Московский физико-технический институт (государственный университет) Институт теоретической физики им. Л.Д.Ландау РАН

«Косвенное обменное взаимодействие магнитных примесей в квантовой яме CdTe/HgTe/CdTe» (Дипломная работа бакалавра)

студента 222 группы Куриловича П.Д. научный руководитель д.ф.-м.н. Бурмистров И.С.

Черноголовка 2016

Оглавление

Oı	Оглавление 1							
1	Вве 1.1 1.2	дение Постановка задачи	2 4 4					
2	Гамильтониан BHZ 5							
	2.1	Гамильтониан Кейна	5					
		2.1.1 Симметрии гамильтониана	5					
		$2.1.2$ $k \cdot p$ теория	6					
	2.2	Низкоэнергетические 2D состояния	8					
	2.3	Учет несимметричности интерфейса относительно инверсии	11					
		2.3.1 Качественное рассмотрение	11					
		2.3.2 Гамильтониан с учетом несимметрии интерфейсов	12					
3	Mar	тнитные примеси в модели BHZ	14					
	3.1	Обменный Гамильтониан	14					
		3.1.1 Гамильтониан примеси в базисе E1, H1	15					
4	Koc	венное обменное взаимодействие	17					
	4.1	Поляризационный оператор	17					
	4.2	Предварительные вычисления	18					
		4.2.1 Обезразмеривание	18					
		4.2.2 Обобщенный гамильтониан BHZ	19					
		4.2.3 Интегрирование по энергии	20					
		4.2.4 Пример упрощения	20					
	4.3	Эффективный Гамильтониан	21					
	4.4	Асимптотическое поведение	23					
		4.4.1 Пример вычисления	23					
		4.4.2 Итоговый результат	27					
	4.5	Анизотропия	29					
5	Зак	лючение	31					
6	Спи	сок литературы	33					

Глава 1

Введение

Теоретическое предсказание [1], [2] и экспериментальное наблюдение [3] квантового спинового эффекта Холла в квантовой яме CdTe/HgTe/CdTe (см. рис 1.1) вызвало значительный интерес к этому двумерному топологическому изолятору [4], [5]. Эффект связан с появлением двух бесщелевых краевых состояний для электронов на границе образца: одно состояние движется влево и одно вправо. Характерной чертой этих состояний является полная связь спина электрона с направлением его движения, из-за чего вдоль края идет нескомпенсированный спиновый ток. Более того, в невзаимодействующем пределе такие электроны не испытывают рассеяния на потенциальных барьерах и поэтому, даже при наличии потенциального беспорядка, края имеют идеальные транспортные свойства. Появление квантового спинового эффекта Холла требует наличия симметрии по отношению к обращению времени. Глобально эта симметрия может нарушаться, например, магнитным полем приложенным поперек квантовой ямы. Локальное возмущение, нарушающее симметрию по отношению к обращению времени, не разрушает эффекта в целом, но, тем не менее, может влиять на транспорт вдоль краев [6], [7].

Рис. 1.1: Квантовая яма CdTe/HgTe/CdTe (из [3])

Хорошо известный пример такого локального возмущения, нарушающего симметрию по отношению к обращению времени - магнитные примеси в классическом пределе. Если есть конечная концентрация примесей, то наличие квантового спинового эффекта Холла находится под вопросом. В частности, при ферромагнитном упорядочении спинов магнитных примесей создается сильное направленное обменное поле, и квантовый спиновый эффект Холла подавляется за счет Зеемановского расщепления.

При небольшой концентрации примесей возможная фазовая диаграмма (например, в осях температура/концентрация) определяется косвенным обменным взаимодействием примесей через окружающий их двумерный электронный газ. В случае металлов такое взаимодействие известно как взаимодействие Рудермана-Киттеля-Касуи-Йосиды (RKKY) [8], [9], [10]. Характерная зависимость энергии такого взаимодействия примесей *A* и *B* от расстояния для трехмерного металла

$$E_{RKKY} \sim \boldsymbol{S}_A \boldsymbol{S}_B \frac{2k_F r \cos 2k_F r - \sin 2k_F r}{r^4}$$

где k_F - фермиевский волновой вектор. В двумерном случае степень взаимодействия по расстоянию меняется, но характер зависимости остается прежним - взаимодействие дальнодействующее и осциллирует с расстоянием. Наличие осцилляций может привести к образованию спин-стекольной фазы при низкой температуре. Недавно большой интерес вызвало RKKY взаимодействие, переносимое поверхностными состояниями в трехмерном топологическом изоляторе [11] - [17]. Было показано, что косвенный обмен может приводить к ферромагнитному упорядочению магнитных примесей около поверхности, тем самым открывая щель в спектре поверхностных состояний. Такой эффект был исследован экспериментально посредством фотоэлектронной спектроскопии с угловым разрешением [18] - [20].

Исследования косвенного обменного взаимодействия в полупроводниках были начаты Бломбергеном и Роуландом [21]. Было показано, что при нулевой температуре наличие щели в спектре приводит к экспоненциальному спаданию констант косвенного обменного взаимодействия с расстоянием, при условии, что химический потенциал лежит в щели. Подобное поведение объясняется, тем, что для "передачи" проекции спина от примеси к электронам должен произойти переброс электрона через щель, все состояния под ней заполнены и без переброса проекция спина электронной подсистемы остается нулевой и изменится не может. Создание такой электронно-дырочной пары - виртуальный процесс, поэтому существует она лишь конечное время $\tau \sim \frac{1}{|M|}$, где |M| - величина щели. Если v - характерная величина скорости электронов, то характерное расстояние проходимое виртуальным электроном - $\frac{v}{|M|}$ и на больших расстояниях должно происходить экспоненциальное подавление взаимодействия.

В простейшем случае спиновая структура косвенного обмена описывается стандартной моделью гейзенбергского ферромагнетика. Абрикосовым в работе [22] было показано, что подобное коротко-действующее ферромагнитное взаимодействие может приводить к образованию спин-стекольной фазы.

Наличие сильного спин-орбитального взаимодействия в полупроводнике усложняет форму косвенного обменного взаимодействия. В частности помимо гейзенбергского ферромагнитного взаимодействия может появиться магнитное псевдо-дипольное взаимодействие, которое подавляет ферромагнитное упорядочение и, тем самым, увеличивает тенденцию к образованию спин-стекольной фазы [23], [24], [25]. Такая ситуация детально изучалась экспериментально в магнитных полупроводниках $Hg_{1-x}Mn_xTe$ и $Cd_{1-x}Mn_xTe$ [26].

Стоит также упомянуть еще один результат Абрикосова [22]. Он показал, что при несовпадении минимума спектра зоны проводимости с максимумом спектра валентной зоны, в экспоненциально затухающем с расстоянием обменном взаимодействии появляется осциллирующий множитель.

1.1 Постановка задачи

В данной работе исследуется косвенное обменное взаимодействие между двумя примесями, расположенными на некотором расстоянии друг от друга в толще двумерной квантовой ямы CdTe/HgTe/CdTe. Эффекты, связанные с наличием края, были рассмотрены в работе [27]. Основная вычисляемая величина - низкотемпературный эффективный гамильтониан взаимодействия примесей, т.е. гамильтониан, не содержащий степеней свободы электронной подсистемы. Спектр двумерных электронов движущихся по квантовой яме имеет щель и, в соответствие со сказанным выше, предполагаем, что химический потенциал лежит между дном зоны проводимости и потолком валентной зоны. В работе [28] указывается, что значительное влияние на спектр электронов в квантовой яме оказывает несимметричность квантовой ямы относительно операции $z \rightarrow -z$, что может сказаться на косвенном обмене и соответственно должно быть учтено. В частности это приводит к расщеплению состояний по спину и, в соответствии с упомянутым результатом Абрикосова, может привести к осцилляциям в обменной энергии. В ходе решения найдены ответы на следующие вопросы:

- Какова зависимость энергии взаимодействия примесей от расстояния?
- Какова спиновая структура взаимодействия примесей?
- Какое влияние оказывает описанная выше несимметричность квантовой ямы?
- Квантовая яма CdTe/HgTe/CdTe является топологическим изолятором только при толщине прослойки HgTe больше некоторого критического значения d_c . Есть ли "отголоски" перехода из обычного состояния квантовой ямы в состояние топологического изолятора в косвенном обмене между примесями, расположенными в толще структуры и, поэтому, не взаимодействующими с краевыми состояниями?
- Есть ли анизотропия, связанная с взаимодействием с электронной подсистемой, для уединенной примеси?

1.2 План

Работа устроена следующем образом: в главе 2 описывается низкоэнергетическая структура состояний определяющих взаимодействие примесей; в главе 3 выводится вид Гамильтониана магнитной примеси в терминах этих состояний; в конце концов, в главе 4 выводится и анализируется эффективный Гамильтониан взаимодействия примесей, а также анизотропия для уединенной примеси. В главе 5 подводятся итоги работы.

Глава 2

Гамильтониан ВНZ

2.1 Гамильтониан Кейна

В этом разделе напомним, как выводится гамильтониан Кейна для электронов в толще HgTe или CdTe, описывающий движение электронов с небольшими волновыми векторами. Основной метод получения такого низкоэнергетического гамильтониана в подобных случаях - $k \cdot p$ теория, основанная на симметриях гамильтониана. Рассмотрим поэтому симметрию кристаллов HgTe и CdTe.

2.1.1 Симметрии гамильтониана

HgTe, как и CdTe имеют кристаллическую структуру типа цинковой обманки. Соответствующая точечная группа - T_d - группа симметрии тетраэдра, содержит 24 элемента разбитых на пять классов эквивалентности, т.е. в рассматриваемой группе есть пять неприводимых представлений. При наличии спин-орбитального взаимодействия необходимо формально ввести в группу новый элемент - вращение на 2π , т.к. спиновая волновая функция электрона при таком вращении не переходит в себя. Полученная группа называется двойной группой T_d . Можно получить следующие соотношения:

$$C_n^n = O, \quad C_n^{2n} = E, \quad \sigma^2 = O, \quad I^2 = E$$

Здесь C_n обозначает вращение вокруг некоторой оси на угол $2\pi/n$, E - тождественный элемент, I - инверсия, σ - отражение в плоскости, O - вращение на 2π (см., например, [29], [30]). В двойной группе есть 8 классов эквивалентности, т.е. появляются 3 новых неприводимых представления - 2D Γ_6 , Γ_7 и 4D Γ_8 . При волновом векторе k = 0 состояния каждой ветви спектра преобразуются по одному из этих трех представлений (первые пять представлений становятся нефизичны, т.к. соответствующая волновая функция не меняется при повороте на 2π).

Пусть ось z направлена вдоль [001] в кристалле, ось x вдоль [100], ось y вдоль [010]. Тогда ортонормированные базисные функции этих представлений устроены следующим образом (см., например, [31]):

$$\Gamma_6: \begin{cases} |s\uparrow\rangle\\ |s\downarrow\rangle \end{cases} \tag{2.1}$$

$$\Gamma_7: \begin{cases} \left|\frac{1}{\sqrt{3}}[-(x-iy)\uparrow +z\downarrow]\right\rangle \\ \left|\frac{1}{\sqrt{3}}[-(x+iy)\downarrow -z\uparrow]\right\rangle \end{cases}$$
(2.2)

$$\Gamma_8: \begin{cases} \left|\frac{-1}{\sqrt{2}}(x+iy)\uparrow\right\rangle \\ \left|\frac{1}{\sqrt{6}}\left[-(x+iy)\downarrow+2z\uparrow\right]\right\rangle \\ \left|\frac{1}{\sqrt{6}}\left[(x-iy)\uparrow+2z\downarrow\right]\right\rangle \\ \left|\frac{1}{\sqrt{2}}(x-iy)\downarrow\right\rangle \end{cases}$$
(2.3)

Под $|s\rangle$ понимается инвариантная по отношению к операциям T_d волновая функция, а под $|x\rangle$, $|y\rangle$ и $|z\rangle$ понимаются преобразующиеся, как соответствующие компоненты вектора r, волновые функции. В особенности важны для нас будут представления Γ_6 и Γ_8 . Если рассматривать только вращательные элементы группы симметрии, то можно увидеть, что эти представления дополняются до представлений группы вращений: $\Gamma_6 \rightarrow D_{1/2}$, $\Gamma_8 \rightarrow D_{3/2}$. Таким образом эти представления можно характеризовать "угловым моментом" в том смысле, что соответствующие волновые функции преобразуются под действием вращений из T_d также как и состояния с заданным угловым моментом:

$$\Gamma_6: \begin{cases} |1/2, +1/2\rangle = |s\uparrow\rangle\\ |1/2, -1/2\rangle = |s\downarrow\rangle \end{cases}$$

$$(2.4)$$

$$\Gamma_8: \begin{cases} |3/2, +3/2\rangle = |\frac{-1}{\sqrt{2}}(x+iy)\uparrow\rangle \\ |3/2, +1/2\rangle = |\frac{1}{\sqrt{6}}[-(x+iy)\downarrow +2z\uparrow]\rangle \\ |3/2, -1/2\rangle = |\frac{1}{\sqrt{6}}[(x-iy)\uparrow +2z\downarrow]\rangle \\ |3/2, -3/2\rangle = |\frac{1}{\sqrt{2}}(x-iy)\downarrow\rangle \end{cases}$$
(2.5)

Используя эти факты, можно выписать симметрийный низкоэнергетический гамильтониан для случая близкорасположенных ветвей Γ_6 и Γ_8 (а такой случай и реализуется в HgTe и CdTe [32]), учитывая все прочие ветви по теории возмущений. Соответственно перейдем к применению процедуры $\mathbf{k} \cdot \mathbf{p}$ теории (для более исчерпывающего обзора см. [33]).

