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1 Introduction

1.1 Relevance of the work

In the middle of the XX century it was found that the turbulent motion of a conducting liquid

in a magnetic field can lead to spontaneous generation of sufficiently large magnetic fields (the so-called

Dynamo effect)[1]. It is believed that this effect is responsible for the appearance of magnetic fields in a

range of astronomical objects: planets, stars and galaxies [1], [2]. Indeed, let them have some initial field

during their formation. Then, without the mechanism of maintaining the magnetic field due to various

dissipations inherent in any conducting medium, it would fade with time. However, the amplitudes of the

magnetic fields of astronomical objects slightly vary in foreseeable times, which is a good argument in

favor of the dynamo effect.

The study of the behavior of the magnetic field of astronomical objects is not only of great

interest from a fundamental point of view, but also hasmany important practical applications. In particular,

understanding the processes taking place on the Sun can significantly improve the quality of predictions

of various natural disasters. This will ensure the safety of many people, as well as avoid huge material

losses, such as the destruction of buildings and other property, the failure of various communication and

other systems, which often takes place during the natural disasters.

One of the theories explaining the maintenance of the amplitude of the magnetic field, can be the

Dynamo theory [2]-[4]. In particular, a model qualitatively describing the observed pattern of the cyclic

evolution of magnetic fields and sunspots on the surface of the Sun was proposed in [3]. The magnetic

field is the most significant in the convective zone, where there is a strong shear flow. This zone is quite

far from the center. It is a spherical layer in which strong quasi-two-dimensional flows of the medium are

observed. The radial velocity component is much smaller than the shear one (vr � vτ ). In addition, there

is a strong gradient of shear velocity along the radius due to the presence of finite viscosity. Thus, the

flow is quasi-two-dimensional in this area. Along the surface of a constant radius (which is effectively

plane at large radius values) the flow is two-dimensional with good accuracy, but the velocity field is

strongly dependent on the radius. In this regard, it is of interest to study the intermediate case, which is

not considered earlier – a quasi-two-dimensional flow,in which the velocity field depends on the vertical

coordinate ~v(x, y, z, t), but has no vertical component (vz ≡ 0).

In this paper, we consider a model in which the magnetic field obeys the following equation, that

is well known in magnetohydrodynamics [5]:

∂tB = (B,∇)v− (v,∇)B+ κ∇2B (1)

It is obtained from Maxwell’s equations under the locality assumptions of the Ohm’s law j = σE and the

unit of magnetic susceptibility (µ = 1). However, these approximations are not always applicable to the

description of the magnetic fields of astronomical objects, especially if the magnetic field is considered in
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the plasma. Particularly, it is assumed in [3], where the model qualitatively describing the evolution of the

magnetic field on the Sun is considered, that the magnetic susceptibility may depend on the coordinates.

In addition to the description of the magnetic fields on the Sun, the study of the model under

consideration is of considerable interest for the investigation of the classical formulation of the Dynamo

effect in a quasi-two-dimensional flow. This type of flow is a certain “intermediate” mode in terms of

dimension between two- and three-dimensional. For turbulent three-dimensional flows, theDynamo effect

was discovered and explained long ago. The situation with the Dynamo effect in two-dimensional flows

is different. For a long time it was believed that it is not realized for all two-dimensional flows. So, in the

works of Zeldovich [6], [7] was even formulated the so-called “anti-Dynamo theorem”, which states the

impossibility of generating strong local magnetic fields in a two-dimensional turbulent flow. However,

the Dynamo effect was found in an efficient two-dimensional problem in [8], where the flow is assumed

to be two-dimensional and the magnetic field to be three-dimensional.

1.2 The explanation of Dynamo effect

In this paper, we study the kinematic stage of the Dynamo effect, in which the magnetic field

grows strong enough to influence the flow of the conductive liquid. First, we study in detail the case of

infinitely large conductivity. Then there is no dissipation in the system, and the magnetic field will be

“frozen” in the fluid flow:

∂tB = (B,∇)v− (v,∇)B = rot [v,B] (2)

Large magnetic fields generation is observed not for all types fo flow. It should be a turbulent flow where

there are singularities of the hyperbolic type, in the vicinity of which there is a compression of the flow

in one direction and stretching in the other one. The velocity field has the following form in the vicinity

of this point:

vα ≈ V (0)
α (r) + uα, uα = σαβrβ,

ux = λx;

uy = −λy;
(3)

where λ is the Lyapunov exponent for a given flow. Every particle in the fluid velocity field u(r) will

move along a hyperbolic path x = x0e
λt;

y = y0e
−λt;

y =
x0y0
x

. (4)

The flow is compressed over y-axis and stretched over x-axis (Fig.3).
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Рис. 1: Stream lines in the vicinity of singular point

Let’s give a qualitative description of why one of the components of the field, namely Bx, will

grows exponentially over time.

Suppose that at the initial moment of time the magnetic field is the most significant in the ball of

radius l with the center at our singular point, and outside this ball it decreases very quickly with distance

from the center. Since the magnetic field is “frozen” into the liquid, our ball will expand exponentially

with time along the x-axis and shrink along the y-axis, turning into an ellipsoid. The field is large inside

this ellipsoid and small enough outside. The value of the field will change in time. We will consider the

area passing through a singular point and lying in the yz plane. The size of the site is much larger than

l. The magnetic flux through this entire area will be determined by the flow through the cross-section of

the area where the magnetic field is essentially by the Oyz plane. Φ = Bx(t)SK(t) = const. Since there

is no movement along the axis z and the compression over y-axis occurs, the area of the described above

section decreases exponentially with time: Syz(t) = Syz(0)e
−λt. So, the x-component of the magnetic

field will grow exponentially with time: Bx ∝ eλt (Fig. 2). Indeed, the magnetic field lines frozen into

the flow will be compacted along one of the axes, along which the flow is compressed, and thus the value

of the magnetic field induction will grow.
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Рис. 2: Qualitative explanation of phenomenon: the growth of magnetic field

If the conductivity is finite, the dissipation will take place there:

∂tB = (B,∇)v− (v,∇)B+ κ∇2B, κ =
c2

4πσ
(5)

Dissipation occurs at scales when the dissipative term is comparable to the term describing the temporal

evolution of the field: rd =
√

2κ
λ
.

Again, we will hold arguments similar to those described above. The width of the area along the

y-axis, where the magnetic field is significant, will decrease exponentially rapidly to the dissipation scale

rd and than stops. Up to this point, there will be an exponential growth of the field. Then the exponential

growth of the magnetic field will stop.

This section describes a qualitative description of the Dynamo effect, showing the exponential

growth of the magnetic field in a turbulent flow. The exact investigation of the magnetic field evolution

for both the given and the random turbulent flow will be given below.

1.3 Formulation of the problem

Let us return to the equation (1) describing the evolution of the magnetic field. We will be

interested in the kinematic stage, when the field is not so large as to influence the flow. From the equation

(1) on the dynamics of the magnetic field it is seen that the energy is dissipated on the diffusion scale
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rd =
√

2κ
λ
, where λ is the Lyapunov exponent of the considered flow.

We assume that fluctuations are created by volume forces, so the fluctuating component of the

velocity does not depend on the vertical coordinate.

The correlations of the magnetic field are investigated at different times in this paper. В данной

работе исследуются корреляции магнитного поля на различных временах.

First, the behavior of the correlator in the early times when the magnetic field is growing will be

investigated. At this stage, the magnetic field blobs will be stretched into long filaments until the length of

these filaments is compared with the characteristic correlation radius of the flow velocity field R. In this

approximation, the scales of the coordinates on which the correlators will be studied are much smaller

than the correlation radius of the velocity field, but many large than dissipation scales: rd � r � R.

The large parameter R
rd

� 1 is proportional to the square root of the Prandtl magnetic number Prm, that

expresses the ratio of internal friction forces to magnetic force [2],[9],[10]. This parameter describes the

fact that in our case the effect of the magnetic field on the fluid flow is small compared to the dissipation,

and hence compared to other processes. The velocity field will depend linearly on the coordinates in the

horizontal plane:

vα ≈ V (0)
α (z) + σαβrβ, α, β = 1, 2. (6)

Then the question of the behavior of the correlators at later times will be investigated. At this stage the

scales of the order velocity field correlation radius and larger one influence the evolution of the magnetic

field.

We also assume that the characteristic width of the initial magnetic field distribution l is well

divided between the diffusive length and the radius of the velocity correlations: rd � l � R.

The behavior of the magnetic field is well described by the induction of the magnetic field in

the formulation, when the velocity field does not change with time randomly. Otherwise, it is convenient

to monitor not the induction of the magnetic field, which can strongly fluctuate, but their correlation

functions Fmn(r, t) = 〈Bm(r
′, t)Bn(r

′ + r, t)〉, m, n = 1, 3.

First, using the example of a simplemodel, it will be shown that the presence of a vertical gradient

of the velocity field weakens the magnetic field. The effect will then be demonstrated on a model with a

random linear velocity of the flow, where the behavior of the correlators will be found.

