Московский Физико-Технический Институт Факультет общей и прикладной физики Кафедра проблем теоретической физики

Майорановские состояния в системе из двух вихрей

Диплом на соискание степени бакалавра

Выполнил:

студент 928 группы

Власюк А. А.

Научный руководитель:

д. ф.-м. н., проф. Фейгельман М. В.

Черноголовка, 2013

Содержание

1	Вве	дение	3
2	Одиночный вихрь		4
	2.1	Гамильтониан BdG	4
	2.2	Одиночный вихрь	4
3	Двухвихревая система		
	3.1	Расщепленные состояния	8
	3.2	Формула для расщепления	9
	3.3	Конечный результат	11
4	Два вихря с малым током		13
	4.1	Теория возмущений	13
	4.2	Ток вдоль оси x	13
		4.2.1 Первая поправка к E_+	14
		4.2.2 Вторая поправка к E_+	16
	4.3	Ток вдоль оси y	17
		4.3.1 Первая поправка к E_+	17
		4.3.2 Вторая поправка к E_+	17
5	Зак	лючение	20
Cı	Список литературы		

1 Введение

В спектре состояний полуквантового вихря в $p_x + ip_y$ сверхпроводнике есть Майорановский уровень с точно нулевой энергией [1]. В результате в системе из многих вихрей основное состояние будет вырождено, кроме того, такие вихри подчиняются неабелевой статистике [2]. Это делает возможным использовать многовихревую систему для реализации топологических квантовых вычислений с неабелевыми анионами [3].

Вырожденность основного состояния - это критическое требование, для выполнения которого мы должны считать, что межвихревым туннелированием можно пренебречь. Если всё же учесть туннельные эффекты, то состояния с нулевой энергией расщепляются и вырождение основного состояния снимается [4,5].

Непосредственная перестановка вихрей, как обычно подразумевают выполнение топологических квантовых вычислений, представляет собой трудность. С другой стороны, если существует способ, адиабатически меняя гамильтониан системы, изменять амплитуду туннелирования между вихрями, то его можно будет использовать для изменения волновой функцией системы необходимым для квантовых вычислений образом [6]. В данной работе рассматривается возможность управления туннельными амплитудами с помощью внешнего тока.

В первой части данной работы введен гамильтониан BdG для $p_x + ip_y$ сверхпроводника и находится состояние с нулевой энергией для одиночного вихря. Во второй части работы подробно рассматривается система из двух вихрей. Для этой системы находится расщепление энергии между невозмущенными состояниями с нулевой энергией. В последней части к системе из двух вихрей прикладывается малый однородный ток в двух различных направлениях и численно находится зависимость поправки к расщеплению в зависимости от расстояния между вихрями.

2 Одиночный вихрь

2.1 Гамильтониан BdG

Начнём наше рассмотрение с BCS гамильтони
ана бесспинового $p_x \! + \! i p_y$ сверх-проводника

$$H_{BCS} = \int d^2 \mathbf{r} \ \Psi^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^2 \nabla^2}{2m} - \mu \right) \Psi(\mathbf{r}) + \frac{i\hbar}{p_F} \int d^2 \mathbf{r} \ \left(\Delta(\mathbf{r}) \partial_{\bar{z}} \Psi^{\dagger}(\mathbf{r}) \Psi^{\dagger}(\mathbf{r}) + h.c. \right)$$
(1)

где z = x + iy комплексные координаты в двумерной плоскости. С помощью преобразования Боголюбова

$$\hat{\Psi}(\mathbf{r}) = \sum_{n} \left(\hat{\gamma}_{n} u_{n}(\mathbf{r}) + \hat{\gamma}_{n}^{\dagger} v_{n}^{*}(\mathbf{r}) \right)$$
(2)

диагонализируя гамильтониан (1), получим уравнения BdG

$$H_{BdG}\begin{pmatrix}u_n\\v_n\end{pmatrix} = E_n\begin{pmatrix}u_n\\v_n\end{pmatrix}$$
(3)
$$H_{BdG} = \begin{pmatrix}-\nabla^2/2m - \mu & \frac{i}{p_F}\left\{\Delta(\mathbf{r}), \partial_{\bar{z}}\right\}\\\frac{i}{p_F}\left\{\Delta^*(\mathbf{r}), \partial_z\right\} & \nabla^2/2m + \mu\end{pmatrix}$$

Можно заметить, что гамильтониан H_{BdG} имеет симметрию:

$$\sigma_1 H_{BdG} \sigma_1 = -H^*_{BdG}$$

из неё следует, что если $\Psi = (u_n, v_n)^T$ - решение уравнения (3) с энергией E_n , тогда $\sigma_1 \Psi^* = (v_n^*, u_n^*)^T$ - решение с энергией $(-E_n)$. Соответственно, для уровня с нулевой энергией $E_n = 0$ получаем, что $u = v^*$. Причем, в отличии от *s*-wave сверхпроводников, в $p_x + ip_y$ сверхпроводниках существует уровень с точно нулевой энергией, что было показано в работе [1].