2.1.2 $k \cdot p$ теория

Начнем с нахождения спектра вблизи точки $\mathbf{k} = 0$ (Г-точки). Предполагается также наличие внешней информации - считаем известными энергии E_n и волновые функции Ψ_n в Г-точке всех ветвей гамильтониана. Оказывается, что функции $\phi_{n\mathbf{k}} = \frac{1}{\sqrt{V}} \Psi_n e^{i\mathbf{k}\mathbf{r}}$ образуют базис (базис Латтинжера-Кона) в пространстве состояний с заданным \mathbf{k} . Микроскопический гамильтониан электронов в кристалле ($\hbar = 1$)

$$H_{mic} = \frac{\boldsymbol{p}^2}{2m} + V(\boldsymbol{r}) + \frac{1}{4m^2c^2} \left[\nabla V \times \boldsymbol{p}\right] \cdot \boldsymbol{\sigma}$$

в терминах базиса Латтинжера-Кона записывается как:

$$H_{n'n}(\boldsymbol{k}) = \left(E_n + \frac{k^2}{2m}\right)\delta_{n'n} + \frac{1}{m}\boldsymbol{k}\cdot\boldsymbol{\pi}_{n'n}$$
(2.6)

Где *п* пробегает по всем ветвям спектра, $\pi = p + \frac{1}{4mc^2} [\sigma, \nabla V]$, а матричные элементы вычислены между блоховскими волновыми функциями на нулевом **k**. Далее, однако, мы будем пренебрегать отличием между π и **p**, считая, что весь учет спин орбитального взаимодействия заложен в структуру E_n и Ψ_n . Теперь, делая малый поворот базиса приходим к матричному гамильтониану 6×6 (Γ_6 - 2D, Γ_8 - 4D):

$$\widetilde{H}_{m'm}(\mathbf{k}) = \left(E_m + \frac{k^2}{2m}\right)\delta_{m'm} + \frac{1}{m}\mathbf{k}\cdot\mathbf{p}_{m'm} + \frac{1}{2m^2}\sum_l p_{m'l}^i p_{lm}^j k^i k^j \left(\frac{1}{E_{m'} - E_l} + \frac{1}{E_m - E_l}\right)$$
(2.7)

Элементы m соответствуют ветвям Γ_6 и Γ_8 , а l - всем прочим ветвям.

Большое число матричных элементов импульса зануляются по симметрийным соображениям. В частности p преобразуется в соответствии с векторным представлением (его называют Γ_4). Тогда матричный элемент вида $\langle \Gamma_i | p | \Gamma_j \rangle$ может быть отличен от нуля только если $\Gamma_i \times \Gamma_4 \times \Gamma_j$ содержит единичное представление ([33]). Значительная часть элементов равна нулю в силу нечетности относительно, например, поворота на π вокруг оси z. Более того, легко понять, что среди ненулевых матричных элементов есть очень малое число независимых - почти всегда матричные элементы импульса сводятся друг к другу с помощью групповых операций T_d . Используя подобные соображения можно прийти к следующему гамильтониану, который называется гамильтонианом Кейна (см. [33]):

$$\widetilde{H}(\boldsymbol{k}) = \begin{pmatrix} E_g + \frac{k^2}{2m^*} & 0 & \frac{-1}{\sqrt{2}}Pk_+ & \sqrt{\frac{2}{3}}Pk_z & \frac{1}{\sqrt{6}}Pk_- & 0\\ 0 & E_g + \frac{k^2}{2m^*} & 0 & \frac{-1}{\sqrt{6}}Pk_+ & \sqrt{\frac{2}{3}}Pk_z & \frac{1}{\sqrt{2}}Pk_-\\ \frac{-1}{\sqrt{2}}Pk_- & 0 & \cdots & \cdots & \cdots & \cdots\\ \sqrt{\frac{2}{3}}Pk_z & \frac{-1}{\sqrt{6}}Pk_- & \cdots & & \\ \frac{1}{\sqrt{6}}Pk_+ & \sqrt{\frac{2}{3}}Pk_z & \cdots & H_v(\boldsymbol{k})\\ 0 & \frac{1}{\sqrt{2}}Pk_+ & \cdots & \end{pmatrix}$$
(2.8)

Здесь $k_+ = k_x + ik_y$, $k_- = k_+^*$, $P = -\frac{1}{m} \langle s | p_x | x \rangle$, а $H_v(\mathbf{k})$ называется гамильтонианом Латтинжера валентной зоны:

$$H_{v}(\boldsymbol{k}) = \left(E_{v} + \frac{k^{2}}{2m}\right)I + \frac{h^{2}}{m^{2}} \begin{pmatrix} \Pi_{1}(\boldsymbol{k}) & \Lambda_{1}(\boldsymbol{k}) & \Lambda_{2}(\boldsymbol{k}) & 0\\ \Lambda_{1}^{*}(\boldsymbol{k}) & \Pi_{2}(\boldsymbol{k}) & 0 & \Lambda_{2}(\boldsymbol{k})\\ \Lambda_{2}^{*}(\boldsymbol{k}) & 0 & \Pi_{2}(\boldsymbol{k}) & -\Lambda_{1}(\boldsymbol{k})\\ 0 & \Lambda_{2}^{*}(\boldsymbol{k}) & -\Lambda_{1}^{*}(\boldsymbol{k}) & \Pi_{1}(\boldsymbol{k}) \end{pmatrix}$$
(2.9)

где

$$\Lambda_1(\mathbf{k}) = \frac{1}{\sqrt{3}} (A+R)k_z k_-$$
$$\Lambda_2(\mathbf{k}) = \frac{-1}{\sqrt{12}} (k_-^2 A + R k_+^2)$$
$$\Pi_1(\mathbf{k}) = \frac{1}{2} A k_+ k_- + \frac{1}{3} Q k^2 + \left(\frac{2}{3} k_z^2 + \frac{1}{6} k_+ k_-\right) R$$
$$\Pi_2(\mathbf{k}) = \frac{1}{2} R k_+ k_- + \frac{1}{3} Q k^2 + \left(\frac{2}{3} k_z^2 + \frac{1}{6} k_+ k_-\right) A$$

A, R и Q определяются через междузонные матричные элементы импульса следующим образом:

$$A = \sum_{\Gamma_6} \frac{|\langle x | p_x | s \rangle|^2}{E_v - E_{\Gamma_6}}$$
$$R = \sum_{\Gamma_7} \frac{|\langle x | p_y | z' \rangle|^2}{E_v - E_{\Gamma_7}}$$
$$Q = \sum_{\Gamma_8} \frac{|\langle x | p_y | z \rangle|^2}{E_v - E_{\Gamma_8}}$$

Стоит отметить, что вторым порядком в междузонных элементах можно пренебречь по сравнению со вторым порядком во внутризонных элементах (дополнительная малось

появится из того, что ветви Γ_6 и Γ_8 , на которые был сужен гамильтониан, слабо связаны).

Спектр трехмерных кристаллов HgTe и CdTe изображен на рисунке 2.1. Важно от-

Рис. 2.1: Спектр HgTe и CdTe (из [2])

метить, что в HgTe ветвь с симметрией Γ_8 расположена над ветвью с симметрией Γ_6 в то время как в CdTe ветви расположены наоборот.

2.2 Низкоэнергетические 2D состояния

Экспериментально квантовая яма CdTe/HgTe/CdTe впервые была реализована и промерена Моленкампом и сотрудниками [3]. Квантовая яма была направлена вдоль оси [001] кристалла. Вид их экспериментальной установки приведен на рисунке 2.2. Видно, что в действительности квантовая яма реализуется в несколько более сложном варианте, однако мы отвлечемся от этих нюансов. Авторы работы также пронаблюдали краевые состояния - о их наличии свидетельствует идеальное квантованное сопротивление.

Рис. 2.2: Квантовая яма CdTe/HgTe/CdTe (из [3])

Теоретически квантовая яма CdTe/HgTe/CdTe с $z \parallel [001], x \parallel [100], y \parallel [010]$ была рассмотрена в статье [2] на основе гамильтониана Кейна. С помощью численного счета авторы получили значения констант $k \cdot p$ теории: P, Q, R, A в HgTe и в CdTe. Изза отсутствия трансляционной инвариантности вдоль направления z, в стационарном уравнении Шредингера с гамильтонианом 2.8, k_z формально заменяется на $-i\partial_z$. Подобный подход дает множество решений, которые обозначают как $|E1,\pm\rangle$ (электронная ветка), $|H1,\pm\rangle$ (дырочная ветка), $|H2,\pm\rangle$, $|H3,\pm\rangle$ и так далее. Отличительной особенностью является то, что при достижении некоторой критической толщины прослойки из HgTe (≈ 6.3 nm) происходит *инверсия зон*: при докритической толщине состояния $|E1,\pm\rangle$ (положительная дисперсия) расположены по энергии выше состояний $|H1,\pm\rangle$ (отрицательная дисперсия), при надкритической толщине $|H1,\pm\rangle$ (положительная дисперсия) расположены над состояниями $|E1,\pm\rangle$ (отрицательная дисперсия). Более того, когда толщина близка к критической, состояния E1 и H1 изолированы от всех прочих состояний (см. 2.3). В дальнейшем будет рассматриваться именно такой случай, а также будет предполагаться, что химический потенциал расположен в щели между состояниями E1 и H1 - в частности в такой конфигурации наблюдаются краевые состояния. Анализ гамильтониана Кейна [2] показывает, что в терминах близких состояний Г₆ и

Рис. 2.3: Ветви спектра и инверсия зон (из [2])

Г₈ двумерные состояния в квантовой яме выписываются как:

$$\begin{cases} |E1,+\rangle = f_1(z)|1/2,+1/2\rangle + f_4|3/2,+1/2\rangle \\ |E1,-\rangle = f_2(z)|1/2,-1/2\rangle + f_5|3/2,-1/2\rangle \\ |H1,+\rangle = f_3(z)|3/2,+3/2\rangle \\ |H1,-\rangle = f_6(z)|3/2,-3/2\rangle \end{cases}$$
(2.10)

При этом функции z обладают рядом симметрийных свойств: f_1 , f_2 , f_3 , f_6 - четные, f_4 , f_5 - нечетные. Все функции спадают экспоненциально при удалении от квантовой ямы. Также стоит учесть, что гамильтониан Кейна обладает симметрией по отношению к обращению времени. Это приводит ([34]) к дополнительным соотношениям. Если \mathcal{T} -

это оператор обращения времени:

$$\begin{cases} \mathcal{T}|E1,+\rangle = |E1,-\rangle \\ \mathcal{T}|H1,+\rangle = |H1,-\rangle \\ \mathcal{T}|E1,-\rangle = -|E1,+\rangle \\ \mathcal{T}|H1,-\rangle = -|H1,+\rangle \end{cases}$$
(2.11)

И, соответственно, для огибающих функций f:

$$\begin{cases} f_1 = f_2^* \\ f_3 = f_6^* \\ f_4 = -f_5^* \end{cases}$$
(2.12)

Вообще можно считать, что f_1, f_3 - действительны, а f_4 - мнимая.

Теперь перейдем непосредственно к рассмотрению двумерного гамильтониана описывающего рассматриваемые состояния на малых волновых векторах - этот гамильтониан называется гамильтонианом Берневига-Хьюза-Жанга (BHZ) и был впервые предложен в работе [2]. Для его получения достаточно применить теорию возмущений к гамильтониану Кейна по состояниям H1, E1. Полученный Гамильтониан имеет следующую форму:

$$H_{\rm BHZ}(\boldsymbol{k}) = \begin{pmatrix} h(\boldsymbol{k}) & 0_{2\times 2} \\ 0_{2\times 2} & h^*(-\boldsymbol{k}) \end{pmatrix}$$
(2.13)

Здесь

$$h(\mathbf{k}) = \epsilon(\mathbf{k})I_{2\times 2} + \begin{pmatrix} M(\mathbf{k}) & Ak_+ \\ Ak_- & -M(\mathbf{k}) \end{pmatrix}$$
(2.14)

И

$$\epsilon(\mathbf{k}) = C - Dk^2 \qquad M(\mathbf{k}) = M - Bk^2 \qquad (2.15)$$

Спектр двумерных электронов в модели BHZ двукратно вырожден и имеет следующий вид:

$$\varepsilon_{1,3}(\mathbf{k}) = -Dk^2 + \operatorname{sgn} M \sqrt{A^2 k^2 + (M - Bk^2)^2}$$
(2.16)

$$\varepsilon_{2,4}(\mathbf{k}) = -Dk^2 - \mathrm{sgn}M\sqrt{A^2k^2 + (M - Bk^2)^2}$$
 (2.17)

Примечательно, что при B = D = 0 спектр переходит в спектр графена с щелью. Численный расчет параметров гамильтониана ВНZ приводит к значениям, перечисленным в таблице 2.1. Смена знака щели M (как и sgnM в спектре) при прохождении d = 6.3 nm отвечает уже упомянутой инверсии зон. Вид спектра для толщин ямы из таблицы 2.1 представлен на рисунке 2.4.