2 Two-dimensional model

Let’s consider a simple model where the velocity field is constant in time.
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2.1 Constant velocity

The easiest way to study first is a two-dimensional flow with a time-dependent and coordinate

constant velocity:

vα(r, t) = V (0)
α + σαβrβ (7)

Thematrix is traceless because of the incompressibility of the liquid. Let us consider for simplicity

the case when it is diagonal:

σ̂ =

(
λ 0

0 −λ

)
(8)

Let’s write out componentwise the vector equation for the induction of a magnetic field evolving

in a two-dimensional flow with a constant velocity:∂tB3 = −V
(0)
β ∂βB3 − σµνrν∂µB3 + κ∇2B3;

∂tBα = Bβσαβ − V
(0)
β ∂βBα − σβνrν∂βBα + κ∇2Bα;

(9)

2.1.1 Equations in Fourier domain

It is convenient to solve the system in themomentum representation by themethod of characteristics:∂tb
3
k = σµνkµ∂kνb

3
k − κk2b3k − iV

(0)
β kβb

3
k, k2 = kνkν + k2

3;

∂tbα = σαβbβ + σβνkβ
∂

∂kν
bα − κk2bα − iV

(0)
β kβbα;

(10)

Let’s introduce matrix Ŵ = Texp

(
t∫
0

dτ σ̂(τ)

)
=

(
eλt 0

0 e−λt

)
It is convenient to make amomentum replacement connecting themomentum at the initial instant

of time and into the current one:

σµν =
dWµβ(t)

dt
W−1

νβ (t), qα = Wνα(t)kν , kν = W−1
µν qµ,

∂

∂kν
=

dqρ
dkν

∂

∂qρ
= Wνρ

∂

∂qρ
(11)

Let’s firstly solve the equation on b3(k, t) by the method of characteristics:

b3(k, t) = b3 (q, 0) exp

−κ

t∫
0

dτqα(t)qν(t)W
−1
αβ (τ)W

−1
νβ (τ)− κk2

3t− iV
(0)
β qα

t∫
0

dτW−1
αβ (τ)

 = (12)

= b3 (q, 0) exp

[
−κ

(
q21(t)

2λ
+

q22(t)e
2λt

2λ
+ k2

3t

)
− i

λ

(
V

(0)
1 q1 + V

(0)
2 q2e

λt
)]

.

Vertical component of the field in the momentum representation:

b3(k, t) = b3

(
Ŵ T (t)k, 0

)
exp

[
−κ

t∫
0

dτkŴ (t, τ)Ŵ T (t, τ)k − κk2
3t− iV

(0)
β kµ

t∫
0

dτWµβ(t, τ)

]
(13)
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Introducing the new variable cγ = W−1
γα bα and solving the remaining equations of the system

by the same method of characteristics, we finally obtain the behavior of the components in the horizontal

plane:

bα(k, t) = Wαγ(t)bγ(Ŵ
Tk, 0) exp

−κkνkρ

t∫
0

dτWνβ(t, τ)Wρβ(t, τ)− κk2
3t− iV

(0)
β kν

t∫
0

dτWνβ(t, τ)

 (14)

We assume that at the initial moment of time the magnetic field has a Gaussian form and it is

significant on scales ∼ l � rd

ba(q, 0) = iεabcqbAc; Ac = ηce
−q2l2 , ηc = (0, η, 0); (15)

b1(q, 0) = −iηq3e
−q2l2 ; b2(q, 0) = 0; b3(q, 0) = iηq1e

−q2l2 (16)

With this initial magnetic field distribution, the induction y component remains zero: B2(r, t) =

0. Further wemake the inverse Fourier transform and find the expressions for the induction of themagnetic

field.

Let’s write expressions in terms of “center mass coordinates”: x̃ = x− V
(0)
1

λ
eλt, ỹ = y − V

(0)
2

λ
.


B1(r̃, t) = eλtη z

2(l2+κt)

exp

[
− (x̃e−λt)2

4l2
− e2λtỹ2

4(l2+r2
d
e2λt)

− z2

4(l2+κt)

]
8π3/2l

√
l2+κt

√
l2+r2de

2λt

B3(r̃, t) = −η x̃e−λt

2l2

exp

[
− (x̃e−λt)2

4l2
− e2λt(ỹ)2

4(l2+r2
d
e2λt)

− z2

4(l2+κt)

]
8π3/2l

√
l2+κt

√
l2+r2de

2λt

(17)

Such a functional dependence of the magnetic field induction components on the coordinates and

time makes it easy to understand how the field changes with time and on what spatial scales its magnitude

is the most significant.

2.1.2 The investigation of field behavior

In order to demonstrate clearly that in this case the dynamo effect actually takes place, we first

consider the nondissipative case (κ = 0). Here, an unbounded exponential growth of the field component

B1 will be observed, and the value of B3 will remain at the same level:


B1(r̃, t) = eλtη z

2l2

exp

[
− (x̃e−λt)2

4l2
− e2λtỹ2

4l2
− z2

4l2

]
8π3/2l3

B3(r̃, t) = −η x̃e−λt

2l2

exp

[
− (x̃e−λt)2

4l2
− e2λt(ỹ)2

4l2
− z2

4l2

]
8π3/2l3

(18)

It worthmentioning that the components of magnetic field induction are essential at the following

scales: δx̃ ∼ leλt, δỹ ∼ le−λt, δz ∼ l.
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This behavior of the field components is in agreement with the magnetic flux conservation law.

Indeed, consider the flux of the magnetic field through the plane yz. The main contribution to the flux

through the plane is given by the flux of the component Bx through the region in the yz plane, where this

field component is the most significant: Φ ∼ BxSyz. The width of this region along the z axis remains

constant, and along the y axis exponentially decreases with time. This is the reason for the growth of Bx.

For the same reason, Bz remains constant with time. The region in the xy plane, where this component

is the most significant, does not change with time, because its width along one of the axes increases

exponentially, and on the other one - decreases exponentially with the same rate.

Let’s now consider the case of finite dissipation.

The components of magnetic field induction will behave differently at different scales of time.

Let us analyze the behavior of the field in earlier and later stages.

rde
λt � l: 

B3 ≈ −η x̃e−λt

2l2

exp

[
− (x̃e−λt)2

4l2
− e2λt(ỹ)2

4l2
− z2

4l2

]
8π3/2l3

;

B1 ≈ eλtη z
2l2

exp

[
− (x̃e−λt)2

4l2
− e2λt(ỹ)2

4l2
− z2

4l2

]
8π3/2l3

At the initial stage, the exponential growth of the field B1 is observed, the field B3 decays exponentially

as a result of dissipation. At this stage, the dynamo effect is manifested.

Dissipation will be significant at larger times and the growth of the field will cease:

rde
λt � l: 

B3 ≈ −η x̃e−2λt

2l2

exp

[
− (x̃e−λt)2

4l2
− (ỹ)2

4r2
d

− z2

4(l2+κt)

]
8π3/2lrd

√
l2+κt

B1 ≈ η z
l2+κt

exp

[
− (x̃e−λt)2

4l2
− (ỹ)2

4r2
d

− z2

4(l2+κt)

]
8π3/2lrd

√
l2+κt

Here the growth of the field B1 terminates and the power decrease begins, in turn the field B3

decreases exponentially.

It can be seen that at this stage, the characteristic scales on which the field is significant, δx̃ ∼
leλt, δỹ ∼ rd, δz ∼

√
l2 + κt.

It is worth mentioning that the constant flow velocity in the two-dimensional problem can be

eliminated by means of the Galileo transformation. For the two-dimensional problem with zero velocity,

such analysis was made earlier in the work [11].

2.2 Quasi-two-dimensional flow

In real physical problems, where dynamo occurs, two-dimensional flows rarely occur. However,

it is very common phenomenon when flows occur in which the vertical velocity component is suppressed,

and the remaining components depend on the vertical coordinate.
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We have considered the following flow in the previous section:

vα = V (0)
α + σαβrβ (19)

and we have assumed the term V
(0)
α to be constant. The incompressibility condition imposes no

restrictions on the dependence of this velocity component on z. Flows with constant vertical gradient

often take place in a range of astrophysical phenomena [2], [3]. Such a flow pattern is due to the presence

of viscosity or other mechanisms. Such a flow with a strong vertical gradient will be considered in this

section:

vα(r, t) = V (0)
α (z) + σαβrβ, V (0)

α = Σαz, Σ1 = Σ, Σ2 = 0, Σ � λ. (20)

Let’s write down the equations for all components of the field, taking into account that the two-

dimensional flow can depend on the vertical coordinate:

∂tB3 = −vβ∂βB3 + κ∇2B3;

∂tBα = Bβ∂βvα − vβ∂βBα +B3∂3vα + κ∇2Bα;
(21)

The equation for the vertical component of the magnetic field is homogeneous.

On the contrary, the equations for the components in the horizontal plane are inhomogeneous.

