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Chapter 1

Introduction

1.1 Magnetic states of matter

Proprieties of ferromagnetics and anti-ferromagnetics are well-known. Ground states of this
type are characterized by a local order parameter. It means that at zero-temperature an
average of a spin operator is non-zero and quantum fluctuations of such spin are relatively
weak. So, in such systems we can speak about the orientations of spins. The ferromagnetic
order means that all spins are almost parallel to each other. The anti-ferromagnetic order
means that a half of spins are parallel to one direction and another half of spins are parallel
to the opposite direction. Elementary excitations of such systems are called magnons. They
describe deviation of spins from the average direction like phonons describe a deviation of
atoms from their average positions. Magnons also obey Bose statistics. There is a difference
in a form of a spectrum of such excitations: in a ferromagnet matter the energy is quadrati-
cally depend on the momentum, in a anti-ferromagnetic this dependence is linear. There are
systems with other orders and they have almost the same low-energy physic: the excitations
are also magnons with different types of a spectrum.

There are several examples of states which have an essentially another description
of magnetic properties. They are valence bonds [2], and spin liquids. Spin liquid has no any
order parameter (for example the average of the spin like it was in case of ferromagnetics).
Such behaviour can be related with strong quantum fluctuations which make ordered phase
unstable.

Quantum fluctuations are enhanced in systems with small spins. For example, if the
spin is s = % then the average of s is %. Quantum fluctuations are especially important in

low-dimensional systems.



Another example of a mechanism which can destroy an order is the frustration [16].
For, example we can imagine that spins are situated at the triangle lattice with the nearest-
neighbour anti-ferromagnetic interaction. In this case Neel type state is not possible due to
frustration.

There is no a general theory of spin-liquids but there are several examples, for review
see ref.[4]. Exactly solvable 1-dimensional XY model is known since Jordan and Wigner [6],
while first 2-dimensional generalization was proposed recently by Kitaev [8]. There are a lot

of experiments where people try to find evidence of spin-liquid in real materials.

1.2 Importance of the model and an overview of results

Kitaev model is also important for the theory of quantum computation. A lot of people try
to find a mater which properties can be described by Kitaev model and use it for qubits.
Properties of real matter depend also on perturbations to Kitaev model which exist in every
material. So it is important to understand properties of Kiteav model with perturbations. In
this thesis we present an analysis of such properties. We analyse which spin-spin correlation
can be created by perturbation and how perturbations can change low-energy spectrum.

In the Second chapter of this Thesis we describe pure Kitaev model, in the Third
chapter we develop a theory of a spin-spin correlation functions in the infra-red limit and
calculate corrections to the low-energy Hamiltonian, also we show the importance of the
time-reversal symmetry. In the Fourth chapter we demonstrate an application of our results

for different types of perturbations.



Chapter 2

Pure Kitaev model

2.1 Hamiltonian

Kitaev model [8] describes a system of interacting spins with s = % Spins are situated in
sites of the honeycomb lattice. Such lattices has 3 types of edges which are called as x, y
and z, see Fig. (2.1). In the system only nearest-neighbours spins interact. Spins which are
situated on, for example, a = edge interact with each other using the x component of spins

only. The Hamiltonian of the model is:

H = Z K,ola] (2.1)

(i.j)€af(v)
Here (i, j) is an edge which has a type 7, as indicated by the notation (i, j) € af(vy). Here
af() has three possible values: zy(z), zz(y) and yz(x). This model is exactly solvable and

can be solved using a representation of Pauli matrices via Majorana fermions.

Figure 2.1: The lattice of the model, which has 3 different types of edges: z,y and z.
Translations vectors are also presented

<t



2.2 Majorana fermions representation

One can consider a fermion operator ¥ and also consider its "real” and ”imaginary” parts:
a=d ol b=i(l ) (2.2)

Operators a and b have the following anti-commutation relations:
{a,a} =2 {bb} =2 {a,b} =0 (2.3)

Operators a and b describe particles which are called Majorana fermions.
For any site ¢ we introduce four Majorana fermions. We will call them as b%,b?, b?

1771

and ¢;. Let us consider operators:
o =1ibfc; (2.4)

We also would like to consider the subspace of the Hilbert space where each vector is an
eigenvector of the operator D; = b¥b?b7¢; for any i with an eigenvalue equal to 1.The operator
oy commute with D; for any j. It means that this space is invariant under an action of 7"
Below we consider only a projection of these operators on this subspace. In this assumption
we can calculate commutation relations of these operators:
[60,67] = —0i;[b¢ci, blei) = 655 (D] — bbY) =
055 (076" — Vb)) e;b] c; = abfbYbic;0;e°P15]) = ie“P5] (2.5)

The last step was done as operators act on cigenfunctions of D;. So we can represent Pauli

matrices using these Majorana fermions. The Hamiltonian has the following form:

H= Y —iK,(ib]b])cic (2.6)
(i.5)€aB(v)
One can note that in the initial problem a dimension of the Hilbert space is 2V, where N
is a number of sites in the lattice. The space where lives Majorana fermions has dimension
4N because each 2 Majorana fermions are equivalent to an ordinary fermion. So after our
choice of the subspace we have also the Hilbert space with the size 2%.