Таблица 2.1: Параметры гамильтониана BHZ

d, nm	$A, \text{eV} \cdot \text{nm}$	$B, eV \cdot nm^2$	$D, \mathrm{eV} \cdot \mathrm{nm}^2$	M, eV
5.5	0.39	-0.48	-0.31	0.009
7.0	0.36	-0.69	-0.51	-0.008

Рис. 2.4: Спектр гамильтониана ВНZ

Важно отметить, что гамильтониан BHZ обладает вращательной инвариантностью (относительно групповых операций) в плоскости:

$$RH_{\rm BHZ}R^{-1} = H_{\rm BHZ}, \qquad R = \begin{pmatrix} e^{\frac{i\Omega}{2}} & 0 & 0 & 0\\ 0 & e^{\frac{3i\Omega}{2}} & 0 & 0\\ 0 & 0 & e^{-\frac{i\Omega}{2}} & 0\\ 0 & 0 & 0 & e^{-\frac{3i\Omega}{2}} \end{pmatrix}$$

Еще раз обратим внимание на то, что ветви в модели BHZ - двукратно вырожденные. Измерения эффекта Шубникова-де-Гааза и слабой локализации [35], однако указывают на наличие расщепления ветвей спектра в квантовой яме. Хотя в работе [35] рассматривалась яма [113] подобное расщепление может иметь место и в нашем случае. Как было показано в работе [28], вычисление гамильтониана для квантовой ямы в статье [2], изложенное выше полностью пропускает эффекты, связанные с отсутствием инверсионной симметрии кристалла и инверсионной симметрии интерфейсов гетероструктуры. Учет этих эффектов приводит к появлению в гамильтониане слагаемых, наличие которых не запрещено групповыми свойствами с учетом понижения симметрии. В следующем разделе будет проведено более подробное рассмотрение этого расщепления.

2.3 Учет несимметричности интерфейса относительно инверсии

2.3.1 Качественное рассмотрение

В первую очередь рассмотрим качественно возникновение ассиметрии интерфейса, как оказывается, этот эффект намного значительнее отсутствия центра инверсии в кристалле [28]. Будем смотреть на кристалл вдоль оси z ([001]) и рассмотрим последовательно оба интерфейса. В верхнем (вдоль z) интерфейсе два последовательных слоя Те и Cd имеют выделенное направление, причем, как оказывается, оно перпендикулярно выделенному направлению последовательных Cd и Te на нижнем интерфейсе. Это изображено на рисунке 2.5.

Таким образом интерфейс не обладает симметрией относительно инверсии ямы $z \to -z$. Более того видно, что учет асимметрии интерфейсов приводит к потери вращательной

Рис. 2.5: Последовательные два атомных слоя на интерфейсах, вид с оси z

инвариантности в задаче (опять же в смысле элементов группы T_d), однако сохраняется инвариантность относительно поворотов на π .

2.3.2 Гамильтониан с учетом несимметрии интерфейсов

Как было показано в работе [28] на основе атомистических расчетов, в рамках уже выписанных состояний E1 и H1 единственной модификацией, которую надо внести в гамильтониан BHZ, чтобы учесть несимметричность интерфейсов, является добавление оффдиагональных элементов:

$$H = H_{\rm BHZ} + H_{\rm SIA}, \qquad H_{\rm SIA} = \begin{pmatrix} 0 & 0 & 0 & \Delta \\ 0 & 0 & -\Delta & 0 \\ 0 & -\Delta & 0 & 0 \\ \Delta & 0 & 0 & 0 \end{pmatrix}$$
(2.18)

Приведенное качественное рассмотрение согласованно с такой поправкой: гамильтониан теряет вращательную симметрию в плоскости, но тем не менее при повороте на π переходит в себя:

$$RH_{\rm SIA}R^{-1} = \begin{pmatrix} 0 & 0 & 0 & \Delta e^{2i\Omega} \\ 0 & 0 & -\Delta e^{2i\Omega} & 0 \\ 0 & -\Delta e^{-2i\Omega} & 0 & 0 \\ \Delta e^{-2i\Omega} & 0 & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} e^{\frac{i\Omega}{2}} & 0 & 0 & 0 \\ 0 & e^{\frac{3i\Omega}{2}} & 0 & 0 \\ 0 & 0 & e^{-\frac{i\Omega}{2}} & 0 \\ 0 & 0 & 0 & e^{-\frac{3i\Omega}{2}} \end{pmatrix}$$

Рис. 2.6: Спектр в модели BHZ при конечном Δ

В простейшей модели можно считать, что Δ не зависит от волнового вектора, но в принципе возможно считатать $\Delta = \Delta(k^2)$. Очень важным результатом работы [28] является то, что Δ оказывается по порядку величины совпадающим с щелью в спектре M - численные вычисления дают значение $\Delta \approx 7$ eV.

Спектр с учетом Δ приобретает следующий вид:

$$\varepsilon_{1,3}(\mathbf{k}) = -Dk^2 + \mathrm{sgn}M\sqrt{(Ak \pm \Delta)^2 + (M - Bk^2)^2}$$
 (2.19)

$$\varepsilon_{2,4}(\mathbf{k}) = -Dk^2 - \operatorname{sgn} M\sqrt{(Ak \pm \Delta)^2 + (M - Bk^2)^2}$$
(2.20)

Характерный вид спектра для M > 0 изображен на рисунке 2.6. В нем явно видно расщепление ветвей.

Перейдем теперь к рассмотрению магнитных примесей в квантовой яме CdTe/HgTe/CdTe.

Глава 3

Магнитные примеси в модели ВНZ

В этой главе рассматриваются магнитные примеси в квантовой яме CdTe/HgTe/CdTe. Под магнитными примесями можно понимать встроенные в решетку атомы марганца, хотя возможны и другие их реализации.

3.1 Обменный Гамильтониан

Будем считать, что обменное взаимодействие электрона с примесью не зависит явно от ветви, к которой принадлежит электрон и изотропно (далее это предположение будет снято). Таким образом, микроскопически гамильтониан взаимодействия выписывается как:

$$V = J(\boldsymbol{r})\boldsymbol{S} \cdot \boldsymbol{\sigma} \tag{3.1}$$

Здесь S - спин примеси. Функция $J(\mathbf{r})$ будет обсуждена позже. Далее будет использоваться обозначение $J\mathbf{S} \to \mathbf{B}$. Понятно, что примесь разрушает трансляционную инвариантность и k больше не является хорошим квантовым числом, поэтому дальше будет использоваться приближение эффективной массы (см. [33]). Разложим решение уравнения Шредингера по блоховским функциям с $\mathbf{k} = 0$:

$$\Psi = \sum_{n} F_n(\boldsymbol{r}) \Psi_n(\boldsymbol{r})$$
(3.2)

Функции F_n называются огибающими функциями. Предполагается, что на атомарных масштабах они варьируются достаточно медленно. В Фурье-пространстве:

$$F_n(\boldsymbol{r}) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{k}} C_{n\boldsymbol{k}} e^{i\boldsymbol{k}\boldsymbol{r}}$$
(3.3)

Таким образом совершен переход к базису Латтинжера-Кона ϕ_{nk} :

$$\Psi = \sum_{n\mathbf{k}} C_{n\mathbf{k}} \phi_{n\mathbf{k}} \tag{3.4}$$

В итоге получаем гамильтониан магнитной примеси, действующий в пространстве столбцов коэффициентов *c*_{nk}:

$$V_{n'\boldsymbol{k}',n\boldsymbol{k}} = \int \phi_{n'\boldsymbol{k}'}^{+}(\boldsymbol{r})\boldsymbol{\sigma} \cdot \boldsymbol{B}(\boldsymbol{r})\phi_{n\boldsymbol{k}}(\boldsymbol{r})d^{3}\boldsymbol{r}$$
(3.5)

Далее раскладываем **В** по Фурье-гармоникам:

$$\boldsymbol{B}(\boldsymbol{r}) = \sum_{\boldsymbol{q}} \boldsymbol{B}_{\boldsymbol{q}} e^{i\boldsymbol{q}\boldsymbol{r}}$$
(3.6)

Более того, ясно, что $\Psi_{n'}^+ \sigma \Psi_n$ периодична, поэтому ее можно разложить по векторам обратной решетки (обозначаем их как \boldsymbol{b}_M):

$$\Psi_{n'}^{+}\boldsymbol{\sigma}\Psi_{n} = \sum_{M} \boldsymbol{\sigma}_{n'n}^{M} e^{i\boldsymbol{b}_{M}\boldsymbol{r}}$$
(3.7)

Последние преобразования определены без \sqrt{V} и его надо учитывать в обратном преобразовании. В конце концов, переписываем примесное слагаемое как:

$$\sum_{M} \boldsymbol{\sigma}_{n'n}^{M} \boldsymbol{B}_{\boldsymbol{k}'-\boldsymbol{k}+\boldsymbol{b}_{M}}$$
(3.8)

Далее предполагаем, что B(r) медленно меняется на атомных масштабах. Это предположение является ключевым для построения гамильтониана примеси. В таком случае можно пренебречь всеми M, кроме M = 0. В итоге, после всех упрощений:

$$V_{n'\boldsymbol{k}',n\boldsymbol{k}} = \boldsymbol{\sigma}_{n'n} \boldsymbol{B}_{\boldsymbol{k}'-\boldsymbol{k}} \tag{3.9}$$

Далее опять сужаем гамильтониан на Γ_6 и Γ_8 , учитывая, что междузонные матричные элементы матриц Паули, а тогда и второй порядок теории возмущений по волновому вектору, зануляются. Далее переходим назад в координатное представление.

Матричные элементы $\boldsymbol{\sigma} \cdot \boldsymbol{S}$:

$$\boldsymbol{\sigma}_{m'm} \cdot \boldsymbol{S} = \begin{pmatrix} 2\boldsymbol{J}_{1/2} \cdot \boldsymbol{S} & \hat{0} \\ \hat{0} & \frac{2}{3}\boldsymbol{J}_{3/2} \cdot \boldsymbol{S} \end{pmatrix}$$
(3.10)

Здесь J_j матрицы момента j. В итоге гамильтониан взаимодействия электронов с примесью

$$V_{6\times 6} = J(\boldsymbol{r}) \begin{pmatrix} 2\boldsymbol{J}_{1/2} \cdot \boldsymbol{S} & \hat{0} \\ \hat{0} & \frac{2}{3}\boldsymbol{J}_{3/2} \cdot \boldsymbol{S} \end{pmatrix}$$
(3.11)

Мы будем рассматривать примеси, контактно взаимодействующие с электронами: $J(\mathbf{r}) = \alpha \delta(\mathbf{r} - \mathbf{r}_0)$ (примесь расположена в точке \mathbf{r}_0). При этом надо помнить, что контактным взаимодействие может быть лишь в смысле огибающих функций электронов, "ширина" такого взаимодействия тем не менее много больше атомных масштабов.

Можно обобщить эту модель для случая разного спаривания с ветвями Г₆ и Г₈:

$$V_{6\times 6} = \delta(\mathbf{r}^{(3D)} - \mathbf{r}_{0}^{(3D)}) \begin{pmatrix} 2\alpha_{1/2}\mathbf{J}_{1/2} \cdot \mathbf{S} & \hat{0} \\ \hat{0} & \frac{2}{3}\alpha_{3/2}\mathbf{J}_{3/2} \cdot \mathbf{S} \end{pmatrix}$$
(3.12)

3.1.1 Гамильтониан примеси в базисе Е1, Н1

Теперь рассмотрим примесь как возмущение к гамильтониану BHZ. В первом порядке по константе связи (дельта функция вне интеграла - двумерная):

$$V_{4\times4}^{ij} = \delta(\boldsymbol{r} - \boldsymbol{r}_0) \int dz \delta(z - z_0) \langle i | \begin{pmatrix} 2\alpha_{1/2} \boldsymbol{J}_{1/2} \cdot \boldsymbol{S} & \hat{0} \\ \hat{0} & \frac{2}{3}\alpha_{3/2} \boldsymbol{J}_{3/2} \cdot \boldsymbol{S} \end{pmatrix} | j \rangle$$

 $|i\rangle$ и
і $j\rangle$ из набора $|E1,\pm\rangle,$ $|H1,\pm\rangle.$ После проецирования (здесь
и далее опускаем индекс $4\times 4):$

$$V = \delta(\mathbf{r} - \mathbf{r_0}) \mathcal{V} = \delta(\mathbf{r} - \mathbf{r_0}) \begin{pmatrix} J_1 S_z & -iJ_0 S_+ & J_{mix} S_- & 0\\ iJ_0 S_- & J_2 S_z & 0 & 0\\ J_{mix} S_+ & 0 & -J_1 S_z & -iJ_0 S_-\\ 0 & 0 & iJ_0 S_+ & -J_2 S_z \end{pmatrix}$$
(3.13)

Где введены обозначения $\alpha_{1/2}f_1^2 + \frac{1}{3}\alpha_{3/2}|f_4|^2 = J_1, \ \alpha_{3/2}f_3^2 = J_2, \ \frac{1}{\sqrt{3}}\alpha_{3/2}f_3|f_4| = J_0$ и $\alpha_{1/2}f_1^2 + \frac{2}{3}\alpha_{3/2}|f_4|^2 = J_{mix}$. Остюда можно получить: $J_{mix} = J_1 + J_0^2/J_2$. В частном случае $z_0 = 0$: $J_{mix} = J_1, \ J_0 = 0, \ \text{т.к.}$ f_4 нечетная функция z.