Since σ̂ does not depend on z, the contribution from the source has the form B3∂3vα = B3Σα.∂tB3 = −zΣβ∂βB3 − σµνrν∂µB3 + κ∇2B3;

∂tBα = Bβσαβ − zΣβ∂βBα − σβνrν∂βBα +B3Σα + κ∇2Bα;

2.2.1 Equations in Fourier domain

Similar to the previous section, it is convenient to solve the equation by themethod of characteristics

in momentum space:∂tb
k
3 = σµνkµ∂kνb

k
3 + Σβkβ∂k3b

k
3 − κk2bk3, k2 = kνkν + k2

3;

∂tb
k
α = σαβb

k
β + σµνkµ

∂
∂kν

bkα + Σνkν
∂

∂k3
bkα − κk2bkα + bk3Σα;

(22)

Here it is convenient to make the following change of impulses, connecting the pulse at the initial instant

of time and into the current:

qα = Wνα(t)kν , k3 = q3 − qµΣν

t∫
0

dτW−1
µν , kν = W−1

µν qµ,
∂

∂kν
=

dqρ
dkν

∂

∂qρ
= Wνρ

∂

∂qρ

11



First we solve the equation by b3(k, t) by the method of characteristics:

b3(k, t) = b3 (q, 0) exp

−κ

t∫
0

dτ

qν(t)qγ(t)W
−1
νµ (τ)W

−1
γµ (τ) +

q3 − qµΣν

τ∫
0

dτ ′W−1
µν (τ

′)

2
 = (23)

= b3 (q, 0) exp

[
− κ

2λ

(
q21 + q22e

2λt
)
− κt

(
q3 −

Σ

λ
q1

)2
]
.

For further convenience, we write out the vertical component of the field in the momentum representation

in a general form for an arbitrary matrix Ŵ :

b3(~k, t) = b3

Ŵ T~k, k3 +

t∫
0

~kdτŴ (t, τ)~Σ; 0

 (24)

exp

−κ

t∫
0

dτ

~kŴ (t, τ)Ŵ T (t, τ)~k +

k3 + ~k

t∫
τ

dτ ′Ŵ (t, τ ′)~Σ

2


The obtained expression can be rewritten as

b3(~k, t) = b3(~q, 0) exp {−g(~q, t)} (25)

Arguing analogously to the previous section, we find the horizontal components of the field:

bα(~k, t) = Wαγ(t)

bγ(~q, 0) + b3(~q, 0)Σν

t∫
0

dτW−1
γν (τ)

 exp {−g(~q, t)} (26)

Finally, we find the values of these fields.

We follow only one horizontal component of the field Bx, since the other one is small.

B3 = −η

exp

− z2

4(l2+κt)
− y2e2λt

4(L2+ κ
2λ

e2λt)
−

(x̃e−λt−Σ
λ

l2

κt+l2
z)2

4l2(1+Σ2

λ2
κt

κt+l2
)


16π3/2l

√
(l2+κt)(l2+ κ

2λ
e2λt)(1+Σ2

λ2
κt

κt+l2
)

x̃e−λt−Σ
λ
z l2

l2+κt

l2(1+Σ2

λ2
κt

κt+l2
)

B1 = ηeλt
exp

− z2

4(l2+κt)
− y2e2λt

4(l2+ κ
2λ

e2λt)
−

(x̃e−λt−Σ
λ

l2

κt+l2
z)2

4l2(1+Σ2

λ2
κt

κt+l2
)


16π3/2l

√
(l2+κt)(l2+ κ

2λ
e2λt)(1+Σ2

λ2
κt

κt+l2
)(l2+κt)

·
(
z −

Σ
λ

1+(Σ
λ
)2 κt

κt+l2

[
x̃e−λt − Σ

λ
z l2

l2+κt

])

The difference from the constant shear flow is the appearance of an additional factor 1√
1+Σ2

λ2
κt

κt+l2

and the

change in the scale along the x axis, on which the fields are essential. These changes are directly related

to the presence of a non-zero vertical gradient, due to which the area within which the magnetic field is

significantly stretched, and the module of the field becomes smaller.

It is worthmentioning that the additional contribution that comes from the sourceB3∂3vα appears

in B1.
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2.2.2 The investigation of field behavior

We study the behavior of field components at times larger than the inverse Lyapunov exponent:

λt ≥ 1. During this time, the liquid particles that are initially close to each other diverge far enough.

To begin with, it is easier to investigate the nondissipative regime.

Then the presence of a finite dissipation will be taken into account. In contrast to the two-

dimensional case, the dissipation is more complicated here. Depending on the relationships between the

parameters of the problem, either the exponential growth of the field can be replaced by a power decrease,

or the field can be small in the ratio parameter of the Lyapunov exponent to the vertical gradient.

2.2.3 Nondissipative case

First of all, let us consider the behavior of the x component of themagnetic field in the nondissipative

limit κ → 0 :

B1 ≈ ηeλt

[
z(1 +

(
Σ

λ

)2

)− x̃e−λtΣ

λ

] exp{−(
x̃e−λt−Σ

λ
z
)2

4l2
− (y2e2λt

4l2
− z2

4l2

}
16π3/2l5

∝

[
z

(
Σ

λ

)2

− xe−λtΣ

λ

]
eλt(27)

In this case, the field grows exponentially with time. In addition, the value of the field itself will grow

with the parameter Σ
λ
.

The value of the vertical component of the induction of the magnetic field, in turn, will remain

at the same level:

B3 ≈ −η

(
xe−λt − Σ

λ
z

) exp

{
−

(
xe−λt−Σ

λ
z
)2

4l2
− y2e2λt

4l2
− z2

4l2

}
16π3/2l5

(28)

2.2.4 Finite dissipation

Nowwe assume the dissipation to be finite. Then there are two different time scales corresponding

to two different stages of the inclusion of dissipation:

rde
λt vs l;

κt vs
(
λ
Σ
l
)2 ;

λt vs ln
(

l
rd

)
;

λt vs
(

λ
Σ

l
rd

)2 ;Depending

on how these times relate to each other, different regimes are included in a different order.

Suppose first that
(

λ
Σ

l
rd

)2
� ln

(
l
rd

)
.

κt �
(
λ
Σ
l
)2
:

B3 ≈ −η
[
x̃e−λt − Σ

λ
z
] exp

{
−

(
x̃e−λt−Σ

λ
z
)2

4l2
−

(
yeλt

)2
4l2

− (z)2

4l2

}
16π3/2l5

B1 ≈ ηeλt
[
z(1 +

(
Σ
λ

)2
)− x̃e−λtΣ

λ

] exp

{
−

(
x̃e−λt−Σ

λ
z
)2

4l2
−

(
yeλt

)2
4l2

− (z)2

4l2

}
16π3/2l5

(29)
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At these times, even nonzero dissipation is negligibly small and the x component of the magnetic field

exponentially grows, the dynamo takes place. However, at a later stage, dissipation will play a significant

role. Note that if the dissipation is sufficiently large in relation to the vertical gradient (
(
Σ
λ

)2 κ
λl2

� 1, κ �
λl2
(
λ
Σ

)2
), then such a scenario is not realized at any times.

Let’s consider the limit
(
Σ
λ

)2 κt
l2

� 1, κt � l2
(
λ
Σ

)2
. Then there will be a weakening of the

magnetic field by the presence of a vertical gradient of the velocity field. In this limit the scale of the

field width along the x axis gives a smallness in this parameter: 1√
1+Σ2

λ2
κt

κt+l2

∼ λ
Σ

√
κt+l2

κt
. The scale on

the x-axis, on which the fields are significant, δx ∼ lΣ
λ

√
κt

κt+l2
.

rde
λt � l � Σ

λ

√
κt:

B3 ≈ −η λ
Σ

(
x̃e−λt − zΣ

λ

) exp

[
−

(x̃e−λt−Σ
λ

z)2

4(l2+Σ2

λ2
κt)

− e2λt(y)2

4l2
− z2

4l2

]
16π3/2l3κt

B1 ≈ λ
Σ
eλtη

(
z l2+κt

κt
− λ

Σ
l2

κt
x̃e−λt

) exp

[
−

(x̃e−λt−zΣ
λ

)2

4(l2+Σ2

λ2
κt)

− e2λt(y)2

4l2
− z2

4l2

]
16π3/2l3κt

(30)

Here there is an exponential growth of the field B1, in which the dynamo effect manifests itself,

the field B3 decays exponentially as a result of dissipation. However, here we already have a weakening

of the field due to a nonzero gradient in z.

rde
λt � l:

B3 ≈ −ηe−λt
(
λ
Σ

)3 exp

− z2

4(l2+κt)
− y2

4r2
d

−
(xe−λt−Σ

λ
l2

κt+l2
z)2

4l2 Σ2

λ2
κt

κt+l2


16π3/2l3(κt)3/2rd

(κt+ l2)
(
xe−λt − Σ

λ
z l2

l2+κt

)
B1 ≈ η λ

Σ

exp

− z2

4(l2+κt)
− y2

4r2
d

−
(xe−λt−Σ

λ
l2

κt+l2
z)2

4l2 Σ2

λ2
κt

κt+l2


16π3/2lrd(κt)3/2

(
z − λ

Σ
xe−λt

) (31)

Here, the exponential growth of the field B1 is replaced by a power decrease.