We would like to introduce a new operator for an edge (i,7) which has the type
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7, this operator u;; = ib:b}. u;; is an integral of motion, because it commutes with the
Hamiltonian. However, it is a not ”physical” variable. The ”physical” integral of motion is

a flux. Let’s consider a honeycomb cell, see Fig.(2.2), and the operator:
o Y z x Y z . .
W) = 070505050505 = U1 Uz3Uia3tias sl (2.7)

It is also an integral of motion, and it can be represented through Pauli matrices. This
operator has eigenvalues £1. If in some state W, = —1 we will say that there is a flux in the
cell p in this state. In the work [9] it was shown that there is an energy gap between states
with fluxes and without them. So in the ground state there is no fluxes and all W, = 1.
What about u;; 7 Firstly, u;; = —uj; so we want to fix that ¢ is from the even
sublattice (2,4,6 on Fig.(2.2)) and j is from the odd one. Secondly, in this problem there is a
gauge transformation, in a vertex ¢, we can change all signs of Majorana operators. The spin
variables are quadratic in terms of fermion operators, so they do not change their signs. So
this transform does not change W), and H and also it does not change operator D; = b¥b!bi¢;
so we still live in the same subspace. But u;; changes the sign under this transform. Using

this transforms we can made all u;; = 1 in the ground state, so the Hamiltonian which

describes low-energy excitations above the ground state has the following form:

H = Z _iKrijCj (28)
(i,9)

2.3 Diagonalization of the Hamiltonian

We see that the Hamiltonian (2.8) is quadratic and has translation invariance so we can use

Fourier transform to diagonalize it. The lattice as was discussed above has 2 sub-lattices,

z
y X
xz Y
z
Figure 2.2



odd and even and two translation vectors n; = {3, ?} and ny = {—1, \/Tg} Let two sites
which are connected by z-edge will constitute a unit-cell, see Fig.(2.1). So each vertex can
be parametrized by r-a vector of a unit cell and by an index A which describes the parity.

Then the Hamiltonian has the following form:

1
H = Z Z Uaﬁ(rzl)crl,acrg,ﬁ (29)
ri,r2,o,8
Here ry 5 = r; — ro. Here:
o, _ 0 i(0r, 0Kz 40r,—n, Kg+0r,—na Ky)
U*P(r) =2 (—i(ar,oKZJrar,nlKﬁér,nz;{y) o Y (2.10)

Then we can do the Fourier transform:

V2 |
_ i(p,r)
Cra = ——= E Cp.a€ (2.11)
VN &P
1 .
o, _ a8 l( ,I‘)
U*P(r) = N Ep A%P(p)e''P (2.12)

A(p) = (0, ) (2.13)

Where f(p) = 2i(K, + K,e!®m) + K, eP12)) Note, that cqr = CT_(LA and there are the

following commutation relations {cp o, Cq 8} = 0p —q0a,3. SO We have:

1 «
H= > AP (D) patps (2.14)

p,a,8

Note that due to the identity CLA = ¢p only a half of operators are "independent” as

f —
C—p7A —_— Cp,)\.

2.4 Spectrum and Green functions

The Hamiltonian (2.14) has the spectrum £(p) = £|f(p)|. It has 2 conic points if K, + Kz >
K. Below we will study this case. For simplicity we will consider only the isotropic model,
where K, = K, = K, but our results are also applicable for any case with conic points.

+2r
Conic points, in isotropic case, are located at points K; o = ( 2 )
V3

8



Green functions and their Fourier transform have the following form:

Gop(r,t) = (T'era(t)cos(0)) (2.15)
c f(p)
. 2 21,0 2— 215
Gop(p,c) = 2i < P +°> (2.16)
2—|f(p)|2+i0 £2—|f(p)|2+i0

We can calculate the behaviour of Green functions in the infra-red limit: Kt > 1,
r > 1 and |[v/3Kt —r| > 1. The last conditions mean that we are not very close to light
cone. The behaviour of the Green function is determined by the behaviour of the spectrum
near conic points. Function f has the following form near conic points f(Kio + dp) =~

V3K (8p, & i6p,). In this limit Green functions have the following form:

_\/gKt(ei(Kl ,r) +ei(K2 ,r)) iT’(ei(Kl ,r)+ia +ei(K2 ,r)—z‘a)

1

Gap(r,t) = om (31— 23 (

) (2.17)

iT‘(ei(K2 )i +ei(K1 ,r)—z’a) _\/gKt(ei(Kl ,r) +ei(K2 11"))

Here « is the angle between z axes and r.
We see from (2.16) that diagonal elements are odd functions of the energy so in
the (r,t) representation they are also odd functions of time. But off-diagonal term are even

functions. This difference will be important in our analysis.