Такой вид гамильтониана (без констант) можно было угадать с самого начала, заметив, что полный угловой момент сохраняется в процессе временной эволюции. Также стоит отметить, что такой вид верен и для случая конечного Δ .

Глава 4

Косвенное обменное взаимодействие

4.1 Поляризационный оператор

Перейдем непосредственно к вычислению косвенного обменного взаимодействия. Как упоминалось мы считаем, что химический потенциал μ расположен в щели между состояниями E1 и H1. Будем также полагать T = 0. Все изложенные далее вычисления остаются верны и при конечной температуре пока выполнено условие $|M| - |\mu| \gg T$.

Итак, рассматриваются две примеси: A и B, расположенные в r_A и r_B соответственно. Обозначим вектор $\mathbf{r} = \mathbf{r}_A - \mathbf{r}_B$. Необходимо получить выражение для эффективного гамильтониана примесей H_{eff} (т.е. гамильтониана в котором произведено интегрирование по электронной подсистеме и по которому можно вычислять все средние от функций только спинов примесей), как функцию $\mathbf{r}, \mathbf{S}_A, \mathbf{S}_B$. Легко убедиться, что эффективный гамильтониан формально совпадает с поправкой к термодинамическому потенциалу для задачи с классическими примесями $\Delta\Omega$. В таком случае ясно, что вычисления удобнее всего проводить в Мацубаровской температурной технике, заменяя при этом все суммирования по мацубаровским частотам на интегрирования.

Многочастичный гамильтониан взаимодействия электронов с примесями имеет вид

$$\mathcal{H}_{imp} = \int d^3 \boldsymbol{r}' \psi_{\alpha}^+(\boldsymbol{r}') (\mathcal{V}_A^{\alpha\beta} \delta(\boldsymbol{r}' - \boldsymbol{r}_A) + \mathcal{V}_B^{\alpha\beta} \delta(\boldsymbol{r}' - \boldsymbol{r}_B)) \psi_{\beta}(\boldsymbol{r}') = \int d^3 \boldsymbol{r}' \psi_{\alpha}^+(\boldsymbol{r}') \mathcal{V}^{\alpha\beta}(\boldsymbol{r}') \psi_{\beta}(\boldsymbol{r}')$$

$$\tag{4.1}$$

Операторы ψ и ψ^+ обозначают соответственно операторы уничтожения и рождения электронов в данной точке (естественно, в смысле медленных огибающих функций). Далее используем известное выражение для термодинамического потенциала:

$$\Delta\Omega = -T\left(\langle U\left(\frac{1}{T}\right)\rangle_c - 1\right) \tag{4.2}$$

$$U(\tau) = T_{\tau} \exp\left(-\int_{0}^{\tau} d\tau' \mathcal{H}_{imp}(\tau')\right)$$
(4.3)

где, как всегда,

$$\mathcal{H}_{imp}(\tau) = e^{\tau(\mathcal{H}_0 - \mu N)} \mathcal{H}_{imp} e^{-\tau(\mathcal{H}_0 - \mu N)}$$

и $\langle \rangle_c$ обозначает суммирование по всем связным диаграммам.

Член первого порядка в разложении зануляется. Это следует из того, что без учета примесей в основном состоянии электронная подсистема не намагничена. Во втором порядке получается неисчезающий ответ, даваемый диаграммой типа "поляризационный оператор" (см. рис. 4.1).

Рис. 4.1: Поляризационный оператор

В поляризационном операторе есть 3 слагаемых: между-примесное, определяющее взаимодействие и два слагаемых, задающих анизотропию для каждой примеси. О последних двух слагаемых речь пойдет позднее в секции 4.5, сперва сфокусируемся на вычислении междупримесного вклада *H*_{IEI}. Явное выражение через функции Грина:

$$H_{\rm IEI} = \mathcal{V}_A^{\alpha\beta} \mathcal{V}_B^{\gamma\delta} \Pi_{\beta\gamma,\delta\alpha}$$
$$\Pi_{\beta\gamma,\delta\alpha} = T \sum_{\omega_n} G_{\beta\gamma}(i\omega_n, \boldsymbol{r}) G_{\delta\alpha}(i\omega_n, -\boldsymbol{r})$$
(4.4)

Здесь $\omega_n = \pi T(2n+1)$ - фермионные мацубаровские частоты. В соответствии со сказанным выше, рассматриваем нуль-температурный предел:

$$\Pi_{\beta\gamma,\delta\alpha} = \int \frac{d\omega}{2\pi} G_{\beta\gamma}(i\omega, \mathbf{r}) G_{\delta\alpha}(i\omega, -\mathbf{r})$$
(4.5)

Для вычисления удобно перейти в фурье-представление, тогда получаем

$$\Pi_{\beta\gamma,\delta\alpha} = \int \frac{d\omega}{2\pi} \frac{d^2k_1}{(2\pi)^2} \frac{d^2k_2}{(2\pi)^2} e^{i\boldsymbol{r}(\boldsymbol{k}_1 - \boldsymbol{k}_2)} \left(\frac{1}{i\omega + \mu - H(\boldsymbol{k}_1)}\right)_{\beta\gamma} \left(\frac{1}{i\omega + \mu - H(\boldsymbol{k}_2)}\right)_{\delta\alpha}$$
(4.6)

Понятно, что ответ не зависит от положения химического потенциала внутри щели, поэтому для удобства положим $\mu = 0$. Таким образом задача свелась к вычислению интеграла 4.6, которое приведено далее.

4.2 Предварительные вычисления

4.2.1 Обезразмеривание

Перед тем, как начать вычисление следует произвести удобное обезразмеривание. Сперва введем характерные масштабы длины (a) и энергии (\mathcal{E}) :

$$a = \sqrt{B^2 - D^2}/A, \quad \mathcal{E} = A^2/\sqrt{B^2 - D^2}.$$
 (4.7)

Далее вводим:

$$m = \frac{M}{\mathcal{E}}, \quad \cosh \chi = -\frac{B}{\sqrt{B^2 - D^2}}, \quad \gamma = \frac{\Delta}{|m|\mathcal{E}}.$$
 (4.8)

Используя таблицу 1 из [4] и значение $\Delta \approx 7 \text{ meV}$ [28] можно оценить введенные параметры (см. таблицу 4.1). Стоит отметить, что безразмерный параметр $|m| \ll 1, \chi \sim 1$. В конце концов, введем безразмерные переменные $\kappa = ka/|m|$ и $\rho = r|m|/a$. В терминах этих параметров гамильтониан ВНZ выписывается как

$$\mathcal{H} = \frac{H}{|M|} = -|m| \sinh \chi \kappa^2 + \begin{pmatrix} \mathcal{M}(\kappa^2) & \kappa_+ & 0 & \gamma \\ \kappa_- & -\mathcal{M}(\kappa^2) & -\gamma & 0 \\ 0 & -\gamma & \mathcal{M}(\kappa^2) & -\kappa_- \\ \gamma & 0 & -\kappa_+ & -\mathcal{M}(\kappa^2) \end{pmatrix}$$
(4.9)

Таблица 4.1: Параметры гамильтониана

d, nm	a, nm	\mathcal{E}, eV	m	γ	χ
5.5	0.94	0.42	0.022	0.78	-0.77
7.0	1.29	0.28	-0.029	0.87	-0.95

Где

$$\mathcal{M}(\boldsymbol{\kappa}) = \operatorname{sgn} M(1 + m \cosh \chi \kappa^2)$$

Безразмерный спектр (связанный с обычным как $\varepsilon = |M|\epsilon$) имеет вид

$$\epsilon_{1,3}(\boldsymbol{\kappa}) = -|m| \sinh \chi \kappa^2 + \operatorname{sgn} M \sqrt{(\kappa \pm \gamma)^2 + (1 + m \cosh \chi \kappa^2)^2}$$
(4.10)

$$\epsilon_{2,4}(\boldsymbol{\kappa}) = -|m| \sinh \chi \kappa^2 - \operatorname{sgn} M \sqrt{(\kappa \pm \gamma)^2 + (1 + m \cosh \chi \kappa^2)^2}$$
(4.11)

4.2.2 Обобщенный гамильтониан BHZ

Теперь можно несколько обобщить постановку задачи и вместо гамильтониана ВНZ можно рассмотреть гамильтониан:

$$H = -D(k^{2}) + \begin{pmatrix} M(k^{2}) & A(k^{2})k_{+} & 0 & \Delta(k^{2}) \\ A(k^{2})k_{-} & -M(k^{2}) & -\Delta(k^{2}) & 0 \\ 0 & -\Delta(k^{2}) & M(k^{2}) & -A(k^{2})k_{-} \\ \Delta(k^{2}) & 0 & -A(k^{2})k_{+} & -M(k^{2}) \end{pmatrix}$$
(4.12)

Где

$$\begin{split} D(k^2) &= Dk^2 + \widetilde{D}k^4 + \dots \qquad M(k^2) = M - Bk^2 + \widetilde{B}k^4 + \dots \qquad A(k^2) = A + \widetilde{A}k^2 + \dots \\ \Delta(k^2) &= \Delta + \widetilde{\Delta}k^2 + \dots \end{split}$$

Строгий критерий правильности вывода для такого гамильтониана общего вида будет сформулирован ниже по ходу изложения. Стоит однако сразу отметить, что необходимым условием является "похожесть" на гамильтониан ВНZ: по крайней мере ветви E1 и H1 должны быть направлены в разные стороны. Обезразмеривание проводим точно также как и для обычного гамильтониана ВНZ. В итоге рассматриваем безразмерный гамильтониан вида

$$\mathcal{H} = \frac{H}{|M|} = -\mathcal{D}(\kappa^2) + \begin{pmatrix} \mathcal{M}(\kappa^2) & \mathcal{A}(\kappa^2)\kappa_+ & 0 & \gamma(\kappa^2) \\ \mathcal{A}(\kappa^2)\kappa_- & -\mathcal{M}(\kappa^2) & -\gamma(\kappa^2) & 0 \\ 0 & -\gamma(\kappa^2) & \mathcal{M}(\kappa^2) & -\mathcal{A}(\kappa^2)\kappa_- \\ \gamma(\kappa^2) & 0 & -\mathcal{A}(\kappa^2)\kappa_+ & -\mathcal{M}(\kappa^2) \end{pmatrix}$$
(4.13)

Безразмерный спектр

$$\epsilon_{1,3}(\boldsymbol{\kappa}) = -\mathcal{D}(\kappa^2) + \operatorname{sgn} M \sqrt{(\mathcal{A}(\kappa^2) \pm \gamma)^2 + \mathcal{M}^2(\kappa^2)} = -\mathcal{D}(\kappa^2) + \operatorname{sgn} M \vartheta_{\pm}$$
(4.14)

$$\epsilon_{2,4}(\boldsymbol{\kappa}) = -\mathcal{D}(\kappa^2) - \operatorname{sgn} M \sqrt{(\mathcal{A}(\kappa^2) \pm \gamma)^2 + \mathcal{M}^2(\kappa^2)} = -\mathcal{D}(\kappa^2) - \operatorname{sgn} M \vartheta_{\pm}$$
(4.15)

В терминах обезразмеренного Гамильтониана выражение для поляризационного оператора выписывается как

$$\Pi_{\beta\gamma,\delta\alpha} = \frac{|M|^3}{A^4} \int \frac{dv}{2\pi} \frac{d^2\kappa_1}{(2\pi)^2} \frac{d^2\kappa_2}{(2\pi)^2} e^{i\rho(\kappa_1 - \kappa_2)} \left(\frac{1}{iv - \mathcal{H}(\kappa_1)}\right)_{\beta\gamma} \left(\frac{1}{iv - \mathcal{H}(\kappa_2)}\right)_{\delta\alpha}$$
(4.16)

Перейдем непосредственно к вычислению этого интеграла.