2.2 Одиночный вихрь

Также как и в *s*-сверхпроводнике, одиночный полуквантовый вихрь можно смоделировать параметром порядка

$$\Delta(r,\varphi) = \Delta_0 f(r) e^{i\varphi}$$

где r и φ полярные координаты, а f(r) имеет типичную зависимость $f(r) = \tanh(r/\xi)$. Здесь Δ_0 среднеполевое значение параметра порядка для однородного сверхпроводника, а ξ это корреляционная длина.

Рассмотрим уравнения BdG для одиночного вихря. Далее везде примем, что $p_F = 1$, в этих единицах гамильтониан BdG примет следующий вид (заметим, что в этих единицах нас интересует область $r \gg 1$)

$$H_{BdG} = \frac{1}{2m} \begin{pmatrix} -\nabla^2 - 1 & 2i/\xi \left\{ \delta(\mathbf{r}), \partial_{\bar{z}} \right\} \\ 2i/\xi \left\{ \delta^*(\mathbf{r}), \partial_z \right\} & \nabla^2 + 1 \end{pmatrix}$$
(4)

где введено обозначение $\delta(\mathbf{r}) = \Delta(\mathbf{r})/\Delta_0$. Напишем уравнения BdG в полярных координатах (r, φ)

$$\partial_z = \frac{1}{2} e^{-i\varphi} \left(\partial_r - \frac{i}{r} \partial_\varphi \right)$$

 $\begin{cases} (\partial_r^2 + \partial_r/r + \partial_{\varphi}^2/r^2 + 1)u - ie^{2i\varphi}/\xi \left\{ 2f(\partial_r + i\partial_{\varphi}/r)v + v(f' - f/r) \right\} = -2mEu \\ (\partial_r^2 + \partial_r/r + \partial_{\varphi}^2/r^2 + 1)v + ie^{-2i\varphi}/\xi \left\{ 2f(\partial_r - i\partial_{\varphi}/r)u + u(f' - f/r) \right\} = 2mEv \end{cases}$

В этих уравнениях можно выделить угловую зависимость с помощью подстановки

$$\Psi_n = \begin{pmatrix} u_n(r)e^{i(n+1)\varphi - i\pi/4} \\ v_n(r)e^{i(n-1)\varphi + i\pi/4} \end{pmatrix}, \ n \in \mathbb{Z}$$

Для нулевого уровня должно соблюдаться условие u = v * u, соответственно, имеем n = 0. Этот случай и будет нас интересовать далее. (Решения для произвольного *n* приведено в [7]). Для нулевого уровня имеем

$$\begin{cases} (\partial_r^2 + \partial_r/r - 1/r^2 + 1)u + 2/\xi \left\{ f(\partial_r + \frac{1}{2r})v + v\frac{f'}{2} \right\} = 0\\ (\partial_r^2 + \partial_r/r - 1/r^2 + 1)v + 2/\xi \left\{ f(\partial_r + \frac{1}{2r})u + u\frac{f'}{2} \right\} = 0 \end{cases}$$

Заметим, что второе уравнение получается из первого заменой $u \leftrightarrow v$, поэтому имеет смысл искать решение v = u, где u - действительная функция (последнее вытекает из условия $v = u^*$). Таким образом мы приходим к уравнению

$$\left(\partial_r^2 + \partial_r/r - 1/r^2 + 1\right)u + 2/\xi \left\{ f\left(\partial_r + \frac{1}{2r}\right)u + u\frac{f'}{2} \right\} = 0 \tag{5}$$

Сделаем подстановку $u(r) = \chi(r) \exp\left(-\frac{1}{\xi} \int_{0}^{r} f(r') dr'\right)$, после упрощений получаем

$$\chi'' + \frac{\chi'}{r} + \chi \left(1 - \frac{1}{r^2} - \frac{f^2(r)}{\xi^2} \right) = 0 \tag{6}$$

Рассмотрим область $r \gg \xi$. На таких расстояниях $\Delta(r,\varphi) \approx \Delta_0 e^{i\varphi}$, и соответственно $f(r) \approx 1$. Тогда действительным решением уравнения (6), удовлетворяющее условию регулярности при $r \to \infty$ и $r \to 0$ будет функция Бесселя первого рода

$$\chi(r) = A J_1(r\sqrt{1 - 1/\xi^2})$$
(7)

В данной работе мы рассматриваем сверхпроводники со слабым межэлектронным взаимодействием, то есть $\xi \gg 1$. Поэтому собирая вместе все подстановки получаем волновую функцию соответствующую нулевому уровню

$$\Psi(r,\varphi) = \begin{pmatrix} u \\ v \end{pmatrix} = A J_1(r) \exp\left[i(\varphi - \pi/4)\sigma_3 - \frac{1}{\xi}\int_0^r dr' f(r')\right]$$

Осталось определить постоянную A из условия нормировки $\int d^2 \mathbf{r} \ \Psi^{\dagger} \Psi = 1$. Снова положим f(r) = 1.