2.5 Fluxes

In the previous section we discussed elementary excitations above the ground state which
can be created by an operator ¢;. But ¢; is not a "physical” operator since all observable
should be represented through Pauli matrices, using fermion representation : of = ib;c;. Let
(i, j) € af(y) then we have that {0}, u;;} = 0 it means what the action of the spin operator
changes the sign of u;;. If we apply a spin operator to the ground state then we change one
w;j. It is equivalent to the change of two W, where p has the edge (i, j) see Fig. (2.3a). If
we apply other spin operator we can create other pair of fluxes or annihilate one fluxe and

create anew see Fig.(2.3b).



(a) Two fluxes created by one spin  (b) Two fluxes created by two spin

Figure 2.3

Properties of fluxes are important for understanding of properties of spin correlations

0%

functions. Firstly, we consider a spin average (o}

). After action of spin operator: of|0) we

obtain a state with 2 fluxes. The projection of this state on the ground state is zero as
there is no fluxes in the ground state. So this average is zero. Secondly, we can consider the
spin-spin correlation function: (o (t)af (0)). It will not be zero if the operator af‘af does
not create fluxes. It is true only if « = f and ¢ = j or ¢ and j are neighbours, which are
connected by « edge.

On the one hand, we see that correlation functions in this model are strictly local,
they are exactly zero for non-neighbour spins. On the other hand, we know that spectrum
has conic points and we expect a power-low decay of correlation functions. This paradox is
due to the exact integrability of the model. We can remove it if we add some perturbations
to the Hamiltonian.

An analysis of the model with perturbations is important because there are pertur-
bations in real materials and we need to understand their properties. Below we will show

how perturbations affect on the low-energy physics: how does spin-spin correlation function

looks-like. We also found how perturbations can change the low-energy spectrum.

10



Chapter 3

Perturbed model

3.1 Types of perturbations

The most part of our results presented below were published in the ref. [11]

The general form of the Perturbed Kitaev model has the following form:
H=Hg+V (3.1)

Where Hy is the Hamiltonian of the pure model and V' = Y V;. Here ¢ is a number of a site

and V; is some local perturbation. For example:

Vi = Z J(7;,0;) Heisenberg interaction (3.2)
(1,9
Vr = Z F?j(af‘af + J;’af ) pseudodipolar interaction (3.3)
(4,9
Vi, = Z(ﬁ, 7;) magnetic field (3.4)
Vbom = Z (Dy;, [3:,3;]) DM interaction (3.5)

((1.9))

First two types of perturbations are present almost in any magnetic material. The third
example describes an external magnetic field, this case was studied in ref. [15],[10]. The last
term is a next-nearest-neighbours Dzyaloshinskii-Moriya interaction. Below we will show

why this term is important in the theory of perturbed Kitaev model.

11



3.2 Flux analysis

First, we assume that the ground state of the perturbed model is similar to the ground state
of the pure model and we can use perturbation theory. Then for the spin-spin correlation
function we have:

(="

n!

S5 = (Top (ol (0) = 3

n

3 / dry . dry (T2 (1) (Vi (71) ... Ve (7)) (3.6)

Analysis of correlation functions in the pure model shows us that for a non-zero
result the operator under the average should not create fluxes. We can apply this result
for perturbations which were described above. Fig.(3.1) shows different patterns created by
these perturbations. A magnetic field and DM create the same pattern as a single spin.
Heisenberg interaction creates 4 fluxes, if we apply such perturbation after a spin operator
we will destroy 2 fluxes created by spin and create 2 other fluxes. So we can think what it
moves fluxes. To destroy two pairs of fluxes we should move one pair of fluxes to the other
one. So we should apply n times perturbation, where n is the distance between spins which
enter in the correlation function. Thus, such correlations decay exponentially. They are not
so interesting for us because this decay is connected with the flux’s behaviour and we expect
power-law correlation in this model, like in the case of magnetic field perturbation.