4.2.3 Интегрирование по энергии

Основная идея на первом этапе вычисления состоит в локальной диагонализации функции Грина. Вводим $\mathcal{R}(\kappa)$:

$$\mathcal{H}(\boldsymbol{\kappa}) = \mathcal{R}(\boldsymbol{\kappa}) \begin{pmatrix} \epsilon_1(\boldsymbol{\kappa}) & 0 & 0 & 0\\ 0 & \epsilon_2(\boldsymbol{\kappa}) & 0 & 0\\ 0 & 0 & \epsilon_3(\boldsymbol{\kappa}) & 0\\ 0 & 0 & 0 & \epsilon_4(\boldsymbol{\kappa}) \end{pmatrix} \mathcal{R}^{-1}(\boldsymbol{\kappa})$$
(4.17)

Тогда 4.16 сводится к

$$\Pi_{\beta\gamma,\delta\alpha} = \frac{|M|^3}{A^4} \sum_{x,y} \int \frac{dv}{2\pi} \frac{d^2\kappa_1}{(2\pi)^2} \frac{d^2\kappa_2}{(2\pi)^2} e^{i\rho(\kappa_1 - \kappa_2)} \frac{\mathcal{R}_{\beta x}(\kappa_1)\mathcal{R}_{x\gamma}^{-1}(\kappa_1)\mathcal{R}_{\delta y}(\kappa_2)\mathcal{R}_{y\alpha}^{-1}(\kappa_2)}{(iv - \epsilon_x(\kappa_1))(iv - \epsilon_y(\kappa_2))}$$
(4.18)

Интеграл по частоте берется вычетами. Ясно тогда, что суммирование переходит в суммирование по ближайшим соседям (с периодом 4) - иначе полюсы лежат по одну сторону от оси интегрирования. Замыкая контур на отрицательный полюс и, после этого, в части слагаемых делая замену $\kappa_1 \to -\kappa_2$, $\kappa_2 \to -\kappa_1$, оставляющую инвариантной экспоненту, приходим к

$$\Pi_{\beta\gamma,\delta\alpha} = -\frac{|M|^3}{A^4} \sum_{j=1,3} \sum_{l=2,4} \int \frac{d^2 \kappa_1}{(2\pi)^2} \frac{d^2 \kappa_2}{(2\pi)^2} e^{i\rho(\kappa_1-\kappa_2)} \frac{1}{\operatorname{sgn}M(\epsilon_j(\kappa_1)-\epsilon_l(\kappa_2))} \times (4.19) \times \left(\mathcal{R}_{\beta j}(\kappa_1)\mathcal{R}_{j\gamma}^{-1}(\kappa_1)\mathcal{R}_{\delta l}(\kappa_2)\mathcal{R}_{l\alpha}^{-1}(\kappa_2) + \mathcal{R}_{\beta l}(-\kappa_2)\mathcal{R}_{l\gamma}^{-1}(-\kappa_2)\mathcal{R}_{\delta j}(-\kappa_1)\mathcal{R}_{j\alpha}^{-1}(-\kappa_1)\right)$$

Далее отделяем интегрирование по κ_1 от интегрирования по κ_2 поднимая знаменатель в экспоненту:

$$\Pi_{\beta\gamma,\delta\alpha} = -\frac{|M|^3}{A^4} \int_0^\infty dt \int \frac{d^2\kappa_1}{(2\pi)^2} \frac{d^2\kappa_2}{(2\pi)^2} e^{i\rho(\kappa_1 - \kappa_2)} e^{t\operatorname{sgn}M(\mathcal{D}(\kappa_1^2) - \mathcal{D}(\kappa_2^2))} \times$$

$$\times \left((\mathcal{R}_{\beta1}\mathcal{R}_{1\gamma}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\beta3}\mathcal{R}_{3\gamma}^{-1}e^{-t\vartheta_-})_{\kappa_1} (\mathcal{R}_{\delta2}\mathcal{R}_{2\alpha}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\delta4}\mathcal{R}_{4\alpha}^{-1}e^{-t\vartheta_-})_{\kappa_2} + \right.$$

$$\left. + (\mathcal{R}_{\delta1}\mathcal{R}_{1,\alpha}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\delta3}\mathcal{R}_{3\alpha}^{-1}e^{-t\vartheta_-})_{-\kappa_1} (\mathcal{R}_{\beta2}\mathcal{R}_{2\gamma}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\beta4}\mathcal{R}_{4\gamma}^{-1}e^{-t\vartheta_-})_{-\kappa_2} \right)$$

$$\left. + (\mathcal{R}_{\delta1}\mathcal{R}_{1,\alpha}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\delta3}\mathcal{R}_{3\alpha}^{-1}e^{-t\vartheta_-})_{-\kappa_1} (\mathcal{R}_{\beta2}\mathcal{R}_{2\gamma}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\beta4}\mathcal{R}_{4\gamma}^{-1}e^{-t\vartheta_-})_{-\kappa_2} \right)$$

$$\left. + (\mathcal{R}_{\delta1}\mathcal{R}_{1,\alpha}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\delta3}\mathcal{R}_{3\alpha}^{-1}e^{-t\vartheta_-})_{-\kappa_1} (\mathcal{R}_{\beta2}\mathcal{R}_{2\gamma}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{\beta4}\mathcal{R}_{4\gamma}^{-1}e^{-t\vartheta_-})_{-\kappa_2} \right)$$

Видим, таким образом, что в обоих слагаемых интегрирования по κ_1 и по κ_2 расцепляются.

Обратимся теперь к явному виду матрицы *R*. Несложное вычисление дает:

$$\mathcal{R} = \begin{pmatrix} \frac{\mathcal{M}_{++}}{\gamma+\kappa} & \frac{\mathcal{M}_{-+}}{\gamma+\kappa} & \frac{\mathcal{M}_{+-}}{\gamma-\kappa} & \frac{\mathcal{M}_{--}}{\gamma-\kappa} \\ e^{-i\theta} & e^{-i\theta} & -e^{-i\theta} & -e^{-i\theta} \\ \frac{-e^{-i\theta}\mathcal{M}_{++}}{\gamma+\kappa} & \frac{-e^{-i\theta}\mathcal{M}_{+-}}{\gamma-\kappa} & \frac{e^{-i\theta}\mathcal{M}_{--}}{\gamma-\kappa} \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
(4.21)

Где

$$\mathcal{M}_{\pm\pm}(\boldsymbol{\kappa}) = \mathcal{M}(\boldsymbol{\kappa}) \pm \mathrm{sgn} M \vartheta_{\pm}(\boldsymbol{\kappa})$$

Осталось подставить это выражение в формулу 4.20 и провести вычисление.

4.2.4 Пример упрощения

Чтобы была понятна общая схема вычисления, рассмотрим конкретный пример. Упростим следующий интеграл:

$$\int \frac{d^2\kappa}{(2\pi)^2} e^{i\rho\kappa} e^{t\operatorname{sgn}M\mathcal{D}(\kappa^2)} (\mathcal{R}_{11}\mathcal{R}_{11}^{-1}e^{-t\vartheta_+} + \mathcal{R}_{13}\mathcal{R}_{31}^{-1}e^{-t\vartheta_-})_{\kappa}$$
(4.22)

Подставляя \mathcal{R} получаем

$$\int \frac{d^2\kappa}{(2\pi)^2} e^{i\rho\kappa} e^{t\operatorname{sgn}\mathcal{M}\mathcal{D}(\kappa^2)} \left(\frac{\vartheta_+ + \operatorname{sgn}\mathcal{M}\mathcal{M}}{4\vartheta_+(\kappa)} e^{-t\vartheta_+(\kappa)} + \frac{\vartheta_- + \operatorname{sgn}\mathcal{M}\mathcal{M}}{4\vartheta_-(\kappa)} e^{-t\vartheta_-(\kappa)}\right)$$
(4.23)

Интегрируя по углам и учитывая, что спектр от угла не зависит:

$$\int_{0}^{\infty} \frac{\kappa d\kappa}{8\pi} J_{0}(\rho\kappa) e^{t \operatorname{sgn} \mathcal{MD}(\kappa^{2})} \left(\frac{\vartheta_{+} + \operatorname{sgn} \mathcal{MM}}{\vartheta_{+}} e^{-t\vartheta_{+}} + \frac{\vartheta_{-} + \operatorname{sgn} \mathcal{MM}}{\vartheta_{-}} e^{-t\vartheta_{-}}\right)$$
(4.24)

Легко увидеть, что при $\kappa \to -\kappa$ (именно в терминах модуля) $\vartheta_+ \to \vartheta_-$. С учетом этого переписываем выражение как

$$\frac{1}{8\pi} \int_{-\infty}^{\infty} d\kappa \frac{|\kappa|}{\vartheta_{-}} J_0(\rho\kappa) e^{t \operatorname{sgn} M \mathcal{D}(\kappa^2)} (\vartheta_{-} + \operatorname{sgn} M \mathcal{M}) e^{-t\vartheta_{-}}$$
(4.25)

Это и есть конечная форма выражения, с которой удобно работать в дальнейшем.

4.3 Эффективный Гамильтониан

Теперь все готово, чтобы получить эффективный гамильтониан взаимодействия примесей $H_{\rm IEI}.$

Введем следующие обозначения:

$$L_{\nu}^{\pm} = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} e^{\operatorname{sgn} M t \mathcal{D}(\kappa^{2})} J_{\nu}(\kappa\rho) (\vartheta_{-} \pm \operatorname{sgn} M \mathcal{M})$$
(4.26)

$$P_{\nu}^{\pm} = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} e^{-\operatorname{sgn}Mt\mathcal{D}(\kappa^{2})} J_{\nu}(\kappa\rho) (\vartheta_{-} \pm \operatorname{sgn}M\mathcal{M})$$
(4.27)

$$L_{\nu} = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} e^{\operatorname{sgn} M t \mathcal{D}(\kappa^{2})} J_{\nu}(\kappa \rho)(\gamma - \kappa)$$
(4.28)

$$P_{\nu} = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} e^{-\operatorname{sgn}Mt\mathcal{D}(\kappa^{2})} J_{\nu}(\kappa\rho)(\gamma-\kappa)$$
(4.29)

Тогда, проводя длительное, но принципиально простое вычисление, подобное приведенному в разделе 4.2.4 и используя общую формулу для связи поляризационного оператора с эффективным гамильтонианом взаимодействия примесей $H_{\text{IEI}} = \mathcal{V}^{A}_{\alpha\beta} \mathcal{V}^{B}_{\gamma\delta} \Pi_{\beta\gamma,\delta\alpha}$ получаем:

$$H_{\rm IEI} = \frac{|M|^3}{A^4 16\pi^2} \int_0^\infty dt S_i^A S_j^B U_{ij}(R, t)$$
(4.30)

Где

$$U_{zz} = -\left((J_2^A J_1^B + J_1^A J_2^B)(P_0 L_0 - P_1 L_1) + J_2^A J_2^B (L_0^- P_0^+ - L_1^- P_1^+) + J_1^A J_1^B (P_0^- L_0^+ - P_1^- L_1^+)\right)$$

$$U_{xx} = J_0^A J_0^B (2P_0 L_0 + 2P_1 L_1 - P_0^- L_0^- - P_0^+ L_0^+ - P_1^- L_1^- - P_1^+ L_1^+) - J_0^A J_0^B 2 (2P_1 L_1 - P_1^- L_1^- - P_1^+ L_1^+) n_x^2 - J_{mix}^A J_{mix}^B (P_0^- L_0^+ + P_1^- L_1^+ (n_x^2 - n_y^2)) - 2 \operatorname{sgn} M (L_1 P_1^- - P_1 L_1^+) (J_{mix}^A J_0^B + J_0^A J_{mix}^B) n_x n_y$$

$$U_{xy} = -2J_0^A J_0^B (2P_1L_1 - P_1^- L_1^- - P_1^+ L_1^+) n_x n_y + 2J_{mix}^A J_{mix}^B P_1^- L_1^+ n_x n_y + sgn M (J_{mix}^A J_0^B + J_0^A J_{mix}^B) (L_0 P_0^- - P_0 L_0^+) + sgn M (L_1 P_1^- - P_1 L_1^+) (J_{mix}^A J_0^B - J_0^A J_{mix}^B) (n_x^2 - n_y^2)$$

$$U_{xz} = \operatorname{sgn} M J_0^A (J_1^B (P_0^- L_1 + P_1^- L_0 - P_1 L_0^+ - P_0 L_1^+) + J_2^B (P_1 L_0^- + P_0 L_1^- - P_0^+ L_1 - P_1^+ L_0)) n_x - J_{mix}^A (J_2^B (P_1 L_0 + P_0 L_1) + J_1^B (P_1^- L_0^+ + P_0^- L_1^+)) n_y$$

При этом, как нетрудно убедиться, остальные слагаемые непосредственно получаются из перечисленных выше. В частности U_{yy} , U_{yx} , U_{yz} получаются из U_{xx} , U_{xy} , U_{xz} заменой n_x на n_y и n_y на n_x . U_{zx} и U_{zy} равны соответственно $-U_{xz}$ и $-U_{yz}$, если в последних еще поменять местами индесы примесей A и B.

Важно отметить, что знак перед некоторыми слагаемыми напрямую зависит от топологической фазы топологического изолятора - этому соответствует sgn M, встречающийся в формулах выше. Также отметим, что помимо стандартных слагаемых Гейзенбергского типа есть множество других слагаемых, имеющих нетривиальную угловую зависимость.