In this limit, in comparison with the purely two-dimensional situation, when the constant flow

was not taken into account, the range along the x-axis at which the fields are significant increased in Σ
λ

times, but the field size decreased by the same factor .

After that we will consider the opposite case when
(

λ
Σ

l
rd

)2
� ln

(
l
rd

)
. At large times, the

dynamics of the fields will be the same as in the opposite limit, but at intermediate times the behavior of

the fields will be somewhat different.

At times rde
λt � l the behavior of the fields will be the same as in the nondissipative regime

(29).

ln
(

l
rd

)
� λt �

(
λ
Σ

l
rd

)2
:
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B3 ≈ −ηe−λt

exp

{
−

(
xe−λt−Σ

λ
z
)2

4l2
− y2

4r2
d

− z2

4l2

}
16π3/2l4rd

[
xe−λt − Σ

λ
z
]
;

B1 ≈ η
exp

{
−

(
xe−λt−Σ

λ
z
)2

4l2
− y2

4r2
d

− z2

4l2

}
16π3/2l4rd

[
z − Σ

λ

(
xe−λt − Σ

λ
z
)]

.

(32)

At this stage, the dynamo is already turned off due to dissipation, but the field is still growing with a

gradient. At times λt �
(

λ
Σ

l
rd

)2
, the field values already decrease with increasing gradient (31).

2.3 Randomly located in space magnetic field blobs in the linear model

Suppose that such blobs of magnetic field, considered in the previous subsection, are accidentally

located in space.

We denote ρ(~n) as coordinate of the blob, η(~n) – its amplitude, ~n = (n1, n2, n3) – set of numbers,

counting blobs. Later they will be summed up in all three directions.

We will consider the B1 component and study what it will be equal to.

Instead of the variable η, an expression for this contributionwill contain the expressionΣ~nη
(~n)ei(q,ρ

(~n)).

This multiplication can be effectively replaced by Σ~nη
(~n) with the following coordinate change:

r1 → r1 + eλtρ
(~n)
1 ;

r2 → r2 + e−λtρ
(~n)
2 ; (33)

r3 → r3 + ρ
(~n)
3 ;

Suppose that the nodes are located evenly with characteristic distances R ≥ l.

We will be interested in two questions.

1). How does the magnetic field of such a system behave at arbitrary point?

2). What is the average energy density of such a system?

First we answer the first question.

We perform the substitution (33) in the expression for B1 in this limit.

The coordinates of the blobs are given on the average as follows: ρni
i ∼ miR, i = 1, 3. The

maximal value of ρni
i , that contribute to the total field are determined by the following inequalities:

m3R . l;

m2Re−λt . rd;

(m1 −m3
Σ
λ
)R . Σ

λ

√
κtl2

κt+l2


m3 = 0;

m2 .
rd
R
eλt = M2;

m1 = 0

It can be seen that the amount is collected on fairly small numbers.
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AFter that we will have the following expression:

B1 ≈
∑
~n

η(~n)
λ

Σ

exp

(
− z2

4(l2+κt)
−

(
y+ρ

(n2)
2 e−λt

)2

4r2d
−

(x̃e−λt−Σ
λ

l2

κt+l2
z)2

4l2 Σ2

λ2
κt

κt+l2

)
16π3/2lrd(κt)3/2

(
z − λ

Σ
x̃e−λt

)
≈

≈
M2∑
n2=1

η(n2)
λ

Σ

exp

(
− z2

4(l2+κt)
− y2

4r2d
−

(x̃e−λt−Σ
λ

l2

κt+l2
z)2

4l2 Σ2

λ2
κt

κt+l2

)
16π3/2lrd(κt)3/2

(
z − λ

Σ
x̃e−λt

)
(34)

The sum of a large number of random variables η(n2), each of which ∼ η is proportional to the square

root of the number of summands, like the random walk problem:

M2∑
n2=1

η(n2) ∼ η
√
M2 = η

√
rd
R
eλt/2 (35)

Thus, the resulting field of all blobs exponentially grows with time:

B1(r, t) ≈ η
λ

Σ
eλt/2

exp

(
− z2

4(l2+κt)
− y2

4r2d
−

(x̃e−λt−Σ
λ

l2

κt+l2
z)2

4l2 Σ2

λ2
κt

κt+l2

)
16π3/2l

√
rdR(κt)3/2

(
z − λ

Σ
x̃e−λt

)
(36)

The exponential growth of the field with time arises from the fact that the number of blobs that

contribute to the total field exponentially grows with time. However, the exponent in this case is twice

less than in the non-dissipative mode for one blob.

Now we will calculate the density of energy.

ε =

∫
d3rB2

1

V
(37)

We will integrate over the volume of the cube with the side NR, N � 1. Because the scale of the fields

decrease is much smaller than the distance between neighboring clusters, then we can confine ourselves

to considering a cube with one blob, i.e. V = R3. The value of energy density comprises

ε =
λ

Σ

1

32(2π)3/2
η2e2λt

lR4(κt)3/2
(38)

Thus, at times rde
λt � l �

√
κt, the magnitude of the magnetic field induction and the energy density

will increase exponentially with time and decrease along with the vertical gradient:

Bx ∝ λ

Σ
eλt/2 (39)

ε ∝ λ

Σ
e2λt (40)

Such an exponent of the energy density is given by the magnetic field exponentially growing

with time and the field width along the axis х.
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3 Chaotic flow

For most chaotic flows, the assumption that the velocity gradient matrix will remain diagonal

and do not change with time will not work. For a better understanding of phenomena, it is meaningful to

study the magnetic field in a chaotic flow with a random matrix of velocity gradients.

In the case when we are dealing with a random flow, it is convenient to monitor the behavior of

the correlation functions, since the induction of the magnetic field fluctuates strongly.

For the two-dimensional case, the asymptotics of the correlation functions Fαβ(r, t) were first

obtained in Ref. [12].

In contrast to the previous section, here we assume a random matrix σ̂.

vα = V (0)
α + σαβ(t)rβ, V (0)

α = Σαz, Σ � λ (41)

3.1 Random gradient matrix

The statistics of the matrices σ̂ should be isotropic, homogeneous in time, and it should take into

account the incompressibility of the flow:

〈σαµ(t)σβν(t
′)〉 = 2λ (3δαβδµν − δανδβµ − δαµδβν) δ(t− t′) (42)

When the correlator is being calculated, the averaging is made according to the statistics of the

initial field distribution and the statistics of the velocity field. It turns out convenient [12] to solve the

equations on the fields in the momentum domain and to average by the initial field distribution, moving

to the coordinate space only after that and averaging over the flow statistics:

Fmn(r, t) = 〈Bm(r
′, t)Bn(r

′ + r, t)〉 = (43)

=

〈∫
d3q

(2π)3

∫
d3q′

(2π)3
eikr〈bm(q′, t)bn(q, t)〉field

〉
flow

, m, n = 1, 3

At the initial moment of time the field is assumed to be localized on the scale ∼ l.

〈bm(q′, 0)bn(q, 0)〉0 = l2
(
q2δmn − qmqn

)
f(q2l2)δ(q + q′), m, n = 1, 3 (44)

Such form of distribution is due to the solenoidal nature of the magnetic field.

Averaging over the flow statistics is conveniently represented in the form of a path integral over

the velocity gradient matrices σ̂

〈...〉flow =

∫
Dσ̂...e

− 1
32λ

t∫
0

dτL
[

ˆσ(τ)
]

(45)

with a weight corresponding to its statistics:

L [σ̂(τ)] = 3Tr
(
σ̂σ̂T

)
+ Tr

(
σ̂2
)

(46)
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3.2 Iwasawa’s parametrization

To calculate the correlator, it is necessary to average over the ensemble ofmatrices σ̂ an expression

that depends explicitly on Ŵ . Of course, we can represent the latter through the matrix of velocity

gradients, but then we will have a time ordered exponent under the functional integral. This way seems

rather cumbersome and thorny.

This difficulty can be avoided by introducing parametrization of the ensemble of matrices Ŵ

and the subsequent averaging of the entire expression with respect to these parameters.