We expect that the non-zero second term in the perturbation series will appear in the
case of DM interaction. In the case of Heisenberg and pseudodipolar interaction the analysis
of flux patterns show that we obtain non-zero result in the fourth order of perturbation
theory. But it was shown that fourth term vanishes and the first non-zero term comes in
the 8-th order, for details see ref. [14]. So the flux analysis is not sufficient for perturbation
theory. Below we will show that the consideration of the time-reversal symmetry is also

necessary for this analysis.

Figure 3.1: Flux patter created by different perturbations: a) magnetic field: 0% b) Heisen-

berg interaction: ofo% or o?cy. ¢) DM interaction: o¥o%

12



3.3 Spin-spin correlation function

In this Section we will show how to calculate the spin-spin correlation function. First, we

would like to consider a simple model:

H=Hgc+ > V° (3.7)

i€even,o
Here a perturbation V; , is a product of spins which creates the same pattern of flux like the
spin 0. We are interested in the spin-spin correlation function: Sz‘ JB (t) = (T a?(t)aﬁ u(0)>‘
Below we will show that such correlation function in the infra red limit: r > 1 and Kt > 1

and |r — v/3Kt| > 1, ( r is a distance between i and j) can be expressed through the

correlation function of bilinear form of fermion operators:

SEP(t) = (TQ(1)Q7(0))o (3.8)
Qf‘:% > Vet (3.9)
Ca,CbECH

C; is the set of fermions which can be determined in the next way. Let us consider a product

of operators of'V;*. If i € odd then instead V;* we will write V,§,, ¢ + o means the vertex

connected with ¢ by an a-type edge. Then the operator o{'V* does not create fluxes. So we

can present this operator in the following way:
otV = Aicgi) e cﬁf}Ui (3.10)

In the RHS there is also a dependence on «, but we did not write it for brevity. Here Uj; is

a product of some first integrals u.q. A; is a constant and set of cg) e c%i) is ;. Constant

a

i determined by the following correlation functions:

im=/<MWMMNMﬂm+Aﬂwvmwm@mw (3.11)

—0o0

This coefficient can be expressed through correlation function of spins operators only. For

example, when V;* = h%(of + 07,,) then QF = i%;h*Vjcicipq Where v; = 1 if 7 belongs to

odd sub-lattice and —1 if i belongs to the even sublattice. Here V}, =2 [*(07(7)07(0))dr.

2

To obtain Eq.(3.8 we consider the second term of perturbation theory which has the

13



following form (below all average are calculated over the ground state of the pure model):
SE7(t) = (Tap ()0} (0)) = —/dﬁde(TU?(t)Vf”(Tl)Vf(TQ)Uf(O)) (3.12)

We work in the infra-red limit. As states with flux has energy oc K then they can
not live long, compared to ¢, so time 77 is close to ¢t and 7, to 0. Here we consider only one
term in the above average when t > 7 > 79 > 0. We call this term as Sfj (t) Other terms

can be considered in the same way. Then we obtain:

SL(t) = /0 in /0 " (Tof (6)VE )V (r)o(0) (3.13)

It is convenient to introduce operator V* via the definition:
VeV = [H, V] (3.14)

a _ o af/a v Y o) v o
For example when V* = of* then ofVi* = K} o/, [0/, 00| =2K 3", 0/ o/0f so V¥ =

2K ., 0l.,0] up to sign this operator has the form: Ve = 2K Y te 1CiCi This form
demonstrates general properties of the operator f/ot First, it does not create fluxes. Second,
it is quadratic form over fermion operators and each term contains fermions from both

sublattice. Using this operator, we can rewrite the time average in the following form:
t T2 ) o -
S{j(t) _ _/0 dr, /O <61Htaia‘/;ae—(H+Vi )(t—rl)e—(H+‘/jﬂ)Tz‘/jﬁU]@> (3.15)

Using the fermions representation from Eq. (3.10) we can rewrite this average (up to sign
as Vf af = :l:o*f Vjﬁ , at the end of our computation we restore this sign). Also, one can note

that Ui = Uj =1
t T2 ) . ~ o - . .
SL(t) = _/0 dTl/O (A e, =) =+7)m 4 ) i) (3.16)

This average under the integral corresponds to the potential which is turned for some part
of time only. A similar problem was studied in ref. [12], but there is a difference: in our
problem Fermi-energy is zero and Fermi-surface is just two conic points. So the density of
states is zero and we avoid a problem related with ”orthogonality catastrophe”, which was
described in ref. [1].