Таким образом, в общем виде выяснена спиновая структура ответа для взаимодействия примесей, и задача о нахождении координатной зависимости обменного гамильтониана сведена к вычислению интегралов. Как уже упоминалось в разделе 2.3.2, наличие неравного нулю γ значительно понижает симметрию в плоскости, однако гамильтониан переходит в себя при повороте плоскости на угол π , а тогда и взаимодействие примесей инвариантно относительно таких вращений. В последнем факте действительно можно убедиться непосредственно проделав небольшое вычисление. Посмотрим как упрощается ответ в случае $\gamma = 0$. Легко видеть, что подынтегральные функции в формулах 4.26 - 4.29 становятся более симметричными и поэтому:

$$L_1^{\pm} = P_1^{\pm} = L_0 = P_0 = 0 \tag{4.31}$$

Тогда

$$U_{zz} = (J_2^A J_1^B + J_1^A J_2^B) P_1 L_1 - J_2^A J_2^B L_0^- P_0^+ - J_1^A J_1^B P_0^- L_0^+$$

$$U_{xx} = J_0^A J_0^B (2P_1 L_1 - P_0^- L_0^- - P_0^+ L_0^+) - 4J_0^A J_0^B P_1 L_1 n_x^2 - J_{mix}^A J_{mix}^B P_0^- L_0^+$$

$$U_{xy} = -4J_0^A J_0^B P_1 L_1 n_x n_y$$

$$U_{xz} = \operatorname{sgn} M J_0^A (J_1^B (P_0^- L_1 - P_1 L_0^+) + J_2^B (P_1 L_0^- - P_0^+ L_1)) n_x$$
(4.32)

и получаем следующий ответ:

$$H_{\rm IEI} = \frac{|M|^3}{A^4 16\pi^2} \int_0^\infty dt \left((\mathbf{S}^A_{\parallel} \cdot \mathbf{n}) S_z^B {\rm sgn} M J_0^A (J_1^B (P_0^- L_1 - P_1 L_0^+) + J_2^B (P_1 L_0^- - P_0^+ L_1)) - (\mathbf{S}^B_{\parallel} \cdot \mathbf{n}) S_z^A {\rm sgn} M J_0^B (J_1^A (P_0^- L_1 - P_1 L_0^+) + J_2^A (P_1 L_0^- - P_0^+ L_1)) + (\mathbf{S}^A_{\parallel} \cdot \mathbf{S}^B_{\parallel}) (J_0^A J_0^B (2P_1 L_1 - P_0^- L_0^- - P_0^+ L_0^+) - J_{mix}^A J_{mix}^B P_0^- L_0^+) - 4J_0^A J_0^B P_1 L_1 (\mathbf{S}^A_{\parallel} \cdot \mathbf{n}) (\mathbf{S}^B_{\parallel} \cdot \mathbf{n}) + S_z^A S_z^B ((J_2^A J_1^B + J_1^A J_2^B) P_1 L_1 - J_2^A J_2^B L_0^- P_0^+ - J_1^A J_1^B P_0^- L_0^+))$$

$$(4.33)$$

Стоит отметить, что этот ответ обладает полной вращательной инвариантностью - в записи через скалярные произведения это сразу видно.

Если две одинаковые примеси расположены на одной высоте, то все J^A и J^B равны (т.к. J выражаются лишь через огибающие функции f_i 2.10) и первые два слагаемых под интегралом 4.3 комбинируются к виду

$$\sim [\mathbf{n} \times [\mathbf{S}^A \times \mathbf{S}^B]]_z$$
 (4.34)

Такое взаимодействие примесей называется взаимодействием Дзялошинского-Мории. Пусть теперь одинаковые примеси расположены в самом центре (по z) квантовой ямы. С учетом результатов раздела 3.1.1 $J_1 = J_{mix}$, $J_0 = 0$. Тогда получаем совсем простой ответ:

$$H_{\rm IEI} = \frac{|M|^3}{A^4 16\pi^2} \int_0^\infty dt \left(S_z^A S_z^B \left((J_2^A J_1^B + J_1^A J_2^B) P_1 L_1 - J_2^A J_2^B L_0^- P_0^+ \right) - J_1^A J_1^B P_0^- L_0^+ \boldsymbol{S}^A \boldsymbol{S}^B \right)$$

$$\tag{4.35}$$

Однако такое рассмотрение на этом этапе не позволяет выяснить зависимость констант межспинового взаимодействия от расстояния. Как упоминалось во введении, ожидаемый закон их спадания - экспоненциальный. Рассмотрев асимптотическое поведение этого ответа при $\rho \gg 1$ ($R \gg a/|m|$), убедимся в этом.

4.4 Асимптотическое поведение

Основной прием в вычислении рассматриваемых интегралов - метод перевала. Для простоты разберем сперва конкретный пример вычисления.

4.4.1 Пример вычисления

Считаем

$$L = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} e^{t\mathcal{D}(\kappa^{2})} J_{0}(\kappa\rho)(\vartheta_{-} + \operatorname{sgn} M\mathcal{M}(\kappa^{2}))$$
(4.36)

Возникает трудность: подынтегральная функция не является аналитической функцией из-за наличия $|\kappa|$ (корни идущие из спектра после выбора разрезов проблем не создают). Чтобы работать с ней как с аналитической функцией комплексного переменного мы заменяем:

$$|\kappa| = \lim_{q \to 0} \sqrt{\kappa^2 + q^2}$$

с разрезами вдоль мнимой оси. В дальнейшем подобное выражение для модуля уточняться не будет, но стоит держать его в голове.

Сделаем также тождественное преобразование, которое позволит явно использовать метод перевала:

$$J_0(z) = \operatorname{Re}(H_0^{(1)}(|z|))$$

Такая замена мотивирована "плохим поведением" функции Бесселя на мнимой оси - она экспоненциально растет по мере удаления от действительной оси. Функция $H_0^{(1)}$, с другой стороны, экспоненциально убывает вдоль мнимой оси. Более того асимптотическое выражение для $H_0^{(1)}$ проще.

Наложим некоторые ограничения на ϑ : пусть ϑ является корнем из полинома конечной степени: $\vartheta(\kappa) = \sqrt{f(\kappa)}$ (соответственно $\mathcal{M}, \mathcal{A}, \gamma$ - тоже полиномы), имеющего только один минимум в некоторой точке κ_0 при этом дополнительно предполагаем, что функции $\vartheta \pm \mathcal{D}$ имеют также только один минимум - все это соответствует случаю BHZ, который является основной целью данного рассмотрения. Отметим, что $\kappa_0 \sim \gamma$ (считаем также $\gamma > 0$). На самом деле помимо этих требований необходимо наложить еще несколько, но их обсуждение будет приведено позже. Также по ходу вычисления стоит параллельно с общим рассматривать случай со спектром $\pm \sqrt{1 + (k - \gamma)^2}$, поскольку для него все получается очень наглядно.

С учетом всех сделанных выше замечаний:

$$L = \operatorname{Re} \int d\kappa \frac{|\kappa|}{\sqrt{f(\kappa)}} e^{-t\sqrt{f(\kappa)}} e^{t\mathcal{D}(\kappa^2)} H_0^{(1)}(|\kappa|\rho)(\sqrt{f(\kappa)} + \operatorname{sgn} \mathcal{M}\mathcal{M}(\kappa^2))$$
(4.37)

Разбиваем его на две части: от и до минимума κ_0 функции $f(\kappa)$, вторую часть сопрягаем под знаком действительной части.

$$L = \operatorname{Re}\left(\int_{-\infty}^{\kappa_{0}} d\kappa \frac{|\kappa|}{\sqrt{f(\kappa)}} e^{-t\sqrt{f(\kappa)}} e^{t\mathcal{D}(\kappa^{2})} H_{0}^{(1)}(|\kappa|\rho)(\sqrt{f(\kappa)} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa^{2})) + \int_{\kappa_{0}}^{\infty} d\kappa \frac{|\kappa|}{\sqrt{f(\kappa)}} e^{-t\sqrt{f(\kappa)}} e^{t\mathcal{D}(\kappa^{2})} H_{0}^{(2)}(|\kappa|\rho)(\sqrt{f(\kappa)} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa^{2}))\right)$$
(4.38)

До и после κ_0 идут интервалы монотонности функции $\epsilon = \sqrt{f(\kappa)}$, поэтому естественно перейти к "энергетическим"координатам вместо импульсов, т.е. как независимую переменную рассматривать далее ϵ . Рассмотрим прямую, соответствующую постоянной ϵ . Если ϵ лежит выше минимума функции $\sqrt{f(\kappa)}$, то есть две точки пересечения (действительных) этой прямой и $\sqrt{f(\kappa)}$: $\kappa_2(\epsilon)$ слева и $\kappa_1(\epsilon)$ справа. При понижении є эти точки сближаются (см. рис. 4.2) и, когда ϵ становится ниже минимума $\sqrt{f(\kappa)}$, точка κ_1 поднимается в комплексную плоскость, а κ_2 становится ей сопряженной, т.е. опускается вниз (комплексные волновые вектора понадобятся позже). В итоге в координатах энергии интеграл записывается как

Рис. 4.2: Точки $\kappa_1(\epsilon), \kappa_2(\epsilon)$

$$L = \operatorname{Re}\left(\int_{\epsilon_{0}}^{\infty} \frac{|\kappa_{1}(\epsilon_{1})| d\epsilon_{1}}{\epsilon_{1}} \frac{d\kappa_{1}(\epsilon_{1})}{d\epsilon_{1}} e^{t\mathcal{D}(\kappa_{1}^{2})} e^{-t\epsilon_{1}} H_{0}^{(1)}(|\kappa_{1}(\epsilon_{1})|\rho)(\epsilon_{1} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa_{1}^{2})) + \int_{\epsilon_{0}}^{\infty} \frac{|\kappa_{2}(\epsilon_{2})| d\epsilon_{2}}{\epsilon_{2}} \left(-\frac{d\kappa_{2}(\epsilon_{2})}{d\epsilon_{2}}\right) e^{t\mathcal{D}(\kappa_{2}^{2})} e^{-t\epsilon_{2}} H_{0}^{(2)}(|\kappa_{2}(\epsilon_{2})|\rho)(\epsilon_{2} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa_{2}^{2}))\right)$$
(4.39)

Тут $\epsilon_0 = \sqrt{f(\kappa_0)}$. Теперь используем метод перевала, предполагая, что перевальные точки интегралов будут расположены так, что $|\kappa_i \rho| \gg 1$. Ввиду последнего условия можно пользоваться асимптотическими выражениями для H пренебрегая поправками:

$$H_0^{(1)}(x) = \sqrt{\frac{2}{\pi x}} e^{ix - i\frac{\pi}{4}} (1 + O(\frac{1}{x}))$$
$$H_0^{(2)}(x) = \sqrt{\frac{2}{\pi x}} e^{-ix + i\frac{\pi}{4}} (1 + O(\frac{1}{x}))$$

Поскольку $\kappa_0 > 0$, в точках перевала $\operatorname{Re}(\kappa) > 0$ (например, можно рассмотреть, как уже упоминалось, простую модель с $f(\kappa) = 1 + (\kappa - \gamma)^2$. В ней перевальные точки $\gamma \pm i$). В таком случае модуль просто снимается и уравнения определяющие перевальные точки для соответственно интегралов по ϵ_1 и ϵ_2 :

$$\frac{d\kappa_1}{d\epsilon_1} = -i\frac{t}{R}\left(1 - \frac{d\mathcal{D}}{d\kappa_1}\frac{d\kappa_1}{d\epsilon_1}\right) \quad \to \quad \epsilon_1 = -if'(\kappa_1(\epsilon_1))\frac{t}{2R}\left(1 - \frac{d\mathcal{D}}{d\kappa_1}\frac{d\kappa_1}{d\epsilon_1}\right) \tag{4.40}$$

$$-\frac{d\kappa_2}{d\epsilon_2} = -i\frac{t}{R}\left(1 - \frac{d\mathcal{D}}{d\kappa_2}\frac{d\kappa_2}{d\epsilon_2}\right) \quad \to \quad \epsilon_2 = -i\left(-f'(\kappa_2(\epsilon_2))\right)\frac{t}{2R}\left(1 - \frac{d\mathcal{D}}{d\kappa_2}\frac{d\kappa_2}{d\epsilon_2}\right) \tag{4.41}$$

Параметр $\frac{t}{R}$ - хороший малый параметр (это будет показано позже), в нулевом порядке по нему решение $\epsilon_{1/2} = 0$. В первом неисчезающем порядке перевальная точка расположена в

$$\epsilon_1 = \frac{t}{2R} \left[-if'(\kappa_1(0)) \right]$$

$$\epsilon_2 = \frac{t}{2R} \left[-i \left\{ -f'(\kappa_2(0)) \right\} \right]$$
(4.42)

Стоит отметить, что для простых случаев (BHZ без γ или наоборот модель с $f(\kappa) = 1 + (\kappa - \gamma)^2$) эти точки лежат на действительной оси. Как уже упоминалось выше, при ϵ , лежащем "под"графиком f(k), точки κ_1 и κ_2 сопряжены, а из этого следует и что перевальный ϵ_1 сопряжен с ϵ_2 . Вычислим теперь вторую производную в перевальной точке с нужной точностью:

$$\frac{d^2\kappa_1}{d\epsilon_1^2} = \frac{2}{f'(\kappa_1(0))} \tag{4.43}$$

$$\frac{d^2\kappa_2}{d\epsilon_2^2} = \frac{2}{f'(\kappa_2(0))} \tag{4.44}$$

Рис. 4.3: Контур интегрирования по ϵ_1 (синий) и по ϵ_2 (красный). Черные жирные точки - седловые

Теперь все почти готово к применению метода перевала. Осталось уточнить, как вести контур к точке перевала. Удобным контуром был бы контур, изображенный на рисунке 4.3. Однако при деформации исходного контура по ϵ_2 мы обязательно натыкаемся на точку ветвления $|k_2(\epsilon_2)|$. Пока будем считать, что этой проблемы нет и вернемся к ней позже (в итоге вклада она не дает). В итоге наш суммарный ответ состоит из перевала по ϵ_1 , перевала по ϵ_2 и двух интегралов по ϵ вдоль действительной оси. Перевальная часть дает конечный вклад в ответ, а интегралы вдоль действительной оси вклада не дают. Действительно, не уточняя до какой точки ведется интегрирование:

$$\operatorname{Re}\left(\int_{a}^{\epsilon_{0}} \frac{\kappa_{1}(\epsilon_{1})d\epsilon_{1}}{\epsilon_{1}} \frac{d\kappa_{1}(\epsilon_{1})}{d\epsilon_{1}} e^{t\mathcal{D}(\kappa_{1}^{2})} e^{-t\epsilon_{1}} H_{0}^{(1)}(\kappa_{1}(\epsilon_{1})\rho)(\epsilon_{1} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa_{1}^{2})) + \int_{a}^{\epsilon_{0}} \frac{\kappa_{2}(\epsilon_{2})d\epsilon_{2}}{\epsilon_{2}} \left(-\frac{d\kappa_{2}(\epsilon_{2})}{d\epsilon_{2}}\right) e^{t\mathcal{D}(\kappa_{2}^{2})} e^{-t\epsilon_{2}} H_{0}^{(2)}(\kappa_{2}(\epsilon_{2})\rho)(\epsilon_{2} + \operatorname{sgn}\mathcal{M}\mathcal{M}(\kappa_{2}^{2})))$$
(4.45)