$$2\int d\varphi \int dr \ r J_1^2(r) e^{-2r/\xi} = 4\pi \frac{(2+\xi^2)E(-\xi^2) - (2+2\xi^2)K(-\xi^2)}{2\pi(1+\xi^2)} \tag{8}$$

Где интеграл выразился через эллиптические функции K(x) и E(x). Найдём асимптотическое выражение для случая $\xi \gg 1$ (что в исходных единицах имеет вид $p_F \xi \gg 1$)

$$A^{2} = \frac{1}{2} \frac{1+\xi^{2}}{(2+\xi^{2})E(-\xi^{2}) - (2+2\xi^{2})K(-\xi^{2})} \approx \frac{1}{2\xi}$$

В итоге имеем

$$\Psi(r,\varphi) = \begin{pmatrix} u\\v \end{pmatrix} = \sqrt{\frac{1}{2\xi}} J_1(r) \exp\left[i(\varphi - \pi/4)\sigma_3 - \frac{1}{\xi}\int_0^r dr' f(r')\right]$$
(9)

Благодаря электронно-дырочной симметрии гамильтониана *BdG*, квазичастицы с нулевой энергией - майорановские. Используя решение (9) можно получить соответствующие майорановские операторы

$$\hat{\gamma} = \hat{\gamma}^{\dagger} = \int d^2 \mathbf{r} \left(\hat{\psi}(\mathbf{r}) u^*(\mathbf{r}) + \hat{\psi}^{\dagger}(\mathbf{r}) v^*(\mathbf{r}) \right)$$
(10)

Как уже отмечалось, полный спектр состояний для одиночного вихря был получен в работе [7].

$$E_n = -\omega_0 n \tag{11}$$

где

$$\omega_0 = \Delta_0 \frac{\int\limits_0^\infty \frac{f(r)}{r} e^{-2\zeta(r)} dr}{\int\limits_0^\infty e^{-2\zeta(r)} dr}$$

а $\zeta(r)$ определена следующим образом

$$\zeta(r) = \frac{1}{\xi} \int_{0}^{r} f(r) dr$$

Во всем дальнейшем изложении мы не рассматриваем влияние уровней с $n \neq 0$, что возможно если все энергии расщеплений и поправок получаемых ниже много меньше чем расстояние до следующих уровней то есть $\omega_0 \gg |\Delta E|$

3 Двухвихревая система

3.1 Расщепленные состояния

Рассмотрим систему из двух вихрей в сверхпроводнике, которые находятся на расстоянии $R = 2a \gg \xi$ в точках \mathbf{R}_1 и \mathbf{R}_2 .

Рис. 1: Система из двух вихрей на расстоянии $R \gg \xi$

В этом случае параметр порядка можно представить в следующем виде

$$\Delta(\mathbf{r}) = \Delta_0 e^{i(\varphi_1(\mathbf{r}) + \varphi_2(\mathbf{r}))} f(r_1) f(r_2)$$

где φ_k угол относительно k-го вихря, $\varphi_k(\mathbf{r}) = \arg(\mathbf{r} - \mathbf{R}_k)$; $r_k = |\mathbf{r} - \mathbf{R}_k|$ расстояние до центра k-того вихря . Таким образом, около центра k-го вихря фаза параметра порядка будет равна $\varphi_k(\mathbf{r}) + \Omega_k$, где $\Omega_k = \varphi_i(\mathbf{R}_k)_{i \neq k}$ (в нашем случае $\Omega_1 = \pi$, $\Omega_2 = 0$). Легко модифицировать решение (9) в этом случае

$$\Psi_k(r,\varphi) = \sqrt{\frac{1}{2\xi}} J_1(r_k) \exp\left[i(\varphi_k + \Omega_k/2 - \pi/4)\sigma_3 - \frac{1}{\xi} \int_0^{r_k} dr' f(r')\right]$$
(12)

Между вихрями возможно туннелирование, которое приводит к расщеплению исходных уровней с нулевыми энергиями, аналогично случаю двух потенциальных ям на большом расстоянии. Задача этой части будет получение этого расщепления. Пусть Ψ_1 - состояние с нулевой энергией в левом вихре, Ψ_2 - в правом, тогда, аналогично, расщепленные волновые функции имеют вид

$$\Psi_{\pm} = \frac{1}{\sqrt{2}} \left(\Psi_1 \pm e^{i\alpha} \Psi_2 \right)$$

с соответствующими энергиями E_+ и $E_- = -E_+$. Определить α можно воспользовавшись электронно-дырочной симметрией снова. Имеем $\Psi_- = \sigma_1 \Psi_+^*$, отсюда получаем $e^{i\alpha} = -e^{-i\alpha}$ и $\alpha = \pi/2$.