Since G(r,t) ~ | max{r, Kt}|~2 the leading order at large ¢ and r of the irreducible

14



part of this average contains only two "non-local” Green functions ("non-local” means that
this function contain operator from C7* and other one from Cjﬁ ) while other functions are
"local”. Typical diagram is shown in Fig.(3.2). These diagrams can be summed up, and the
result reads:

1

S0 = Y (TealataOe©) [ i [ i bt v m)
4 0 0

Ca,ChiCfCq

(Vi (m2)o]e,(0)e,(0)  (3.17)

Here c¢,,c;, € Cff and ¢y, ¢y € C’jﬁ . Here we have used identity ¢ = 1 to express fermion
average through spin operators. Function under the average is oscillating with frequency
o« K. Since Kt > 1 we can change the limits of integration (0 and 7y) on infinity. This
terms describe case t > 7 > 1 > 0. After summation of all cases we obtain answer Eq.
(3.8).
The answer from Eq.(3.8,3.9) can be generalized for a general form of a perturbation.
Let us imagine that instead V;* we have several perturbations (V,, ..., Vj;x) which together
can cancel flux created by of*. Then we obtain:
ooV, Vi = Al A, (3.18)

‘e can define C; in the same way as in Eq. (3.9). Then for the correlation-function we have
W i

the expression like Eq. (3.10) but with other V,;, in Eq.(3.9):

Tn—1
ab—z > fabgk/ dTl/ drs .. / di/ ATy . . / dry

k=0 (=(i1...in)ES™
(Vi (11) -+ Vip (11)ea(0)ep (0) 07 (0) Vi, (Tra) -+ Vi (7)) (3:19)

—

Citety Citotz ™~ Cjtaty” Citeta

Figure 3.2: the leading-order digram for the spin-spin correlation function in the presence
of DM interaction



Here ¢ is a permutation of 1...n. And {u ¢, = £1 is determined by the following expression:
caCtViy - Vip = EabckViy - - - VigcaCp. In the terms where & = 0 all 7; < 0 and in the terms
where k = n all 7; > 0.f The application of this results will be presented. In the next
section we show how using the same analysis one can obtain a correction to the low-energy

Hamiltonian.

3.4 Correction to the low-energy Hamiltonian

Let us consider the following Hamiltonian:
H=Hc+) Vii+Vio (3.20)

Here V;; and V4 are some products of spins. Let operator V;,V;, does not create fluxes.
- c "y N 3 . o Q — hR5% , e A . I x
For example, one can consider the case when V;; = hio? -magnetic field and Vi = o7, 07,
-one of the terms in the DM interaction. The perturbations in the model can change the
low-energy Hamiltonian. To find the correction we consider perturbation theory to the Green

function:

Giy(t) = (_T# > / dry . .. dry (Tei(8)e;(0) Vi, 60 (1) - Vi (7)) (3.21)
n Toma

In the above average, the operator should not create fluxes, otherwise this term is equal to
zero. So we should combine perturbations in pairs with following condition: one term in

pair turns on fluxes and other one turns off. So we have:

Gij(t)=z(;g§" Z /dTl...dTn

m;,&,Gi

(Tes(t)e;(0) Vi &0 (1) Vins 62 (72) - - Vi 0 (Tan—1) Vi 0 (T2n)) (3.22)

We consider one of the possible time-ordering. In our case 7; > 7; when ¢ > j. Then:

(_Z')2n 00 T1 T2m—1
0G4 (t) = zn: TR zﬁ:c /_x dr /_Oo dry ... /_Oo ATom
<Tci (t)c.] (0)‘/'7"'11751 (7—1)‘/7711 1 (7—2) et ‘/Wln)én (7—2'”_1)‘/;”” Cn (TQ"Z) (3'23)
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We can apply the same argument as previous, where we have proceeded from Eq.(3.16) to

Eq.(3.17), and obtain for the average the following expression:

_Z n o9} T1 T2m—1
5G”(t) = Z (222 Z / dTl/ dTQ . / dTQm

mi,&:,Ci,(D4,qs) o
<T0i(t)cj (O)Cm (Tl)cql (71) ... Cpn(TQn—l)an (Ton-1))

(cp (T1)cq, (T1) Vi &1 (T1) Vg (72)) -+ - (Cpa (Ton—1) g, (T2n-1) Vim0 (T2n—1) Vim0 (T2n)) (3.24)

Here c,, and ¢, are fermion operators, which are present in the product V,,, 1V, o like
fermions ¢, and ¢, from Eq.(3.9) are present in the product ofV,*. After summation over
all cases (with other orders of times in pairs and other orders of pairs) and after changing

limits of integration we can obtain:

Gi(t) = (_ni!)n / dry ... dr(Tei(t)e;(0)Vr, ... Vi) (3.25)

It is a perturbation series, where V' has the following form:

V= —;1 Z Z VinpaCpCq (3.26)

m Cp,Cq
0

V= /000d7<vm,1(T)vm,z(o)cp(o)cq(o»+ / (¢(0)¢4(0) V2 (0)Vpa (7)dr + (1 ¢ 2) (3.27)