We will use in this case Iwasawa’s parameterization [12], [13], which has the following form:

Ŵ = ÔD̂T̂ , Ô(φ) =

(
cosφ sinφ

− sinφ cosφ

)
, D̂(ρ) =

(
eρ 0

0 e−ρ

)
, T̂ (χ) =

(
1 χ(t)

0 1

)
(47)

The three time functions ρ(t), χ(t), φ(t)with the initial conditions ρ(0) = χ(0) = φ(0) = 0 is sufficient

for the parametrization of the set of all two-dimensional traceless matrices σ̂:

σ̂ = Ô(φ)

(
ρ̇ φ̇+ χ̇e2ρ

−φ̇ −ρ̇

)
Ô−1(φ) = Ô(φ)X̂Ô−1(φ) (48)

Next, a change of variables should be made. The we should calculate the Jacobian, rewrite

the Lagrangian (46) according to (48) and the integrand in the new variables. We first deal with the

Lagrangian. It can be rewritten in terms of the new parameterization:

Tr
(
σ̂2
)
= Tr

(
ÔX̂2Ô−1

)
= 2ρ̇2 − 2φ̇2 − 2φ̇χ̇e2ρ (49)

Tr
(
σ̂σ̂T

)
= Tr

(
ÔX̂X̂T Ô−1

)
= 2ρ̇2 + φ̇2 +

(
φ̇+ χ̇e2ρ

)2
(50)

L [σ̂(τ)] = 3

(
2ρ̇2 + φ̇2 +

(
φ̇+ χ̇e2ρ

)2)
+
(
2ρ̇2 − 2φ̇2 − 2φ̇χ̇e2ρ

)
= (51)

= 8ρ̇2 + 4φ̇2 + 4φ̇χ̇e2ρ + 3χ̇2e4ρ = 8ρ̇2 + 4(φ̇+
χ̇

2
e2ρ)2 + 2χ̇2e4ρ

The calculation of the path integral assumes the introduction of discretization. For example, a

positive definite term containing the derivative σ̂ (actually kinetic energy) can be introduce into the

Lagrangian, for example, in the form τ 2c Tr
(
˙̂σ2
)
, where τc is the noise correlation time in the problem,

small in comparison with the inverse Lyapunov exponent λ. For this reason, noise can be assumed δ−
correlated.

However, [15], [16] regularization can be taken into account by introducing a counterterm into

the Lagrangian, which can be obtained by a simple shift ρ(t) → ρ(t) + ερ̇(t), ε ∼ τc.
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In the result the average (45) can be rewritten as [12]

N
∫

DρDφDχ

(∏
τ

e2ρ(τ)

)
exp{ − 1

4λ
L [ρ, χ, φ]} (52)

where the Lagrangian L [ρ, χ, φ] has the following form

L [ρ, χ, φ] = (ρ̇− 2λ)2 +
e4ρ

4
χ̇2 +

1

2

(
φ̇+ χ̇e2ρ

)2
(53)

We will consider large times λt � 1. It can be shown [14] that for long times the average (45)

is equivalent to the average with the following distribution function

P (ρ, χ, φ, t) ≈ C ρ

(2λt)3/2
(
1 + χ2

)− 1
2
− ρ

4λt exp

[
−(ρ− 2λt)2

4λt

]
, λt � 1, ρ � 1, C ∼ 1 (54)

In the vicinity of a singular point, the flow is arranged so that one of the axes is compressed.

Integration with respect to the momentum corresponding to this direction leads to the appearance of a

decreasing factor e−ρ. The product of two matrices Ŵ in both contributions is given by the factor e2ρ. At

large times λt � 1 on the saddle trajectory, the functions χ and φ will be approximately constant, and ρ

will grow linearly with time: ρ = 4λt. Thus, for large times the main contribution to the continual integral

proportional to e3λt will be given by a saddle trajectory on which the functions χ and φ are approximately

constant, and ρ will grow linearly with time:ρ = 4λt.

Of course, it is possible to consider the behavior of magnetic fields in a plane where there is a

very strong shear flow. We will further be interested in the behavior of the correlator in the vicinity of the

zero flow velocity (z = 0).

3.3 The results in quasi-two-dimensional case

As it was found in the model with diagonal matrix σ̂, the highest values of fields are achieved

for components in the plane. It is interesting to study its behavior.

In the foregoing the initial field statistics, the correlator consists of four contributions, the first

of which corresponds to a homogeneous solution of the equations for the horizontal components of the

field of the system (21), the fourth describes the presence of the ‘’source‘’ B3∂3vα in the equations of the

system (21) on the magnetic field, the second and third are the cross terms.

The resulting path integrals are calculated in the saddle-point approximation ρ ≈ 4λt at times

λt � 1.

Let’s give more details of calculations.
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3.3.1 Intermediate calculations

Taking into account the formulas(26),(43),(44) we will obtain:

Fαβ(r, t) =

〈∫
d3r

∫
d3q

(2π)3

∫
d3q′

(2π)3
eikr
〈
Wαγ(t)

bγ(q, 0) + b3(q, 0)Σν

t∫
0

dτW−1
γν (τ)


Wβρ(t)

bρ(q′, 0) + b3(q
′, 0)Σµ

t∫
0

dτW−1
ρµ (τ)

〉
field

exp {−g(q, t)− g(q′, t)}

〉
flow

We expand the brackets and average each term in the field statistics:

Fαβ(r, t) =

〈∫
d3r

∫
d3q

(2π)3

∫
d3q′

(2π)3
eikr
[
Wαγ(t)Wβρ(t)

〈
bγ(q, 0)bρ(q

′, 0)
〉
field

+ (55)

+
〈
bγ(q, 0)b3(q

′, 0)
〉
field

Wαγ(t)Σµ

t∫
0

dτWβµ(t, τ) +
〈
b3(q, 0)bρ(q

′, 0)
〉
field

Wβρ(t)Σµ

t∫
0

dτWαµ(t, τ) +

+
〈
b3(q, 0)b3(q

′, 0)
〉
field

ΣνΣγ

t∫
0

dτWαν(t, τ)

t∫
0

dτ ′Wβγ(t, τ
′)
]
exp {−g(q, t)− g(q′, t)}

〉
flow

After averaging over the initial statistics of magnetic field induction, we have the following expression:

Fαβ(r, t) =

〈∫
d3r

∫
d3q

(2π)3
eikrf(q2l2)l2

[ (
q2Wαγ(t)Wβγ(t)− qγqρWαγ(t)Wβρ(t)

)
− (56)

−qγq3Wαγ(t)
Σ

λ
λ

t∫
0

dτWβ1(t, τ)− q3qρWβρ(t)
Σ

λ
λ

t∫
0

dτWα1(t, τ) +

+(q21 + q22)

(
Σ

λ

)2

λ

t∫
0

dτWα1(t, τ)λ

t∫
0

dτ ′Wβ1(t, τ
′)
]
exp {−2g(q, t)}

〉
flow

We write out the explicit form of the matrices Ŵ in the Iwasawa parameterization and various

combinations with them, which will often occur in further calculations:

Ŵ = eρ

(
cosφ χ cosφ

− sinφ −χ sinφ

)
+ e−ρ

(
0 sinφ

0 cosφ

)
(57)

Ŵ−1 = eρ

(
−χ sinφ −χ cosφ

sinφ cosφ

)
+ e−ρ

(
cosφ − sinφ

0 0

)
(58)

ŴŴ T
αβ ≈ (1 + χ2)e2ρuαuβ (59)
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Ŵ (t1)Ŵ
−1(t2) = Ŵ (t1, t2) = eρ1+ρ2(χ1 − χ2)

(
− cosφ1 sinφ2 cosφ1 cosφ2

sinφ1 sinφ2 − sinφ1 cosφ2

)
+

+eρ1−ρ2

(
cosφ1 cosφ2 cosφ1 sinφ2

− sinφ1 cosφ2 − sinφ1 sinφ2

)
+ eρ2−ρ1

(
− sinφ1 sinφ2 sinφ1 cosφ2

− cosφ1 sinφ2 cosφ1 cosφ2

)
(60)

Let’s introduce for convenience vector uα =

(
cosφ

− sinφ

)
α

. Then the construction
t∫
0

dτWα1(t, τ)

that often occurs in a non-uniform contribution will be exponentially large for long times:

λ

t∫
0

dτWα1(t, τ) ≈ eρco1 cosφuα, co1 cosφ = λ

t∫
0

dτe−ρτ cosφτ (61)

Wαγqγ =

(
eρ cosφ(q1 + χq2) + e−ρq2 sinφ

−eρ sinφ(q1 + χq2) + e−ρq2 cosφ

)
α

≈ eρ(q1 + χq2)uα (62)

Note that we will study correlations in a horizontal plane in the vicinity of slow flow, i.e. at z=0.

Taking into account the expressions for the matrix Ŵ we have an oscillating exponential, depending only

on the momentum q2 − χq1 :

eikr = eik1x+ik2y ≈ eie
ρ(q2−χq1)(x sinφ+y cosφ) = eie

ρ(q2−χq1)r sin(φ+φr) (63)

Taking into account the above calculations, the expression for the correlator is substantially simplified:

Fαβ =

〈∫
d3r

∫
d3q

(2π)3
exp {ieρ(q2 − χq1)r sin(φ+ φr)} f(q2l2)l2e2ρuαuβ exp {−2g(q, t)} (64)

[
(1 + χ2)q2 − (q1 + χq2)

2 − 2
Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cos
2 φ
]〉

flow

All possible limits of dissipation will be considered and the correlators on all admissible scales

will be calculated.

Note that the results strongly depend on the vertical gradient of the velocity field in a quasi-two-

dimensional formulation.

3.3.2 Nondissipative limit

Assume that κ → 0. Then g(q, t) = 0.