Рис. 2: Схематический рисунок двухвихревой системы (вдоль прямой соединяющей центры вихрей). Кривая ограничивающая затемненную область - параметр порядка для системы. Сплошная голубая линия - действительная часть волновой функции $u_+ = (u_1 + iu_2)/\sqrt{2}$

3.2 Формула для расщепления

Перейдем непосредственно к подсчету расщепления E_+ . Если H_{BdG} полный гамильтониан системы, тогда в правой полуплоскости верны следующие формулы

$$\begin{cases}
H_{BdG}\Psi_2 = 0 \\
H_{BdG}\Psi_+ = E_+\Psi_+
\end{cases}$$
(13)

Домножим первое уравнение на Ψ_{+}^{\dagger} , второе уравнение на Ψ_{2}^{\dagger} , вычтем из второго первое и проинтегрируем результат по правой полуплоскости Σ . Тогда получаем

$$E_{+} = \frac{\int \sum \left\{ \Psi_{2}^{\dagger} H_{BdG} \Psi_{+} - \Psi_{+}^{\dagger} H_{BdG} \Psi_{2} \right\} d^{2} \mathbf{r}}{\int \sum \Psi_{2}^{\dagger} \Psi_{+} d^{2} \mathbf{r}}$$
(14)

Займемся более подробно интегралом по полуплоскости. Введём обозначения

$$H_{BdG} = \begin{pmatrix} \hat{A} & \hat{B} \\ \hat{C} & -\hat{A} \end{pmatrix}$$

где операторы определены соответствующим образом

$$\hat{A} = -\frac{\nabla^2 + 1}{2m}$$
$$\hat{B} = \frac{i}{m\xi} \left(\partial_{\bar{z}} \delta(\mathbf{r}) + 2\delta(\mathbf{r}) \partial_{\bar{z}} \right)$$
$$\hat{C} = \frac{i}{m\xi} \left(\partial_z \delta^*(\mathbf{r}) + 2\delta^*(\mathbf{r}) \partial_z \right)$$

тогда используя $v_{\alpha} = u_{\alpha}^*, \; \alpha \in \{1,2\}$ получим

$$\sqrt{2} \left(\Psi_2^{\dagger} H_{BdG} \Psi_+ - \Psi_+^{\dagger} H_{BdG} \Psi_2 \right) = (u_2^* \hat{A} u_+ - u_+^* \hat{A} u_2) + (v_+^* \hat{A} v_2 - v_2^* \hat{A} v_+) + \\ + (u_2^* \hat{B} v_+ - u_+^* \hat{B} v_2) + (v_2^* \hat{C} u_+ - v_+^* \hat{C} u_2) = \\ = i(v_2 \hat{A} u_1 - u_1 \hat{A} v_2) + i(v_1 \hat{A} u_2 - u_2 \hat{A} v_1) + i(v_1 \hat{B} v_2 + v_2 \hat{B} v_1) + i(u_1 \hat{C} u_2 + u_2 \hat{C} u_1)$$

где $u_{+} = u_{1} + iu_{2}, v_{+} = v_{1} + iv_{2}$. Займемся упрощением членов по-отдельности.

$$v_{2}\hat{A}u_{1} - u_{1}\hat{A}v_{2} = -\frac{1}{2m}\operatorname{div}(v_{2}\nabla u_{1} - u_{1}\nabla v_{2})$$

$$v_{1}\hat{A}u_{2} - u_{2}\hat{A}v_{1} = -\frac{1}{2m}\operatorname{div}(v_{1}\nabla u_{2} - u_{2}\nabla v_{1})$$

$$v_{2}\hat{B}v_{1} + v_{1}\hat{B}v_{2} = \frac{2i}{m\xi}\partial_{\bar{z}}\left(\delta(\mathbf{r})v_{1}v_{2}\right)$$

$$u_{2}\hat{C}u_{1} + u_{1}\hat{C}u_{2} = \frac{2i}{m\xi}\partial_{z}\left(\delta^{*}(\mathbf{r})u_{1}u_{2}\right)$$

Собирая выражения, получим для интеграла $I = \sqrt{2} \int_{\Sigma} \left\{ \Psi_2^{\dagger} H_{BdG} \Psi_+ - \Psi_+^{\dagger} H_{BdG} \Psi_2 \right\} d^2 \mathbf{r}$

$$I = -\frac{i}{2m} \int_{\Sigma} \operatorname{div} \left(\left(v_2 \nabla u_1 - u_1 \nabla v_2 \right) + \left(v_1 \nabla u_2 - u_2 \nabla v_1 \right) \right) d^2 \mathbf{r} - \frac{2}{m\xi} \int \left\{ \partial_{\bar{z}} \left(\delta(\mathbf{r}) v_1 v_2 \right) + c.c \right\} d^2 \mathbf{r} \quad (15)$$

С помощью теоремы Грина преобразуем интегралы по полуплоскости к интегралам вдоль прямой x=0

$$I = \frac{i}{2m} \int dy \ \{ (v_2 \partial_x u_1 - u_1 \partial_x v_2) + (v_1 \partial_x u_2 - u_2 \partial_x v_1) \} + \frac{2}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r}) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r})) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r}) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + u_1 u_2 \delta^*(\mathbf{r}) + \frac{1}{m\xi} \int dy \ (v_1 v_2 \delta(\mathbf{r}) + \frac{1}{m\xi} \int dy \ ($$

Этот промежуточный результат которым мы воспользуемся ниже. Также легко заметить, что так как $R \gg \xi$ интеграл $\int_{\Sigma} \Psi_2^{\dagger} \Psi_+ d^2 \mathbf{r} = 1/\sqrt{2}$