—00

This perturbation describes a correction to the low-energy Hamiltonian. This result can
be also generalized for more general case. Let us imagine that there are several terms in
perturbation which togeter do not create fluxes. Such situation leads to a correction to the
low-energy Hamiltonian. For example, in the case of a magnetic field operators o7,0?,07
together do not create fluxes so they lead to a correction to the low-energy Hamiltonian.
In general case a correction can lead to the shift of conic point like in the case with DM
interaction or a magnetic field along z axes or it can change the structure of the spectrum
and create a gap, like in the general situation with a magnetic field. The time-reversal

symmetry plays here the crucial role.
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3.5 Time-reversal symmetry

One can note that expressions in Eq.(3.9, 3.27) have almost the same structure:

0

V= / A Va(0))dr — | wiowie) (3.28)

— 0o

Here V| and V5 are some products of spins multiplied by the coefficients, so V; may be non-
hermitian. For example in Eq. (3.9) Vi = V. and V, = 6{¢,cp. There are two such terms
in Eq.(3.27). Let V,, = 11,Cq By, where o = 1,2 and 7 is some constant. C,, is a product of
some fermion operators ¢; and B, is a product of b;. B, satisfies the following condition :
BBy = bU, where U is a product of first integrals and b is some constant. We also would like
to use operators V, which are defined like in eq .(3.14). Then, using commutation relations,

we can obtain (up to a sign) the following results:

¢ - 0 ] 5 ]
V' = mny / (17 C, Oy By Bye "HHITY s / (et BIBICiCle™ ) (3.29)
0 —00
As By B, = bU we obtain that:
© c [T Y7 ’ / 0 - 0y / /
V= 7717725/ <T01(T)02(7')€_”0 Valrdr > - anékb*/ <TCS(T)CI(7')€_”’ Valridr >
0 —00

(3.30)

One can note that sets of diagrams which represent averages under integrals are the same,
but diagrams has different dependence on time. To make them the same we should do
several manipulations: 1) change orders of ¢; in the operator C’;rClT to obtain operator C',C5,

it leads to the factor (—1)NU§_1), where N is a number of fermions in the operator C1Cy

2)We should make the change of variables in the second term: 7 — —7, and 3) use the
parity of Green functions. After these manipulations we obtain the same set of diagrams
with same arguments but signs of terms can be different. This difference is related with 1)
and the parity of Green functions. From Eq.(2.16) one can find that the G, and G, are odd
functions and Goand G are even. As a result, the difference in sign will be (—1)7’L+W
where m is a number of odd functions. We note that this parity depends only on a number
of fermions from different sublattices and does not depend on the structure of a diagram.

For a diagram which have N fermion operators, where the number of operators from the

second sublattice is No, we obtain that m = (5§ — N,)(mod 2). For V we have the following
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expression:
£V = (mned — ninzb* (~1)™?) / (TC\(7)Cy(r)e o Vo (3.31)
0

For the last step we will use a time reversal symmetry of fermion operators. To define an
action of the time-resersal symmetry on these fermion operators, we can look at parity of
Green functions. G; and Gy, are odd functions of time. G5 and Gy; are even functions. We
see that time-reversal symmetry should change sign of fermion operators from one sublattice,

only, for example the second one i.e. Tc, T -1 = crp oand T' Cr72T_1 = —¢po . Than we have:
U nimViVa = (=12 b TViVRT ™ (3.32)
as V; and V3 is a product of spins then TViVoT Y = (=1)¢V1V; so we have:

+V = mmeb(1 — (—1)°) /Oo(Tcl(r)Cg(T)e—ifJ Va(rydr'y (3.33)

0

We conclude that ( =0V =0

We can apply this rule to Eq.(3.9) to obtain following relations:

TV 0% cqey T = (1)t VT qee e

Teaoy T = (=1)%coq, TVT ' = (=1)VV (3.34)

Non-zero contributions to () comes from the terms where (,, + (y = 0. So if V,* is even with
respect to the time reversal symmetry then (o, = 0. It means what ¢, and ¢, should be from
the same sublattice. If V is odd then ¢, and ¢, should be from different sublattices. This
difference will be seen in the different behaviour of the correlation functions. For example,
a magnetic field leads to an oscillation term in the correlation function in opposite to DM

interaction. Applying this result for Eq.(3.27) we obtain following relations:

TV Vacpe T = (—1)V TV Vaey e,

TVIVRTCY = (1) Tepe,T71 = (—1)%7¢yc, (3.35)

Let V1V5 is even under the time reversal symmetry then ¢, and ¢, should be from different
sublatices and in Fourier domain we obtain only off-dioganal term, like in pure Kitaev model,

see Eq.(2.14). Such correction leads to a shift of conic points. In opposite case, V1 V5 is odd
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under this symmetry and we obtain that ¢, and ¢, are from the same sublattice. In the
Fouirer representation we obtain diagonal terms which leads to a gap in the spectrum.
Our conclusions about correlation function and correction to the Hamiltonian can

be generalized for situations when fluxes can be turned off by several operators.
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Chapter 4

Experimental data and application of

the results

4.1 Proximate candidates for Kitaev spin liquid

Spin liquid’s properties and topological excitations make Kitaev model interesting for inves-
tigation. So a lot of people try to find materials which can be described by this model.