Make the change of variablesQ1 = q1, Q2 = q2−χq1, Q3 = q3 and rewrite correlator in terms

of new variables:
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Fαβ =

〈∫
d3Q

(2π)3
exp {ieρQ2r sin(φ+ φr)} f(l2

[
Q2

1 +Q2
3 + (Q2 + χQ1)

2
]
)l2e2ρuαuβ (65)[

(1 + χ2)
(
Q2

1 + (Q2 + χQ1)
2 +Q2

3

)
− (Q1(1 + χ2) + χQ2)

2 −

−2
Σ

λ
co1 cosφ(Q1(1 + χ2) + χQ2)Q3 + (Q2

1 + (χQ1 +Q2)
2)

(
Σ

λ

)2

co21 cosφ
2
]〉

flow

The characteristic different components of momentum have different scales. In particular, the scale of the

momentum Q2 will be determined by the oscillating exponent and the scale of the initial magnetic field

induction distribution: Q2 ∼ min
{

1
reρ

, 1
l

}
.

At the same time, the components of momentum in other directions are localized at the same

scales as at the initial time: Q1 ∼ Q3 ∼ 1
l
.

We first consider the limit of large spatial scales of the correlator, when r 〈eρ〉 � l, т.е. re3λt � l.

So, this is the case:

re3λt � l.

The greatest contribution is made by the term quadratic in the shear:

Fαβ ≈

〈∫
dQ1dQ3

(2π)2
δ (eρr sin(φ+ φr)) f(l

2
[
Q2

1 +Q2
3 + χ2Q2

1

]
)l2e2ρuαuβ(66)

[
(1 + χ2)(Q2

1(1 + χ2) +Q2
3)−Q2

1(1 + χ2)2
](Σ

λ

)2

co21 cos
2 φ

〉
flow

≈

≈

〈∫
dQ1dQ3

(2π)2
δ (eρr sin(φ+ φr)) f(l

2
[
Q2

1 +Q2
3 + χ2Q2

1

]
)l2e2ρuαuβ(1 + χ2)Q2

3

(
Σ

λ

)2

co21 cos
2 φ

〉
flow

In integrating over the angle, the integral will be typed only at the angles φr and −φr, which

determine the direction of the radius vector connecting the points at which the field:

Fαβ ≈

〈
1

r
[δ (φ+ φr) + δ (φ+ φr − π)]

f00
l2

eρuαuβ

√
1 + χ2

(
Σ

λ

)2

co21 cos
2 φ

〉
flow

∼ (67)

∼ f00
l2r

e3λtco21

(
Σ

λ

)2

cos2 φr

(
cos2 φr sinφr cosφr

sinφr cosφr sin2 φr

)
αβ

∼ f00
l2

e3λtco21

(
Σ

λ

)2

cos2 φr
rαrβ
r3

where the value f00 is defined by the initial distribution of magnetic field induction:

∫
dQ1dQ3f(l

2
[
Q2

1 +Q2
3 + χ2Q2

1

]
)Q2

3 =

2π∫
0

dφ
∞∫
0

drrr2 sin2 φf(r2)

l4
√

1 + χ2
=

π
∞∫
0

dwwf(w)

2l4
√
1 + χ2

=
πf00

2l4
√
1 + χ2

(68)
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Note that the obtained correlator is large in terms of the square of the ratio of the shear to the characteristic

value of the velocity gradient in the flow plane. In addition, it is anisotropic. For values of the angle

φ = π/2, 3π/2, it turns to zero.

Next we investigate the limit of the correlator of inductions taken at points sufficiently close to

each other: re3λt � l. In this limit, it will not depend on the distance between two points. In fact, this is

a single-point correlator.

Consideration of one-point correlator (r � le−3λt) is in that it itself corresponds to the energy

density of the magnetic field:

Fαβ(r, t) =

〈∫
d3q

(2π)3
f(q2l2)l2e2ρuαuβ (69)

[
(1 + χ2)q2 − (q1 + χq2)

2 − 2
Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cos
2 φ
]〉

flow

In this case, all the components of the momentum have the same characteristic scales as for the initial

distribution, i.e. qi ∼ 1
l
. Therefore the main contribution will be given by the term that is proportional to

the square of the shear:

Fαβ(r, t) ≈

〈∫
d3q

(2π)3
f(q2l2)l2e2ρuαuβ(q

2
1 + q22)

(
Σ

λ

)2

co21 cos
2 φ

〉
flow

∼

〈
co21

f00
l
e2ρuαuβ

(
Σ

λ

)2

cos2 φ

〉
flow

, (70)

f00 = π
∞∫
0

dyyf(y).After the averaging of obtained expression with the distribution function (54) we will

have the following expression:

Fαβ(r, t) ∼ co21

(
Σ

λ

)2
f00
l3

e8λt

(
3 0

0 1

)
αβ

, r � le−3λt (71)

As in the two-dimensional case, the single-point correlator has a diagonal structure and grows exponentially

at a very high rate.

However, unlike the two-dimensional flow, it is anisotropic, one diagonal component is several

times larger than the other. It is also proportional to the square of the shear and is large in this parameter

in the absence of dissipation.

Thus, in a nondissipative mode, the correlators grow exponentially with the same Lyapunov

exponents with time as in the two-dimensional case, depending on the circumstance, a single-point or a

different-point correlator is considered. In addition, the correlators grow quadratically with the parameter

Σ
λ
.

Fαβ(r, t) ∼
(
Σ

λ

)2

co21
f00
l3

e8λt

(
3 0

0 1

)
αβ

, r � le−3λt (72)
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Fαβ(r, t) ∼
(
Σ

λ

)2
f00
l2

e3λtco21 cos
2 φr

rαrβ
r3

, r � le−3λt (73)

The main contribution to these relations is made by the inhomogeneous term. It should be noted that these

relations are valid only in the limit Σ
λ
� 1.

Just as in the two-dimensional case, the correlator at scales much less than the dissipation has

a diagonal tensor structure, but it turns out to be anisotropic. On a large scale, the correlator is also

anisotropic due to the dependence of the factor on the polar angle φr.

It is worth noting that when you compare the deterministic and random flows, there are some

apparent inconsistencies in comparison. In particular, the single-point correlator and the energy density

depend in different ways on the vertical gradient. However, in a quasi-two-dimensional problem, the

dissipation mechanism is arranged quite difficult because of the presence of a shift and a vertical gradient.

Therefore, in a deterministic and chaotic problem, the correlator and the energy density, respectively, do

not have to depend on the same parameters in the same way. Thus, in a purely two-dimensional problem

[11], [12], the energy density depends on the dissipation scale, and the single-point correlator does not.

3.3.3 Finite dissipation

Now the dissipation will be taken into account.

In the presence of finite dissipation, an additional factor e−2g(q,t), which will change the scales

along the axes on which the fields are significant, arise. Let us find the value of them

g(q, t) = κ

t∫
0

dτ
{
k2
1(τ) + k2

2(τ) + k2
3(τ)

}
Each component can be expressed by all characteristics that determine it:

k1(τ) = W−1
11 (τ)q1 +W−1

21 q2(τ) = sinφeρ(q2 − χ(τ)q1)− q1e
−ρ cosφ (74)

k2(τ) = W−1
12 (τ)q1 +W−1

22 q2(τ) = cosφeρ(q2 − χ(τ)q1)− q1e
−ρ sinφ (75)

k3(τ) = q3 − Σ

q1

τ∫
0

dt′W−1
11 (t′) + q2

τ∫
0

dt′W−1
21 (t′)

 ≈

≈ q3 −
Σ

λ
c1 (e

ρ sinφ(q2 − χq1)− cosφq1) (76)

c1 = λ
τ∫
0

dt′eρ(t
′)−ρ(τ) ≈ λ

t∫
0

dτeρ(τ)−ρ(t). c2 = λ
τ∫
0

dt′e−2ρ(t′) ≈ λ
t∫
0

dτe−2ρ(τ).
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It is convenient to diagonalize the decreasing quadratic exponent that arises from dissipation:

g(q, t) = κ

t∫
0

dτ
[(
Q2 sinφe

ρ − q1 cosφe
−ρ
)2

+
(
Q2 cosφe

ρ + q1 sinφe
−ρ
)2

+ k3(τ)
2
]
=

= κ

[
α

λ
e2ρQ̃2

2
+Q2

3t+ c2
Q2

1

λ

]
,

c = λ

t∫
0

dτe2ρ(τ)−2ρ(t), α = c

(
1 + c21

Σ

λ

2

sinφ2

)
(77)

The following variables change has been made during the calculations
Q1 = q1;

Q̃2 = q2 − χq1 −Q3e
−ρ λ

Σ

c21 sinφ

c

{
1+

(
Σ
λ
c1 sinφ

)2
} = Q2 −Q3e

−ρ#;

Q3 = q3 +
Σ
λ
c1cosφq1;

The correlator can be calculated using the construction K corresponding to the dissipation:

Fαβ =

〈∫
d3q

(2π)3
f(q2l2)l2e2ρuαuβ exp {−2g(q, t) + ikr} (78)

[
(1 + χ2)

(
q2 − (q1 + χq2)

2)
)
− 2

Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cosφ
2
]〉

flow

=

=

〈
Kl2e2ρuαuβ

〉
flow

First we integrate over the momenta, making a change in momentum, which diagonalizes the

quadratic exponent:

K =

∫
(d3q)f(q2l2) exp {−2g(q, t) + ikr} (79)[

(1 + χ2)
(
q2 − (q1 + χq2)

2)
)
− 2

Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cosφ
2
]
≈

≈
∫

(d3Q)f
(
l2
(
Q2

1

[
1 + χ2

])
+ (Q3 − βQ1)

2
)

exp

−2κ
α

λ
Q̃2

2e
2ρ + iQ̃2e

ρr sin(φ+ φr) + iQ3
λ

Σ
r sin(φ+ φr)

c1 sinφ

c
[
1 +

(
Σ
λ
c1 sinφ

)2]
 exp

{
−2κQ2

3t
}

[
(1 + χ2)Q2

3 − 2
Σ

λ
co1 cosφ(Q1 + χQ2 + χ2Q1)(Q3 − βQ1) + (Q2

1 + (Q2 + χQ1)
2)

(
Σ

λ

)2

co21 cos
2 φ
]
;
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The following equality was used during the calculations:

exp
(
−l2Q2

1(1 + χ2)
)
exp

(
−l2(Q3 − βQ1)

2 − 2κt
)
=

= exp

(
−l2Q2

1(1 + χ2 + β22l
2 + 2κt

l2 + 2κt
)

)
exp

[
−(l2 + 2κt)

(
Q3 − β

l2

l2 + 2κt
Q1

)2
]

We are interested in times when κt � l2.

