^2I_1(\frac{k^2}{4})\right). \quad (38)$$

В итоге получаем следующее значение энергии:

$$E = E_0 - \frac{e^2 \sqrt{2\pi}}{2\epsilon_0} \left(\exp\left(-\frac{k^2}{4}\right) \right) \left(\frac{3}{4} I_0(\frac{k^2}{4}) + \frac{1}{8} k^2 I_0(\frac{k^2}{4}) - \frac{1}{8} k^2 I_1(\frac{k^2}{4}) \right) + e^2 \exp\left(-\frac{k^2}{4}\right) \frac{|k|}{4} \quad (39)$$

Второй член уравнения (39) убывает экспоненциально при k > 1, тогда как экспонента в первом члене компенсируется ассимптотикой функций Бесселя, и первый член убывает как 1/k.

4 Анализ полученного выражения

4.1 Ассимптотики

Разложим выражение (39) вблизи нуля. Получим:

$$e^{-2}\epsilon_0 E(k \to 0) = \frac{1}{4}k + \frac{1}{32}\sqrt{2\pi}k^2$$

Мы видим, что вклад E_0 сократился с вкладом нулевого порядка по k, т.е. кулоновское взаимодействие не вносит вклад в экситоны с k = 0.

Разложим энергию в ряд при больших k (второе слагаемое будет экспоненциально мало). Получим:

$$e^{-2}\epsilon_0 E(k \to +\infty) = \frac{3}{8}\sqrt{2\pi} - \frac{1}{k} - \frac{3}{4}\frac{1}{k^3}$$
(40)

4.2 Критерий применимости

Сравним полученную поправку к энергии первого уровня Ландау с величиной первого уровня Ландау. В качестве характерного значения поправки возьмем размерную часть величины E_1 , так как безразмерная часть будет порядка единицы на импульсах порядка $\frac{1}{\lambda_H}$, т.е. порядка обратной магнитной длины.

$$E_1^{(0)} = \sqrt{\frac{2e\hbar v_F^2 B}{c}} \tag{41}$$

$$E_1^{(1)} \propto \frac{e^2}{\lambda \epsilon_0} = \frac{e^2}{\epsilon_0} \sqrt{\frac{eB}{\hbar c}}$$
(42)

В отличие от нормального металла, в котором при больших магнитных полях поправка $E_1^{(1)}$ была много меньше уровня Ландау $E_1^{(1)}$, в случае графена зависимость от магнитного поля в обоих членах имеет одинаковый вид, и их отношение будет безразмерным параметром, не зависящим от магнитного поля.

Опустив $\sqrt{2}$, получим безразмерный параметр:

$$\beta = \frac{e^2}{\hbar\epsilon_0 v_F} = \frac{1}{\epsilon_0} \frac{\alpha c}{v_f} \tag{43}$$

Этот параметр характеризует отношение характерной энергии поправки к энергии первого уровня Ландау.

Отношение $\alpha c/v_F$ в случае монослоя графена практически не зависит от постановки эксперимента, и равно приблизительно 2.2 [3]. В экспериментах с графеном на подложке из SiO_2 экспериментальное значение ϵ_0 равно 5 [4]. Отсюда оценим $\beta \approx 0.4$.

При таком значении β поправка будет того же порядка, что и первый уровень Ландау. Это означает, что при рассмотрении экситона необходимо задействовать большее количество уровней Ландау, т.к. экситон будет размазан по нескольким уровням Ландау.

Однако, численные вычисления, приведенные в статье [5], свидетельствуют о том, что даже в случае большего $\beta = 0.73$ относительная поправка от учета большего числа уровней Ландау составляет порядка 10%. Таким образом, в приближении двух первых уровней Ландау теорема Кона для графена верна, тогда как точная ее проверка потребует учета большего количества уровней Ландау.

Список литературы

- Two-dimensional gas of massless dirac fermions in graphene / K. S. Novoselov, A. K. Geim, S. V. Morozov et al. // Nature. – 2005. – Vol. 438. – P. 197. doi:10.1038/nature04233.
- [2] Bychkov, Y. A. Provodimost' dvumernyh elektronov v sil'nom magnitnom pole / Y. A. Bychkov, S. V. Iordanskii, G. M. Eliashberg // JETP Letters. - 1981. - Vol. 34. - P. 496.

- graphite [3] Landau of ultrathin layers level spectroscopy М. L. Sadowski, Martinez, М. Potemski al. // G. et Physical Review Letters. – 2006. -Vol. 97. -Ρ. 266405.http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0605739.
- [4] Alicea, J. Graphene integer quantum hall effect in the ferromagnetic and paramagnetic regimes / J. Alicea, M. P. A. Fisher // *Physical Review B.* — 2006. — Vol. 74. — P. 075422. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0604601.
- [5] *Iyengar*, A. Excitations from filled landau levels in graphene. 2006. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0608364.