They have investigated several matters in search for Kitaev ground states: NasIrOsz,a—
RuC'l3 and oo — LioIrOs. These materials have almost the same crystal structure which is
shown in Fig.(4.1) and strong spin-orbit coupling. It is important, because, electrons on
the last orbital of the Iridium due to strong spin-orbit coupling create a state which can be
. The effective low-energy Hamiltonian of the system can

described by full momentum j =

1
2
be written in terms of spins Eq.(4.1)

Figure 4.1
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H= Z J(55,05) + Kojo] +T(ofo; + 0?0;7) (4.1)
(i.j)eaB(y)
It is important to understand how properties of the ground state depend on the parameters
of this Hamiltonian. Numerical investigation of this question was done in Ref.[13].
Authors used an exact diagonalization for the system which consists of 24 spins and
the result diagrams are present at Fig. (4.2). They show several types of the ground state.
The figures show projection of upper and lower semisphere J% 4+ K? +I'? = 1 on the plane

J, K here ¢ = arctan(%).

Kitaev

Zigzag

/4

AFM

Kitaev

()T >0 (b)T >0

Figure 4.2: The phase of ground state obtained by exact diagonalyzation. Figure was taken
from Ref. [13]

Unfortunately, we see that the phases with Kitaev spin-liquid like ground state are
small in size. It can be due to finite-size effect, however.

In ref. [18] the constants in the Hamiltonian (4.1) were calculated from first-
principles, also it was shown that an interaction of non-nearest neighbours can be important,
for-example, DM interaction which was mentioned in the previous section. In the table below

we show typical values of J,I" and K.

NaylrOs || —16.2 | 1.6 | 2.1 | 0.17
a-RuCl; =75 | =22 | 80 | 0.44
a-LigIrOg || —13.0 | —4.6 | 11.6 | 0.44
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Here D describes the strength of DM interaction, its specific definition will be

presented-below.

4.2 Magnetic field

Here we reproduce the result obtained in ref.[15]. According to our analysis, instead of
a correlation function of spins we can consider a correlation function of operators Q. In
presence of a magnetic field V = Zi(FL, d;), a bilinear operator is given by the following

formula:
Qi = 17ih*Vicicita (4.2)

Here ~; = =1 for site i in the even/odd sublattice, Vi, = 2 [ (07 (7)07(0)).

The spin-spin correlation function acquires the form:

hehBY2 o 2
af _ h 2 - =" o : = e _
Sij (rﬂf) = 77'2(7”2 — 3K2t2) {7” sin |: 3 (ex,ng +r ¢x):| sin |: 3 (exvna r ¢x):|

_3K cos {?(ew, (Do — 1y — r))] cos %(r, ex)} } (4.3)

Here, for simplicity, ¢ and j are from even sublattice. To obtain formula with spin operators
from odd sublatice one should use identity Qf , = Qf'. Also, we use the following notations:
n, = 2n;, n, = 2n, and n, = 0. e, is a unit vector along the x axes and ¢, are an angle
between r and x axes.

This correlation function on can be used to calculate a structure factor. It is not
zero in the vicinity of the points: qo = (0,0), q = +2e,, only. When g lies in the vicinity of

qo we have:

heRPV20(w? — 3K2¢%)

8v/w? — 3K2¢2

S*B(q,w) — S*(0,0) =

{4 2o sy cos (F(erma - ma) )}
(4.4)

If g lies in the vicinity of q+ we have:

al,B1/2 2 _ K2 2 o
Saﬁ(Qi + 5q,w) — Saﬁ(Qi;O) _ h*h Vh 9(Cd4 3 5(] ) /wg _ 3K25q26¢l7(e”’n“_n5) (4.5)

Corrections for the Hamiltonian can lead to some shift of conic points, this results
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was obtained in [10]. In the ref. [8] was mentioned a model with a magnetic field. It has a
gap in the spectrum which is proportional to h,hyh.. It satisfies our criteria: we have three
perturbations h,o,, hyo, and h,o, their product does not create fluxes and it is odd under

the time-reversal symmetry so it leads to a gap in the spectrum.