The quadratic exponent depending on φ with the parameter λ
Σ

r
rd
arise from the integration over

momentum Q̃2. The quadratic exponent with a slightly smaller parameter
λ
Σ

r
κt
occurs from the integration

over Q3 and it also depend on φ.

Parameter λ
Σ

r
rd
will be small or large at the different spatial scales. The correlator’s behavior will

be different depending on this.

First, the behavior of the correlator at large spatial scales will be considered r � rd
Σ
λ
.

When integrating over the angle, the main contribution will be collected near the saddle values

φ = −φr, φ = π − φr. The main contribution to the vicinity of these saddle points will come only

from one of the exponents, namely exp
{
−2κα

λ
Q̃2

2e
2ρ + iQ̃2e

ρr sin(φ+ φr)
}
. Thus, the construction of

K depends on the parameters of the problem as follows:

K ≈ f01

l3 [1 + χ2 + β2]3/2
λ

κ
e−ρ 1√

λtα
(1 + χ2)

(
Σ

λ

)2

cos2 φ
[
2co1c1sgn(cosφ) + co21

]
exp

(
−λr2 sin2(φ+ φr)

8κα

)
(80)

The value of the above construction, which determines the influence of dissipation, is substituted into the

expression for the correlator:

Fαβ ≈

〈
eρ

f01
l(1 + χ2 + β2)3/2

λ

κ

1 + χ2

√
λtα

(
Σ

λ

)2

cos2 φuαuβ

[
2co1c1sgn(cosφ) + co21

]
exp

(
−λr2 sin2(φ+ φr)

8κα

)〉
(81)

Saddle points ρ = 4λt, φ = −φr, φ = π − φr give following expressions:

Fαβ ≈ f00co
2
1

(
Σ

λ

)2

e3λt
rαrβ
r3

cos2 φr

∞∫
−∞

dχ

(χ2 + 1)1/2(χ2 + β2
r + 1)3/2

= (82)

= f00co
2
1e

3λt rαrβ
r3

EllipticK
[

β2
r

β2
r+1

]
− EllipticE

[
β2
r

β2
r+1

]
c21
√

β2
r + 1

, βr =
Σ

λ
c1 cosφr

The correlator’s behavior will be investigated in this limit as a function of the polar angle of the radius

vector.

26



At moderate angles (cosφr � λ
Σ

βr � 1) shear weakens the value of the field:

Fαβ ≈ λ

Σ
ln

(
Σ

λ

)
f00e

3λt co21
c31l

√
κt cosφr

rαrβ
r3

, r � rd
Σ

λ
, cosφr �

λ

Σ
(83)

At the polar angles that are close to the π/2 (cosφr � λ
Σ

βr � 1) the correlator is essentially

anisotropic:

Fαβ ≈ f00e
3λt co21

c21l
√
κt

rαrβ
r3

β2
r , r � rd

Σ

λ
, cosφr �

λ

Σ
(84)

This behavior on close to π/2 angles is analogous to the non-dissipative case.

It will be shown further that correlator does not depend on the distance r at small scales r � rd
Σ
λ
:

Fαβ =

〈∫
d3q

(2π)3
f(q2l2)l2e2ρuαuβ exp {−2g(q, t)} (85)

[
(1 + χ2)

(
q2 − (q1 + χq2)

2)
)
− 2

Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cosφ
2
]〉

flow

=

=

〈
Kl2e2ρuαuβ

〉
flow

The integration over momentum should be considered separately:

K =

∫
(d3q)f(q2l2) exp {−2g(q, t)} (86)[

(1 + χ2)
(
q2 − (q1 + χq2)

2)
)
− 2

Σ

λ
co1 cosφ(q1 + χq2)q3 + (q21 + q22)

(
Σ

λ

)2

co21 cosφ
2
]
;

The scale at which thewave vectors in the exponent are essential are determined by the coefficients

before the momenta in the quadratic part of the exponent. Thus, characteristic momenta are limited at this

stage by the following values:

Q1 ∼
1

rd
, Q̃2 ∼

1

rdeρ
, Q3 ∼

1√
κt

∼ 1

rd
√
λt

(87)

Let’s investigate what will happened to the argument of function f.
q1 = Q1;

q2 = Q̃2 + χQ1 +Q3e
−ρ#;

q3 = Q3 − Σ
λ
c1cosφQ1 = Q3 − βQ1.

(88)
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Taking into account the scale of integration limited only by the quadratic exponent, the expression for the

argument of the function f will take the following form:

l2
[
q21 + q22 + q23

]
= l2

[
Q2

1 +
(
Q̃2 + χQ1 +Q3e

−ρ#
)2

+ (Q3 − βQ1)
2

]
(89)

Further, several contributions are obtained, the behavior of which is to be established:

K ≈
∫

(d3Q)f
(
l2
(
Q2

1

[
1 + χ2

])
+ (Q3 − βQ1)

2
)
exp

{
−2κ

α

λ
Q̃2

2e
2ρ
}
exp

{
−2κQ2

3t
}
(90)[

(1 + χ2)Q2
3 − 2

Σ

λ
co1 cosφ(Q1 + χQ2 + χ2Q1)(Q3 − βQ1) + (Q2

1 + (Q2 + χQ1)
2)

(
Σ

λ

)2

co21 cos
2 φ
]
≈

≈
∫

(dQ1)(dQ3)f
(
l2
(
Q2

1

[
1 + χ2

])
+ (Q3 − βQ1)

2
)√ λ

καe2ρ
(1 + χ2){(

Σ

λ

)2

cosφ2Q2
1

[
2co1c1sgn(cosφ) + co21

]
+Q2

3 − 2
Σ

λ
co1 cosφQ1Q3

}
exp

[
−2κtQ2

3

]
It is convenient to integrate over momentum in parametrization in which the quadratic exponential is

diagonal, and the function f depends only on the square of the momentum: Q̃3 = Q3 − β l2

l2+2κt
Q1 ≈

Q3 − β l2

2κt
Q1 :

K ≈
∫

(dQ1)(dQ̃3)f
(
l2Q2

1

[
1 + χ2 + β2

])√ λ

καe2ρ
(1 + χ2) (91){(

Σ

λ

)2

cosφ2Q2
1

[
2co1c1sgn(cosφ) + co21 + c21

l4

4(κt)2
− 2co1c1

l2

2κt

]
+ Q̃2

3

}
exp

[
−2κtQ̃2

3

]
≈

≈ f00

l3 [1 + χ2 + β2]3/2
λ

κ
e−ρ 1√

λtα
(1 + χ2)

(
Σ

λ

)2

cos2 φ
[
2co1c1sgn(cosφ) + co21

]
+

+
f0

l
√

1 + χ2 + β2(κt)

λ

κ
e−ρ 1√

λtα
(1 + χ2)

Previously the term containing Q2
1 in the integrand will be considered.

In the saddle-point approximation, ρ will grow linearly with time, integration over χ will give

some constant, but the integration with respect to the angle is of the greatest interest. We write The whole

expression expression will be written and the area of angles where the integral is accumulated should be

determined.

Thus, the field correlators in the horizontal plane will grow exponentially with time and for finite

dissipation:

F
(1)
αβ ≈

〈
f00

l [1 + χ2 + β2]3/2
λ

κ
eρ

1√
λtα

(1 + χ2)

(
Σ

λ

)2

cos2 φ
[
2co1c1sgn(cosφ) + co21

]
uαuβ

〉
flow

∼ (92)

∼
(
Σ

λ

)2

e3λt
f00

l
√
λt

λ

κ

∞∫
−∞

dχ

2π∫
0

dφ
cos2 φuαuβ

[
2co1c1sgn(cosφ) + co21

]
√

c(1 + χ2)(1 + χ2 + (c1
Σ
λ
cosφ)2)3

(
1 + (c1

Σ
λ
sinφ)2

)
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∫
dφ

ln
(
Σ
λ

)
cos2 φuαuβ

(1 + (c1
Σ
λ
cosφ)2)3/2(1 + (c1

Σ
λ
sinφ)2)1/2

(93)

The correlator of the field components in the plane is a second-rank tensor containing only 4 components.