3.3 Конечный результат

Всё что осталось, для получения окончательного ответа для расщепления это непосредственно вычислить интеграл *I*. Явно выпишем волновые функции Ψ_1 и Ψ_2 (пользуясь (12)) на прямой x = 0 по которой нужно вычислить интеграл. Учтём, что на этой прямой $r_1 = r_2 \equiv r$, $\varphi_2 = \pi - \varphi_1$

$$u_{1} = v_{1}^{*} = \sqrt{\frac{1}{2\xi}} J_{1}(r) \exp\left(i(\varphi_{1} + \pi/4) - \frac{r}{\xi}\right)$$
$$u_{2} = v_{2}^{*} = \sqrt{\frac{1}{2\xi}} J_{1}(r) \exp\left(i(\pi - \varphi_{1} - \pi/4) - \frac{r}{\xi}\right)$$

Соответственно, $\delta(\mathbf{r}) = e^{i(\varphi_1 + \varphi_2)} = e^{i\pi} = -1$. Учитывая, что на прямой x = 0мы имеем $r \gg 1$, а также $\xi \gg 1$, то основной вклад, например, в $\partial_x u_1$, будет в слагаемом с производной от функции Бесселя, то есть

$$\partial_x u_1 \approx \cos \varphi_1 \sqrt{\frac{1}{2\xi}} J_1'(r) \exp\left(i(\varphi_1 + \pi/4) - \frac{r}{\xi}\right)$$

Аналогичное получаем для производных $\partial_x v_1, \partial_x u_1, \partial_x v_2$. Поэтому выражение для I можно упростить

$$I = -\frac{2}{m} \int dy \, \operatorname{Im} v_2 \partial_x u_1 + \frac{4}{m\xi} \int dy \, \operatorname{Re} v_1 v_2 \delta(\mathbf{r})$$

Так как множители $\sqrt{2}$ в числителе и знаменателе (14) сокращаются, то I и будет расщеплением $E_+ = I$. Подставляя выражения выше, имеем

$$E_{+} = \frac{1}{m\xi} \int dy \ J_{1}'(r) J_{1}(r) e^{-2r/\xi} \cos \varphi_{1} \ \cos 2\varphi_{1} + \frac{2}{m\xi^{2}} \int dy \ J_{1}(r)^{2} e^{-2r/\xi}$$

Используя асимптотическое разложение Функций Бесселя

$$J_1'(r)J_1(r) \approx \frac{2\cos 2r}{\pi r}$$
$$J_1(r)^2 \approx \frac{2\cos^2(r + \frac{\pi}{4})}{\pi r}$$

в итоге имеем

$$E_{+} \approx \frac{2}{m\xi\pi a} \int dy \frac{\cos\left(2\sqrt{a^{2}+y^{2}}\right)}{\sqrt{a^{2}+y^{2}}} e^{-2\sqrt{a^{2}+y^{2}}}$$

где *a* = *R*/2. Этот интеграл берётся методом перевала и мы получаем выражение для расщепления

$$E_{+} \approx \frac{2\sqrt{2}}{m\xi} \frac{\cos\left(R + \pi/4\right)}{\sqrt{\pi R}} e^{-R/\xi} = \Delta_{0} \, 2\sqrt{2} \, \frac{\cos\left(R + \pi/4\right)}{\sqrt{\pi R}} e^{-R/\xi} \tag{16}$$

Этот результат, но с другими численным коэффициентами был получен в [4,5]. Как можно отсюда видеть расщепление энергии, помимо ожидаемого экспоненциального затухания, быстро осциллирует с периодом равным фермиевской длине волны.

Заметим, что рассмотрение выше справедливо если можно не учитывать другие уровни с $n \neq 0$, соответственно, имеем условие на малость полученного расщепления по сравнению с расстоянием до ближайшего уровня $|E_+| \ll \omega_0$.

4 Два вихря с малым током

4.1 Теория возмущений

Рассмотрим систему из двух вихрей из предыдущего пункта с параметром порядка $\Delta(\mathbf{r})$, кроме того включим постоянный ток вдоль некоторого направления

$$\Delta_k(\mathbf{r}) = \Delta(\mathbf{r})e^{i\,\mathbf{k}\mathbf{r}}$$

В таком достаточно общем случае аналитическое решение задачи вызывает трудности, поэтому мы рассмотрим два более частных случая: ток текущий вдоль прямой соединяющей два вихря $\mathbf{k} = (k, 0)$ и текущий в перпендикулярном направлении $\mathbf{k} = (0, k)$, причём ток достаточно мал. Критерий достаточной малости мы сформулируем позже.