4.3 DM interaction

The second-neighbours DM interaction has the following form:

V=3 (D,[@3d] (4.6)
((i.3)) €y

This interaction depends on the direction of the line which connects ¢ and j. This directions
also named as z,y and z. Name x has a direction which is perpendicular to a x-type edge.
Not all terms are important for our treatment. Only terms which contain D7, DY and D7
can create the same pattern of fluxes, like spin. Below we call these constant as D*, DY and
D* respectively. We define a vector D = (D*, DY, D?), and D in the table is D = |D|. Let
consider a case when there is DM interaction only. In this case ) operators from 3.9 has the

following form:
Q7 = Q0 = iDV(Aciiacivp + Beitiinra — Beiciiyig + ClisyiaCisyis) (4.7)
Here A,B and C' are some local correlation functions of spins. For the correlation function

we have:

3D*D?
af _ )2 2\ » _ A A2 2,2
S (r,t) = 07 37} [((A—=C)*+4B*)6y + 4B(A — C)61] (61r° — 603K°t?) (4.8)

Here 6 is the identity matrix in the space of sublattices, and &, is the first Pauli matrix.

The structure factor has the following form:

3D*DPO(w? — 3K?¢?)

Sgbﬁ(qaw) - Sglf(ovo) - 16 w2 — 3K2q2

[(A=C)*+4B%)0y + 4B(A - C)a]

x(61(2w? — 9K?¢%) — 60(2w? — 3K?%¢%)) (4.9)

The correction to the low energy Hamiltonian can shift conic points but can not
change a structure of the spectrum. In the previous part we have seen that the form of the

spectrum can be changed by a magnetic field, but the spectral gap was small as third power
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of the field.

4.4 DM interaction and magnetic field

In the presence of both DM interaction and a magnetic field we can obtain the changes of
the structure of the spectrum and this correction is bilinear on both D and h.

In this case the Hamiltonian has the following form in the Fourier space:

A S(q)+o ,
H=3" (i ) (g "N ) (a2 (4.10)
q€eBZ/2
For the infra-red asymptotic we need to know the value of A(q) at conic points. Let A =
IA(K))| = |A(Ks)|. A is a value of gap in the spectrum. The most interesting feature of A
is that A o [(D,h)|. The behaviour of the correlation function change when r >> [ = ﬁ
(V3K is a speed of waves in the free problem.) In the limit r > [ > Kt and D® > h® we
have:
DDPC
af —2r
Here (, = 1 if a is even and —1 if a is odd.
One can note the difference between Eq. (4.3) and Eq.(4.8), in the first expression
there is a oscillated term. The reasons of this difference is the time reversal symmetry of a

perturbation. It was mentioned in the previous chapter.

4.5 Application of the results

About a year ago several papers about experiments in o — RuCl3 see ref.[3],[5]. In both
works was investigated o« — RuC'l3 in presence of a magnetic field. Without the field it has
Neel order in the ground state. If the magnetic field is strong and is applied to destroy order,
there will be phase transition at h &~ 81'. After this transition there is a gap in the spectrum
of magnetic excitations which increase linearly with the field. Results of measurements are
presented at Fig.(4.3)

In ref.[13] nuclear spin-lattice relaxation rate was measured. Using this data, the
authors computed the gap in the spectrum. In ref.[5] heat conductivity in the plane of layers

was measured. On the figure you can see the derivative of this thermal conductivity over the
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Figure 4.3

temperature. According to author’s theory the minimum of conductivity is reached when
T = A where A is a size of the gap. Both works shows similar results about a size of the
gap and this effect is similar to one we found in the previous section.

The presence of the gap in this material was also detected by several works. In ref.
[17] a microwave absorption measurements was done. Authors measured the absorption rate
on different frequencies. They founded the energy of excitation with ¢= 0.

Unfortunately, the gap was found only in clean crystals. Ordinary, there are two
phase transitions with temperatures Ty; = 7K and T s = 14K in this material. In clean
structure there is only one at T ;. Detail investigation of this transition which done by a
muon spin rotation/relaxation in work [19]. It was shown that in the @ — RuCl; there are
several phase transitions in the vicinity of 7 ; which have different spin order.

In the work [7] thermal Hall conductivity was measured. Authors compared their
results with results predicted by theory, where heat are carried by neutral-charged Majorana
mode. They obtained good agreement. Above results shows that a — RuCl3 is a good

candidate for Kitaev spin liquid.
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4.6 Conclusion

In our work we show how to find correlation function and correction to the low-energy
Hamiltonian. We show how time reversal symmetry affects qualitatively the behaviour of
the model: the behaviour of correlation function and gap in the spectrum. Our theory may

help in search of materials with Kitaev spin liquid’s properties.
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