С учетом сказанного выше $k_1(\epsilon) = q(\epsilon), k_2(\epsilon) = q^*(\epsilon).$

$$\operatorname{Re}\left(\int_{a}^{\epsilon_{0}} \frac{qd\epsilon}{\epsilon} \frac{dq}{d\epsilon} e^{t\mathcal{D}(q^{2})} e^{-t\epsilon} H_{0}^{(1)}(q\rho)(\epsilon + \operatorname{sgn}\mathcal{M}\mathcal{M}(q^{2})) + \int_{a}^{\epsilon_{0}} \frac{q^{*}d\epsilon}{\epsilon} \left(-\frac{dq^{*}}{d\epsilon}\right) e^{t\mathcal{D}(q^{*2})} e^{-t\epsilon} H_{0}^{(2)}(q^{*}\rho)(\epsilon + \operatorname{sgn}\mathcal{M}\mathcal{M}(q^{*2}))\right)$$
(4.46)

Видим что получилось выражение вида

$$\operatorname{Re}(c-c^*)=0$$

Таким образом, остается лишь перевальная часть. Перед тем как ее явно выписать введем удобные обозначения:

$$-if'(\kappa_1(0)) = c_f^2 e^{2i\phi_f}, \qquad i\xi e^{i\phi_\xi} = \kappa_1(0), \qquad \operatorname{sgn} \mathcal{M}\mathcal{M}(\kappa_1^2(0)) = c_b e^{i\phi_b} \qquad (4.47)$$

Мотивировка этих обозначений такая: для $f(\kappa) = 1 + (\kappa - \gamma)^2$ верно $\phi_f = 0$. Стоит отметить, что в рассматриваемом случае $c_f \sim 1$. Если в таком случае $\gamma = 0$, то $\phi_{\xi} = 0$. Таким образом ненулевой ϕ_{ξ} соответствует наличию γ . В этих обозначениях интеграл:

$$L = \operatorname{Re}\left(\frac{2}{c_{f}^{2}}i\xi e^{i\phi_{\xi}}e^{-\frac{t^{2}}{4\rho}c_{f}^{2}}e^{2i\phi_{f}} - \xi e^{i\phi_{\xi}}\rho - i\phi_{f}}\sqrt{\frac{2}{\pi i\xi e^{i\phi_{\xi}}\rho}}e^{-i\frac{\pi}{4}}c_{b}e^{i\phi_{b}}e^{t\mathcal{D}(\kappa_{1}^{2}(0))}\int_{-b}^{\infty}dy e^{-\frac{\rho}{c_{f}^{2}}y^{2}} + \frac{2}{c_{f}^{2}}(-i\xi e^{-i\phi_{\xi}})e^{-\frac{t^{2}}{4\rho}c_{f}^{2}}e^{-2i\phi_{f}} - \xi e^{-i\phi_{\xi}}\rho + i\phi_{f}}\sqrt{\frac{2}{-\pi i\xi e^{-i\phi_{\xi}}\rho}}e^{i\frac{\pi}{4}}c_{b}e^{-i\phi_{b}}e^{t\mathcal{D}(\kappa_{2}^{2}(0))}\int_{b}^{\infty}dy e^{-\frac{\rho}{c_{f}^{2}}y^{2}}\right) (4.48)$$

Наличие *b* говорит о том, что при конечном ϕ_f (как на рисунке) перевальные точки отходят от действительной оси, в то время как контур с нее выходит на перевал. Совершая сопряжение во втором слагаемом мы видим что интегралы собираются в полный перевальный интеграл. Упрощая, по возможности, приходим к окончательному выражению

$$\operatorname{Re}\left(\frac{2}{c_{f}}\sqrt{\frac{2\xi}{\rho^{2}}}c_{b}e^{i\phi_{b}}e^{t\mathcal{D}(\kappa_{1}^{2}(0))}e^{-\frac{t^{2}}{4R}c_{f}^{2}e^{2i\phi_{f}}-\xi e^{i\phi_{\xi}}R-i\phi_{f}+\frac{i}{2}\phi_{\xi}}\right)$$
(4.49)

Видим, что в соответствии с ожиданиями интеграл (а тогда и константы взаимодействия) спадает экспоненциально с расстоянием. Характерный масштаб затухания (в частности для модели BHZ) - $\rho \sim 1$. Осталось ответить на возникшие по ходу вычисления вопросы вопросы.

Во-первых, обоснуем, что $\frac{t}{\rho}$ действительно малый параметр. Видим в итоговом выражении 4.49 множитель вида $e^{-\frac{t^2}{\rho}}$, который зарезает интегрирование по t на $t \sim \sqrt{\rho}$. Таким образом, $\frac{t}{\rho} \sim \frac{1}{\sqrt{\rho}}$, что в пределе $\rho \gg 1$ обосновывает требуемое утверждение.

Теперь вернемся к замечанию о ветвлении модуля. В интеграле по ϵ_1 проблем не возникает, см. рис. 4.4а, где показано как деформируется контур в κ пространстве для такого интеграла. Вдоль мнимой оси проведен разрез функции $|\kappa|$ (зеленым на рисунке), в правой полуплоскости ниже и выше оси абсцисс расположены разрезы $\sqrt{f(\kappa)}$ (синим на рисунке). Например, для $f(\kappa) = 1 + (k - \gamma)^2$ разрезы идут из $\gamma \pm i$ соответственно вверх и вниз, а в общем случае предполагаем схожую структуру разрезов. В интеграле же по ϵ_2 возникает проблема. На рисунке 4.4b однако показано, как можно деформировать контур в κ для такого интеграла. Часть контура отстоящая от мнимой оси соответствует контуру в ϵ пространстве рассмотренному ранее. Осталось показать, что часть

Рис. 4.4: Контуры интегрирования в импульсном пространстве. Зеленым выделен разрез $|\kappa|$, темно-синим - разрез $\sqrt{f(\kappa)}$

контура, "сидящая"
на разрезе модуля равна нулю (называем соответствующий контур
 C_0). Обозначим

$$e^{t\mathcal{D}(\kappa^2)}e^{-t\sqrt{f(\kappa)}}\frac{1}{\sqrt{f(\kappa)}}(\sqrt{f(\kappa)} + \operatorname{sgn} \mathcal{M}\mathcal{M}(\kappa^2)) = g(\kappa)$$

Предполагаем, что у этой функции точки ветвления расположены при $\kappa > 0$, т.е. для этой функции контур "выглядит"прямым, в отличие от κ , для которого мнимая часть разная с разных сторон мнимой оси. Тогда

$$\operatorname{Re} \int_{C_0} |\kappa| d\kappa H_0^{(2)}(|\kappa|R)g(\kappa) =$$
$$\operatorname{Re} \left(\int_{\infty}^0 -i\kappa i d\kappa H_0^{(2)}(-i\kappa R)g(i\kappa) + \int_0^{-\infty} i\kappa i d\kappa H_0^{(2)}(i\kappa R)g(i\kappa) \right)$$
(4.50)

Интегралы сходятся т.к на мнимой ос
и $H_0^{(2)}$ растет экспоненциально при увеличении аргумента. С
делав замены переменных

$$\operatorname{Re}\left(-\int_{0}^{\infty}\kappa d\kappa H_{0}^{(2)}(-i\kappa R)g(i\kappa)-\int_{0}^{\infty}\kappa d\kappa H_{0}^{(2)}(-i\kappa R)g(-i\kappa)\right)$$
(4.51)

Т.к. на мнимой оси эта функция Бесселя чисто мнимая и получаем выражение, зануление которого очевидно:

$$\operatorname{Re}(ic+ic^*)=0$$

4.4.2 Итоговый результат

Все прочие вычисления проводятся в достаточной степени аналогично вышеприведенному. Так как в итоговый ответ входят комбинации $L \cdot P$, из него полностью выпадает $t \operatorname{Re}\mathcal{D}(\kappa_1^2(0))$ в экспонентах. Условие на малость мнимой части: $\rho \ll \frac{1}{\gamma^2 |m|^2}$. Физически оно выполнено для рассматриваемых случаев с большим запасом. Действительно это условие можно переписать как $\rho \ll \frac{\mathcal{E}^2}{\Delta^2}$. В модели ВНZ это отношение имеет порядок 10^4 и при уменьшении параметров B и D стремительно растет. Из-за перевального характера интегралов в пределе больших расстояний большинство ответов для них одинаковые (это следует из того, что в точке перевала в низшем порядке $\kappa_1 - \gamma = i \operatorname{sgn} \mathcal{M} \mathcal{M}$ и аналогично для κ_2). Введем, мотивируясь этим функции, через которые все будет выражаться

$$Q_{\nu} = \int d\kappa \frac{|\kappa|}{\vartheta_{-}} e^{-t\vartheta_{-}} J_{\nu}(\kappa\rho) \operatorname{sgn} \mathcal{M}\mathcal{M}$$
(4.52)

Определим

$$F_{c}(r) = F_{c}(\rho|m|/a) = \frac{|M|^{3}}{A^{4}16\pi^{2}} \int_{0}^{\infty} dt \left(Q_{0}^{2} - Q_{1}^{2}\right)$$

$$F_{s}(r) = F_{s}(\rho|m|/a) = \frac{|M|^{3}}{A^{4}16\pi^{2}} \int_{0}^{\infty} dt \left(2Q_{0}Q_{1}\right)$$

$$F(r) = F(\rho|m|/a) = \frac{|M|^{3}}{A^{4}16\pi^{2}} \int_{0}^{\infty} dt \left(Q_{0}^{2} + Q_{1}^{2}\right)$$
(4.53)

Тогда выражение для взаимодействия принимает вид:

$$H_{\rm IEI} = \sum_{i,j} K_{ij} S_i^A S_j^B \tag{4.54}$$

Обозначим $J_z = J_1 + J_2$. В таком случае

$$\begin{split} K_{zz} &= J_z^A J_z^B F_c \\ K_{xx} &= -4J_0^A J_0^B F_c n_x^2 + J_{mix}^A J_{mix}^B F n_x^2 + J_{mix}^A J_{mix}^B F_c n_y^2 - 2 \operatorname{sgn} M F_s (J_{mix}^A J_0^B + J_0^A J_{mix}^B) n_x n_y \\ K_{xy} &= -4J_0^A J_0^B F_c n_x n_y + J_{mix}^A J_{mix}^B (F_c - F) n_x n_y - 2 \operatorname{sgn} M J_{mix}^A J_0^B F_s n_x^2 - 2 \operatorname{sgn} M J_0^A J_{mix}^B F_s n_y^2 \\ K_{xz} &= 2 \operatorname{sgn} M J_0^A J_z^B F_c n_x + J_{mix}^A J_z^B F_s n_y \end{split}$$

Также как и для $U, K_{yy}, K_{yx}, K_{yz}$ получаются из K_{xx}, K_{xy}, K_{xz} заменой n_x на n_y и n_y на n_x . K_{zx} и K_{zy} равны соответственно $-K_{xz}$ и $-K_{yz}$, если в последних еще поменять местами индексы примесей A и B. Таким образом, получена общая спиновая структура ответа в пределе больших расстояний. Осталось произвести интегрирование по t для функций F, F_s, F_c . Полученные интегралы - Гауссовы. Не вдаваясь в детали вычисления

$$F(r) = \frac{|M|^3}{A^4} \frac{\xi c_b^2}{c_f^3} \frac{e^{-2\xi \cos \phi_\xi \rho}}{(2\pi\rho)^{3/2}} \frac{1}{(\cos 2\phi_f)^{1/2}}$$
$$F_c(r) = \frac{|M|^3}{A^4} \frac{\xi c_b^2}{c_f^3} \frac{e^{-2\xi \cos \phi_\xi \rho}}{(2\pi\rho)^{3/2}} \cos \left(2\xi \sin \phi_\xi \rho - \phi_\xi - 2\phi_b + 3\phi_f\right)$$
$$F_s(r) = -\frac{|M|^3}{A^4} \frac{\xi c_b^2}{c_f^3} \frac{e^{-2\xi \cos \phi_\xi \rho}}{(2\pi\rho)^{3/2}} \sin \left(2\xi \sin \phi_\xi \rho - \phi_\xi - 2\phi_b + 3\phi_f\right)$$
(4.55)

Таким образом полностью получен ответ для косвенного обменного взаимодействия в пределе больших расстояний. Как и ожидалось, константы взаимодействия экспоненциально спадают с расстоянием и, на фоне этого быстрого спадания есть абрикосовские осцилляции. Приведем ответ для модели BHZ (малый *m*) в размерных единицах расстояния с ненулевым γ :

$$F(r) = \frac{|M|^3}{A^4} \sqrt{1 + \gamma^2} \left(\frac{\lambda_1}{2\pi R}\right)^{3/2} e^{-\frac{R}{\lambda_1}}$$

$$F_c(r) = \frac{|M|^3}{A^4} \sqrt{1 + \gamma^2} \left(\frac{\lambda_1}{2\pi R}\right)^{3/2} e^{-\frac{R}{\lambda_1}} \cos\left(\frac{R}{\lambda_2} - \arctan\gamma\right)$$

$$F_s(r) = \frac{|M|^3}{A^4} \sqrt{1 + \gamma^2} \left(\frac{\lambda_1}{2\pi R}\right)^{3/2} e^{-\frac{R}{\lambda_1}} \sin\left(\frac{R}{\lambda_2} - \arctan\gamma\right)$$
(4.56)

Здесь

$$\lambda_1 = \frac{a}{2|m|} [1 + (1 - \gamma^2)m\cosh\chi)$$
$$\lambda_2 = \frac{a}{2|m|\gamma} [1 + 2m\cosh\chi]$$

Видим, что длина спадания, в виду малости m, примерно равна $\frac{A}{2|M|}$ в исходных параметрах задачи, т.е. A, предсказуемо, выступает в качестве характерной скорости электронов. Масштаб осцилляций для реалистичных параметров немного больше масштаба затухания и примерно равен $\frac{A}{2\Delta}$. Вычисленные значения характерных длин приведены в таблицу 4.2.