Целью этого раздела будет найти поправку к исходному расщеплению, рассматривая ток как возмущение (для определенности будем искать поправку к E_+). Конечно, в нашей системе присутствует целое множество энергетических уровней, но если полученная поправка δE_+ мала по сравнению с расщеплением $\omega_0 \gg |2E_+| \gg |\delta E_+|$ то можно рассматривать нашу систему как двухуровневую: состояние Ψ_+ с энергией E_+ и Ψ_- с энергией E_- . Соответственно, во втором порядке теории возмущений достаточно учесть матричные элементы только между этими уровнями т.е. $V_{-+} = V_{+-}^*$. Пользуюсь этими рассуждениями о двухуровневой системе, в следующих двух разделах будет посчитана квадратичная по k поправка к E_+ . Рассмотрим два случая последовательно.

4.2 Ток вдоль оси x

$$\Delta_k(\mathbf{r}) = \Delta(\mathbf{r})e^{ikx} \tag{17}$$

будем рассматривать ток как возмущение, соответственно получаем первое условие на малость тока $kR\ll 1$

$$\Delta_k(\mathbf{r}) = \Delta(\mathbf{r}) \left(1 + ikx - \frac{k^2 x^2}{2} \right)$$

Теперь полный гамильтониан BdG можно представить как исходный гамильтониан плюс возмущение

$$\hat{H}_{BdG} = \hat{H}_{BdG}^{(0)} + \hat{V}$$
$$\hat{V} = \begin{pmatrix} 0 & \delta \hat{B} \\ -\delta \hat{B}^{+} & 0 \end{pmatrix}$$

где

$$\delta \hat{B} = \frac{i}{m\xi} \left(\left(ikx - \frac{k^2 x^2}{2} \right) \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + \Delta (ik - k^2 x) \right)$$
(18)

4.2.1 Первая поправка к E_+

Найдем первую поправку по теории возмущений к энергии E_+ . Из симметрии ясно, что поправка не должна зависеть от знака k, поэтому при расчете можно оставить в (18) только квадратичные по k члены

$$\delta \hat{B}_2 = -\frac{ik^2}{m\xi} \left(\frac{x^2}{2} \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + \Delta x \right)$$

для первой поправки имеем

$$\delta E_{+}^{(1)} = \langle \Psi_{+} | \hat{V} | \Psi_{+} \rangle =$$
$$= \langle \Psi_{1} | \hat{V} | \Psi_{1} \rangle + \langle \Psi_{2} | \hat{V} | \Psi_{2} \rangle + i \left(\langle \Psi_{1} | \hat{V} | \Psi_{2} \rangle - \langle \Psi_{2} | \hat{V} | \Psi_{1} \rangle \right)$$
(19)

Если бы в системе был один вихрь, то нулевой уровень энергии никуда не мог бы сдвинуться из-за вышеуказанной симметрии гамильтониана BdG. Из этого рассуждения следует, что к физически существенному результату могут привести лишь перекрестные члены в (19)

$$\delta E_{+}^{(1)} = i \left(\left\langle \Psi_{1} \right| \hat{V} \left| \Psi_{2} \right\rangle - \left\langle \Psi_{2} \right| \hat{V} \left| \Psi_{1} \right\rangle \right)$$

$$(20)$$

Рассмотрим подробнее первый член (второй рассматривается точно также)

$$\langle \Psi_1 | \hat{V} | \Psi_2 \rangle = \langle u_1 | \delta \hat{B} | v_2 \rangle - \langle v_1 | \delta \hat{B}^+ | u_2 \rangle$$

здесь легко заметить, что второе слагаемое получается комплексным сопряжением из первого, поэтому

$$\langle \Psi_1 | \hat{V} | \Psi_2 \rangle = 2 i \operatorname{Im} \langle u_1 | \delta \hat{B} | v_2 \rangle$$

Пользуясь этим, (20) преобразуется в следующий вид

$$\delta E_{+}^{(1)} = -2 \operatorname{Im}\left(\left\langle u_{1} \middle| \delta \hat{B}_{2} \middle| v_{2} \right\rangle - \left\langle u_{2} \middle| \delta \hat{B}_{2} \middle| v_{1} \right\rangle\right) = \frac{2k^{2}}{m\xi} \operatorname{Im} \int ix^{2} \Delta \left(v_{1} \partial_{\bar{z}} v_{2} - v_{2} \partial_{\bar{z}} v_{1}\right) dx dy$$

$$\tag{21}$$

при переходе к последнему равенству, операторы умножения на число тривиально сократились $\alpha v_1 v_2 - \alpha v_2 v_1 = 0$. Вычисление последнего интеграла в аналитическом виде представляет трудность. Был произведён численный расчет данного интеграла в зависимости от расстояния между вихрями R (см. Рис. 3)

Рис. 3: Результат численного расчета первой поправки к расщеплению в системе из двух вихрей в зависимости от расстояния между вихрями. Ток направлен вдоль оси x. Красная пунктирная кривая: кубические сплайны проведенные через рассчитанные точки. Голубая кривая - невозмущенное расщепление энергий $\Delta E = E_+ - E_-$, построенное с коэффициентом 0.01 (в сто раз меньше). Параметры системы $\xi = 10, m = 1, k = 0.01$

При достаточно больших $R\gtrsim 8\xi$ полученная зависимость хорошо приближается формулой

$$\delta E_{+}^{(1)} = C_x \, k^2 \, R^3 \cos\left(R + \pi/4\right) e^{-R/\xi} \tag{22}$$

где C_x - значение численно получающееся из условия наилучшего приближения посчитанных точек данной зависимостью (для параметров при которых построен график на Рис. 3 $C_x = 4.07 \cdot 10^{-4}$). Заметим, что при таких больших R поправка осциллирует с той же частотой и фазой, что и исходное расщепление (голубая кривая на Рис. 3). Причём, амплитуда осцилляций у первой поправки убывает медленней, чем соответствующая амплитуда осцилляций исходного расщепления ($A_{\delta E}/A_E \sim R^{7/2}$).