Таблица 4.2: Характерные длины

d, nm	λ_1 , nm	λ_2 , nm
5.5	22	27
7.0	22	25

В модели ВНZ, если $\gamma = 0$, ответ переходит в

$$H_{\rm IEI} = F(J_z^A J_z^B S_z^A S_z^B - 4J_0^A J_0^B (\boldsymbol{S}_{\parallel}^A \cdot \boldsymbol{n}) (\boldsymbol{S}_{\parallel}^B \cdot \boldsymbol{n}) + J_{mix}^A J_{mix}^B (\boldsymbol{S}_{\parallel}^A \cdot \boldsymbol{S}_{\parallel}^B) + 2 {\rm sgn} M J_0^A J_z^B (\boldsymbol{S}_{\parallel}^A \cdot \boldsymbol{n}) S_z^B - 2 {\rm sgn} M J_0^B J_z^A (\boldsymbol{S}_{\parallel}^B \cdot \boldsymbol{n}) S_z^A)$$
(4.57)

Это следует из зануления интеграла Q_1 по нечетности.

Стоит отметить, что *zz* взаимодействие в таком случае носит антиферромагнитный характер при условии, что примеси расположены на одной высоте (одинаковые *J*) или близких высотах (*J* имеют одинаковый знак). Более того для примесей в центре ямы:

$$H_{\rm IEI} = F(J_z^2 S_z^A S_z^B + J_1^2 (\boldsymbol{S}_{\parallel}^A \cdot \boldsymbol{S}_{\parallel}^B))$$

$$(4.58)$$

Завершая этот раздел отметим, что на расстояниях $\sim a/|m|$ верно $\frac{F}{|M|} \ll 1$, что оправдывает применение теории возмущений.

4.5 Анизотропия

В конце концов, рассмотрим вопрос об анизотропии для примесей, связанной с наличием окружающих электронов. Во втором порядке теории возмущений помимо члена, отвечающего за взаимодействие примесей, есть, конечно, и члены, в которые каждая из примесей входит два раза. Соответствующие интегралы имеют следующий вид:

$$H_{a} = \frac{1}{2} \mathcal{V}^{\alpha\beta} \mathcal{V}^{\gamma\delta} \Pi_{\beta\gamma,\delta\alpha} = \frac{1}{2} \mathcal{V}^{\alpha\beta} \mathcal{V}^{\gamma\delta} \int \frac{d\omega}{2\pi} G_{\beta\gamma}(i\omega,0) G_{\delta\alpha}(i\omega,0)$$
(4.59)

Видим, что интегралы набираются по всей зоне Бриллюэна, а поэтому нельзя применять модель ВНZ. Однако, тем не менее, будем считать, что электроны описываются следующим гамильтонианом:

$$H = \begin{pmatrix} h & f & 0 & g \\ f^* & j & -g & 0 \\ 0 & -g & h & -f^* \\ g & 0 & -f & j \end{pmatrix}$$
(4.60)

Где f - нечетная функция, h, j, g - четные функции волнового вектора. В таком случае, получаем следующий вид анизотропии:

$$H_a = DS_z^2 + C(S_x S_y + S_y S_x) (4.61)$$

Тут C = 0 при g = 0. Подобная анизотропия создает выделенное направление (или несколько), тем более по порядку величины она может значительно превосходить межпримесное взаимодействие. Однако, относительное направление примесей определяется именно косвенным обменом между примесями.

Глава 5

Заключение

В данной работе было исследовано косвенное обменное взаимодействие между магнитными примесями в квантовой яме CdTe/HgTe/CdTe. Эта квантовая яма является примером двумерного топологического изолятора и при толщине больше некоторого критического значения переходит в топологически нетривиальную фазу, в которой присутствуют краевые состояния. В данной работе рассмотрены примеси в толще квантовой ямы, поэтому эффекты, связанные с краевыми состояниями не учитывались. Их учет в упрощенной модели был проведен в работе [27]. Поведение электронов в толще кристаллов CdTe и HgTe описывается гамильтонианом Кейна 2.8. Если из этих кристаллов построена квантовая яма, то появляются двумерные состояния. При толщине близкой к критической две двукратно вырожденные ветки - E1 и H1 - расположены близко друг к другу, и, когда химический потенциал расположен между ними, именно они определяют косвенное обменное взаимодействие магнитных примесей. Низкоэнергетический Гамильтониан, описывающий электроны в этих состояниях носит название гамильтониана Берневига-Хьюза-Жанга 2.13, процесс его получения был кратко освещен в данной работе.

Модель ВНZ усложняется если учесть отсутствие симметрии интерфейса относительно операции $z \rightarrow -z$. В работе [28] было показано, что для учета этого эффекта достаточно лишь немного модифицировать гамильтониан ВНZ. С учетом этого обстоятельтва, далее в работе был рассмотрен модифицированный гамильтониан ВНZ 2.18, и гамильтониан еще более общего вида 4.12.

В рамках исследования получено выражение для гамильтониана магнитной примеси в рассматриваемой квантовой яме 3.13. На его основе, с применением теории возмущений для термодинамического потенциала, было получено выражение для энергии косвенного обменного взаимодействия 4.30. Были вычислены асимптотические выражения для этого взаимодействия при больших расстояниях 4.54. Основные черты взаимодействия:

- Помимо обычного Гейзенбергского взаимодействия примесей есть множество других слагаемых. Некоторые из них при особенно симметричном расположении примесей собираются во взаимодействие типа Дзялошинского-Мории.
- Энергия косвенного обмена экспоненциально падает при увеличении расстояния между примесями.
- Если интерфейс несимметричен (γ ≠ 0), возникают осцилляции в косвенном обменном взаимодействии, частота которых пропорциональна параметру несимметричности интерфейса γ. Это находится в соответствии с результатом Абрикосова

[22], показавшего, что в полупроводниках при несоответствии дна зоны проводимости и потолка валентной зоны (химический потенциал в щели) возникают осцилляции констант косвенного обмена.

Помимо всего прочего был качественно рассмотрен вопрос об анизотропии для магнитных примесей.

Глава 6

Список литературы

- C. L. Kane and E. J. Mele, "Z2 topological order and the quantum spin Hall effect," Phys. Rev. Lett. 95, 146802 (2005).
- [2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, "Quantum spin Hall effect and topological phase transition in HgTe quantum wells," Science 314, 1757 (2006)
- [3] M. König, S. Wiedmann, C. Br"une, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, "Quantum spin Hall insulator state in HgTe quantum wells," Science 318, 766 (2007)
- [4] Xiao-Liang Qi and Shou-Cheng Zhang, "Topological insulators and superconductors," Rev. Mod. Phys. 83, 1057 (2011).
- [5] M. Z. Hasan and C. L. Kane, "Colloquium : Topological insulators," Rev. Mod. Phys. 82, 3045 (2010).
- [6] J. Maciejko, Ch. Liu, Y. Oreg, X.-L. Qi, C. Wu, and S.-C. Zhang, "Kondo effect in the helical edge liquid of the quantum spin Hall state," Phys. Rev. Lett. 102, 256803 (2009).
- [7] Y. Tanaka, A. Furusaki, and K. A. Matveev, "Conductance of a helical edge liquid coupled to a magnetic impurity," Phys. Rev. Lett. 106, 236402 (2011).
- [8] M. A. Ruderman and C. Kittel, "Indirect exchange coupling of nuclear magnetic moments by conduction electrons," Phys. Rev. 96, 99 (1954).
- T. Kasuya, "A theory of metallic ferro- and antiferromagnetism on Zeners model," Prog. Theor. Phys. 16, 45 (1956).
- [10] K. Yosida, "Magnetic properties of Cu-Mn alloys," Phys. Rev. 106, 893 (1957).
- [11] Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, and S.-C. Zhang, "Magnetic impurities on the surface of a topological insulator," Phys. Rev. Lett. 102, 156603 (2009).
- [12] F. Ye, G. H. Ding, H. Zhai, and Z. B. Su, "Spin helix of magnetic impurities in twodimensional helical metal," EPL 90, 47001 (2010).
- [13] I. Garate and M. Franz, "Magnetoelectric response of the time-reversal invariant helical metal," Phys. Rev. B 81, 172408 (2010).
- [14] Rudro R. Biswas and A. V. Balatsky, "Impurity-induced states on the surface of threedimensional topological insulators," Phys. Rev. B 81, 233405 (2010).

- [15] D. A. Abanin and D. A. Pesin, "Ordering of magnetic impurities and tunable electronic properties of topological insulators," Phys. Rev. Lett. 106, 136802 (2011).
- [16] J.-J. Zhu, D.-X. Yao, S.-C. Zhang, and K. Chang, "Electrically controllable surface magnetism on the surface of topological insulators," Phys. Rev. Lett. 106, 097201 (2011).
- [17] D. K. Efimkin and V. Galitski, "Self-consistent theory of ferromagnetism on the surface of a topological insulator," Phys. Rev. B 89, 115431 (2014).
- [18] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, "Massive Dirac fermion on the surface of a magnetically doped topological insulator," Science 329, 659 (2010).
- [19] L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, "A topological insulator surface under strong Coulomb, magnetic and disorder perturbations," Nat. Phys. 7, 32 (2011).
- [20] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Snchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Z. Hasan, "Hedgehog spin texture and Berrys phase tuning in a magnetic topological insulator," Nat. Phys. 8, 616 (2012).
- [21] N. Bloembergen and T. J. Rowland, "Nuclear spin exchange in solids: Tl²⁰³ and Tl²⁰⁵ magnetic resonance in thallium and thallic oxide," Phys. Rev. 97, 1679
- [22] A. A. Abrikosov, "Spin glasses with short range interaction," Adv. Phys. 29, 869 (1980)
- [23] J. Ginter, J. Kossut, and L. Swierkowski, "Indirect exchange interaction via electrons in spinorbit coupled bands in semiconductors," Phys. Status Solidi B 96, 735 (1979).
- [24] C. Lewiner and G. Bastard, "Indirect exchange interactions in zero-gap semiconductors: Anisotropic effects," Phys. Rev. B 22, 2132 (1980).
- [25] G. Zarand and B. Janko, "Ga_{1-x}Mn_xAs: A frustrated ferromagnet," Phys. Rev. Lett. 89, 047201 (2002).
- [26] I.I. Lyapilin and I.M. Tsidilkovskii, "Narrow-gap semimagnetic semiconductors," Sov. Phys. Uspehi 28, 349 (1985).
- [27] Курилович В. Д., "Косвенное обменное взаимодействие магнитных примесей, расположенных вблизи края двумерного топологического изолятора,"выпускная квалификационная работа бакалавра (2016)
- [28] S. A. Tarasenko, M. V. Durnev, M. O. Nestoklon, E. L. Ivchenko, J.-W. Luo, and A. Zunger, "Split Dirac cones in HgTe/CdTe quantum wells due to symmetry-enforced level anticrossing at interfaces," Phys. Rev. B 91, 081302 (2015)
- [29] Л.Д. Ландау, Е.М. Лифшиц, "Теоретическая физика. Том 3. Квантовая механика," Физматлит (2008)
- [30] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, "Group Theory: Application To The Physics Of Condensed Matter,"Springer (2008)

- [31] G. Dresselhaus, "Spin-Orbit Coupling Effects in Zinc Blende Structures,"Phys. Rev. 100, 580 (1955)
- [32] Xiao-Liang Qi and Shou-Cheng Zhang, "Topological insulators and superconductors,"Rev. Mod. Phys. 83, 1057 (2011)
- [33] G. L. Bir and G. E. Pikus, "Symmetry and strained-induced effects in semiconductors," Wiley, New York (1975)
- [34] D.G. Rothe, et al., "Fingerprint of different spin-orbit terms for spin transport in HgTe quantum wells," New Journal of Physics, Volume 12, Issue 6, article id. 065012, 22 pp. (2010)
- [35] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, "Hole transport and valence-band dispersion law in a HgTe quantum well with a normal energy spectrum,"Phys. Rev. B 89, 165311 (2014)