4.2.2 Вторая поправка к E_+

Квадратичные члены по k будут и во втором порядке теории возмущений, поэтому для получения корректного результата мы должны учесть и их. Теперь, для получения квадратичной по k поправки нужно учесть в δB только линейные по k члены.

$$\delta \hat{B}_1 = -\frac{k}{m\xi} \left(x \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + \Delta \right)$$

Записываем второй порядок теории возмущений (напомним, что считаем нашу систему двухуровневой)

$$\delta E_{+}^{(2)} = \frac{|V_{-+}|^2}{2E_{+}}$$

$$V_{-+} = \langle \Psi_{-} | \hat{V} | \Psi_{+} \rangle = i \left(\left(\langle \Psi_{1} | \hat{V} | \Psi_{2} \rangle + \langle \Psi_{2} | \hat{V} | \Psi_{1} \rangle \right) \right)$$
(23)

что в более явном виде

$$V_{-+} = -\frac{4k}{m\xi} \operatorname{Im} \int \left\{ x \,\partial_{\bar{z}} \left(\Delta v_1 v_2 \right) + \Delta v_1 v_2 \right\} d^2 \mathbf{r}$$

перебрасывая производную в первом члене на x получаем

$$V_{-+} = -\frac{4k}{m\xi} \operatorname{Im} \int \left\{ -\Delta v_1 v_2 + \Delta v_1 v_2 \right\} d^2 \mathbf{r} = 0$$

В итоге второй порядок теории возмущений дает нулевую квадратичную по k поправку

$$\delta E_+^{(2)} = 0 \tag{24}$$

Это значит, что в квадратичном по k^2 приближении поправка к расщеплению определяется первым порядком теории возмущений.

4.3 Ток вдоль оси у

Теперь рассмотрим теперь малый ток вдоль оси $y, \Delta_k(\mathbf{r}) = \Delta(\mathbf{r})e^{iy}$. В целом, все шаги аналогичны случаю с током вдоль оси x.

$$\delta \hat{B} = \frac{i}{m\xi} \left(\left(iky - \frac{k^2 y^2}{2} \right) \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + \Delta (-k - ik^2 y) \right)$$
(25)

4.3.1 Первая поправка к E_+

Снова из симметрии понятно, что поправка не должна зависеть от знака k, поэтому при расчете можно оставить в (25) только квадратичные по k члены

$$\delta \hat{B}_2 = -\frac{ik^2}{m\xi} \left(\frac{y^2}{2} \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + \Delta iy \right) \right)$$

для первой поправки имеем

$$\delta E_{+}^{(1)} = i \left(\left\langle \Psi_{1} \right| \hat{V} \left| \Psi_{2} \right\rangle - \left\langle \Psi_{2} \right| \hat{V} \left| \Psi_{1} \right\rangle \right)$$
(26)

С помощью аналогичных преобразований приходим к следующему виду

$$\delta E_{+}^{(1)} = \frac{2k^2}{m\xi} \operatorname{Im} \int iy^2 \Delta \left(v_1 \partial_{\bar{z}} v_2 - v_2 \partial_{\bar{z}} v_1 \right) dx \, dy \tag{27}$$

Был произведён численный расчет данного интеграла в зависимости от расстояния между вихрями R (см. Рис. 4)

При достаточно больших $R\gtrsim5\xi$ полученная зависимость хорошо приближается формулой

$$\delta E_{+}^{(1)} = C_y \, k^2 \, R \cos\left(R + 3\pi/4\right) e^{-R/\xi} \tag{28}$$

(для параметров при которых построен график на Рис. 4 $C_y = 1.64 \cdot 10^{-1}$) Интересно заметить, что фаза осцилляций поправки в этом случае сдвинута относительно исходного расщепления на фазу $\pi/2$.

4.3.2 Вторая поправка к E_+

Для получения квадратичной по k поправки нужно учесть в δB только линейные по k члены.

$$\delta \hat{B}_1 = -\frac{k}{m\xi} \left(y \left(\partial_{\bar{z}} \Delta + 2\Delta \partial_{\bar{z}} \right) + i\Delta \right)$$

Рис. 4: Результат численного расчета первой поправки к расщеплению в системе из двух вихрей в зависимости от расстояния между вихрями. Ток направлен вдоль оси y. Красная пунктирная кривая: кубические сплайны проведенные через рассчитанные точки. Голубая кривая - невозмущенное расщепление энергий $\Delta E = E_+ - E_-$, построенное с коэффициентом 0.0025. Параметры системы $\xi = 10, m = 1, k = 0.01$

Для второго порядка теории возмущений имеем

$$\delta E_{+}^{(2)} = \frac{|V_{-+}|^2}{2E_{+}}$$

$$V_{-+} = \langle \Psi_{-} | \hat{V} | \Psi_{+} \rangle = i \left(\left(\langle \Psi_{1} | \hat{V} | \Psi_{2} \rangle + \langle \Psi_{2} | \hat{V} | \Psi_{1} \rangle \right) \right)$$
(29)

что в более явном виде

$$V_{-+} = -\frac{4k}{m\xi} \operatorname{Im} \int \left\{ y \,\partial_{\bar{z}} \left(\Delta v_1 v_2 \right) + i \Delta v_1 v_2 \right\} d^2 \mathbf{r}$$

перебрасывая производную в первом члене на у получаем

$$V_{-+} = -\frac{4k}{m\xi} \operatorname{Im} \int \left\{ -i\Delta v_1 v_2 + i\Delta v_1 v_2 \right\} d^2 \mathbf{r} = 0$$

В итоге второй порядок теории возмущений снова дает нулевую квадратичную по k поправку

$$\delta E_{+}^{(2)} = 0$$
 (30)

Это значит, что и в случае тока текущего вдоль оси y в квадратичном по k^2 приближении поправка к расщеплению определяется только первым порядком теории возмущений.

Сравнение поправок для тока вдоль осе
йxиy при одинаковых kможно увидеть на Рис.
 5

Рис. 5: Красная линия - поправка δE_+ для тока текущего вдоль оси x. Голубая линия - поправка δE_+ для тока текущего вдоль оси y. Параметры системы $\xi = 10, m = 1, k = 0.01$

5 Заключение

В данной работе было произведено последовательное рассмотрение вихревых состояний в $p_x + ip_y$ сверхпроводнике. Было найдено расщепление в двухвихревой системе, появляющееся из-за межвихревого туннелирования. Для этой системы численно была вычислена поправка в расщеплению появляющаяся в присутствии тока. Найдено, что поправки быстро осциллируют в зависимости от расстояния между вихрями, причём с той же частотой что и исходное расщепление.

Интересным результатом является сдвиг фаз на $\pi/2$ между осцилляциями поправки для тока текущего вдоль оси y и осцилляциями исходного расщепления. В частности это говорит от том, что существуют расстояния на которых поправка вообще зануляет расщепление (по крайней мере, с точностью до следующего порядка по k). Кроме того, собирая вместе (16) и (28) можно заметить, что для полного расщепления имеем

$$E_{+}^{(f)} = E_{+} + \delta E_{+} = A R^{-1/2} e^{-R/\xi} \left(\cos\left(R + \pi/4\right) + B k^{2} R^{3/2} \cos\left(R + 3\pi/4\right) \right)$$

где *А* и *В* некоторые численные константы. Последнее выражение можно переписать в следующем виде

$$E_{+}^{(f)} = A R^{-1/2} e^{-R/\xi} \left(\cos \left(R + \pi/4 \right) + B k^2 R^{3/2} \partial_r \cos \left(R + \pi/4 \right) \right) \approx$$
$$\approx A R^{-1/2} e^{-R/\xi} \cos \left(R + \pi/4 + B k^2 R^{3/2} \right)$$

Последние два замечания приводят к идеи о том, что присутствие однородного тока, перпендикулярного прямой соединяющей вихри, сводиться к сдвигу фаз в соответствующем расщеплении. Проверка этой идеи представляется интересным вопросом для дальнейшего изучения.

Список литературы

- V. Gurarie and L. Radzihovsky, "Zero modes of two-dimensional chiral p-wave superconductors" Ann. Phys.(Leipzig) 322, 2 (2007)
- [2] D.A. Ivanov, "Non-Abelian statistics of half-quantum vortices inp-wave superconductors", Phys. Rev. Lett. 86, 268 (2001)
- [3] A. Kitaev, "Fault-tolerant quantum computation by anyons", quant-ph/9707021.
- [4] M. Cheng, R. Lutchyn, V. Galitski, and S. Das Sarma, "Splitting of Majorana modes due to intervortex tunneling in a p + ip superconductor", Phys. Rev. Lett. 103, 107001 (2009)
- [5] M. Cheng, R. Lutchyn, V. Galitski, and S. Das Sarma, "Tunneling of anyonic Majorana excitations in topological superconductors", Phys. Rev. B 82, 094504 (2010)
- [6] M. Burrello, B. van Heck, A. Akhmerov, "Braiding of non-Abelian anyons using pairwise interactions", Phys. Rev. A 87, 022343 (2013)
- [7] N. Kopnin and M. Salomaa, "Mutual friction in superfluid He-3: Effects of bound states in the vortex core", Phys. Rev. B 44, 9667-9677 (1991).
- [8] Де Жен П.-Ж. Сверхпроводимость металлов и сплавов. М.: Мир, 1968. — 280 с.