We integrate each of the components in the angles φ.

11 :

(
Σ

λ

)2

ln

(
Σ

λ

)∫
dφ

cos4 φ

(c1
Σ
λ
)3| cos3 φ|

√
1 + (c1

Σ
λ
sinφ)2

=
λ

Σ
ln(

Σ

λ
)
1

c31

∫
dφ

| cosφ|√
1 + (c1

Σ
λ
sinφ)2

≈ (94)

≈ λ

Σ
ln(

Σ

λ
)
1

c31

4 ln Σ
λ

c1
Σ
λ

=

(
λ

Σ

)2

ln2
(
Σ

λ

)
4

c41

The cross components will be nullified:

12 :

(
Σ

λ

)2

ln

(
Σ

λ

)∫
dφ

cos3 φ sinφ

(c1
Σ
λ
)3| cos3 φ|

√
1 + (c1

Σ
λ
sinφ)2

=
λ

Σ
ln(

Σ

λ
)
1

c31

∫
dφ

sign(cosφ) sinφ√
1 + (c1

Σ
λ
sinφ)2

= 0(95)

The obtained expression equals to zero at large shear rates Σ
λ
� 1. Thus, one-point correlator again turns

out to be diagonal.

22 :

(
Σ

λ

)2

ln

(
Σ

λ

)∫
dφ

cos2 φ sin2 φ

(c1
Σ
λ
)3| cos3 φ|

√
1 + (c1

Σ
λ
sinφ)2

≈

≈ λ

Σ
ln(

Σ

λ
)
1

2c31

∫
dφ

1 + cos(2φ)√(
1 + ( c1

2
Σ
λ
sin(2φ))2

) ≈ λ

Σ
ln(

Σ

λ
)
1

2c31
4
ln(Σ

λ
)

Σ
λ
c1
2

=

(
λ

Σ

)2

ln2
(
Σ

λ

)
4

c41
(96)

Thus, the spatial tensor structure of the correlator will have the form δαβ.The integrandmultiplied

by sgn(cosφ) yields the identity zero in all three cases, so the answer must be multiplied only by co21.

The following result can be obtained using similar arguments for another contribution:

F
(2)
αβ ∼

(
λ

Σ

)2

ln2
Σ

λ
e3λt

f0
c41
√
c

√
λ

κ

l

(κt)3/2
δαβ (97)

The final answer for a single-point correlator when finite dissipation is taken into account has

the following form:

Fαβ ∼
(
λ

Σ

)2

ln2
Σ

λ
e3λt

f00co
2
1λ

c41
√
clκ

√
λt

δαβ, r � rd
Σ

λ
(98)

We note that a single-point correlator is isotropic in the case of finite dissipation and decreases

with increasing shear.
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3.4 Analysis of results and comparison to the two-dimensional problem

3.4.1 Nondissipative case

Here we write down the results for the two-dimensional case.

κ = 0 :

Fαβ(r, t) ∼
f0
l2
e8λtδαβ, r � le−3λt (99)

Fαβ(r, t) ∼
f0
l
e3λt

rαrβ
r3

, r � le−3λt (100)

Correlators grow exponentially with time, and the growth rates on small scales are much larger

than at large ones. The correlators in the two-dimensional problem are isotropic.

In a quasi-two-dimensional problem, the correlators grow on large and small scales at the same

rate, but they are anisotropic and depend on the shift:

Fαβ(r, t) ∼
(
Σ

λ

)2

co21
f00
l3

e8λt

(
3 0

0 1

)
αβ

, r � le−3λt (101)

Fαβ(r, t) ∼
(
Σ

λ

)2
f00
l2

e3λtco21 cosφ
2
r

rαrβ
r3

, r � le−3λt (102)

3.4.2 Dissipative case

In a two-dimensional problem with finite dissipation, the correlators behave with time as follows

at different scales:

Fαβ(r, t) ∼
f0
lrd

e3λtδαβ, r � rd (103)

Fαβ(r, t) ∼
f0
l
e3λt

rαrβ
r3

, r � rd (104)

In a quasi-two-dimensional random flow for finite dissipation, they also increase exponentially,

but essentially depend on the shift:

Fαβ(r) ∼
(
λ

Σ

)2

ln2
Σ

λ
e3λt

λ

lκ
√
λt

f00co
2
1

c41
√
c
δαβ, r � rd

Σ

λ
(105)

Fαβ(r) ∼
λ

Σ
ln

(
Σ

λ

)
e3λt

f00co
2
1

c31

1

l
√
κt cosφr

rαrβ
r3

, r � rd
Σ

λ
, cosφr �

λ

Σ
(106)
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Fαβ(r) ∼ cos2 φr

(
Σ

λ

)2

e3λt
f00co

2
1

c21

1

l
√
κt

rαrβ
r3

, r � rd
Σ

λ
, cosφr �

λ

Σ
(107)

The behavior of correlators at large scales, as compared with dissipation, turns out to be anisotropic, in

contrast to the two-dimensional problem.

Consider angles different from π/2 and 3π/2. The cosine of these angles will be of the order of

one: cosφr ∼ 1. In this range of angles the correlation monotonously decreases on all scales. Indeed,

Fαβ(r � rd
Σ
λ
)

Fαβ(r1 � rd
Σ
λ
)
∼

Fαβ(r � rd
Σ
λ
)

Fαβ(0)
∼

λ
Σ

1√
κt

1
r(

λ
Σ

)2√λ
κ

1√
κt

∼
rd

Σ
λ

r
� 1 (108)

At the large distances two-point correlator will tend to zero at φr = π/2, φr = 3π/2. One-point

correlator will remains constant at the same angles.

4 Finite radius of velocity correlation field

The reasoning of the previous section is applicable only when the magnetic field correlations are

studied at scales small in comparison with the correlation radius of the velocity field R and at times until

the length of the filament along which the magnetic field most significantly has grown to scales of the

order of R. Components The velocities chosen at distances r � R are uncorrelated with each other. Due

to this, the magnetic field correlator will decrease with time.

The arguments of the previous section is applicable only in the case whenwe study the correlation

of the magnetic field on scales small compared with the radius of correlation of the velocity field R, and

the time until a length of filament along which the magnetic field is the most significant, has not grown to

the scale of the order of R. Components of velocity selected at distances r � R, are uncorrelated between

them. Due to this, the magnetic field correlator will decrease with time.

The qualitative picture can be described using magnetic field blobs picture. Suppose that there

is arbitrary initial distribution of magnetic field which localized at the scale ∼ l. The magnetic field lines

begin to condense in the vicinity of a singular point of the flow, the magnetic field blobs are pulled into

long filaments, the resulting field grows exponentially. This pattern will take place until the length of the

filaments is compared with the correlation radius of the flow velocity field. Upon reaching this scale, the

different ends of the thread will be uncorrelated with each other. The filaments will begin to bend and can

overlap (Fig. 3).

Consider an arbitrary point in the neighborhood of the closely spaced ends of the filament. The

resulting field at this point will be given by contributions from the ends of this filament, the induction

vector of the magnetic field in which is directed in opposite directions. Therefore, the resulting field will

be much weaker than an exponentially large field from each of the ends.
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Рис. 3: Anticorrelation mechanism that terminates the dynamo [11]

It will be shown later that correlators will decrease in time in a power-law manner at times

λt � ln
(

R
rd

)
.

4.1 Kraichnan-Kazantsev model

We consider the situation when there is a constant flow with a vertical gradient of the velocity

field ontowhich a two-dimensional turbulent flow is superimposed, independent of the vertical coordinate.

vα(r, z, t) = V (0)
α (z) + vflα (x, y, t) (109)

In what follows, we will be interested in the behavior of the correlation functions in one horizontal plane

Fmn(r, z, t) = 〈Bm(r
′, z, t)Bn(r

′ + r, z, t)〉. Further, in all notations of the flow velocity and magnetic

induction, we omit the argument z, not forgetting the dependence of the fields on the vertical coordinate.

The fluctuating term of velocity is assumed to have correlation time that is small in comparison

with the reciprocal Lyapunov exponent:〈
vflα (r + r′, t)vflβ (r′, t′)

〉
= Cαβ(r)δ(t− t′) (110)

Cαβ(r) – correlation function of velocity field that decreases at the scale ∼ R. It is quadratic

over coordinates at r � R and it takes into acccount statistics of matrix σ̂:

Cαβ(r) ≈ λ
(
R2δαβ − 3r2δαβ + 2rαrβ

)
(111)

It is worth noting that Cαβ(r)δ(t− t′) - is the structural function of the Lagrangian velocities of

the fluid flow. It is defined as follows:

Sαβ
L (r, t) =

〈
vαL(r, t

′ + t)vβL(r, t
′)
〉
, (112)

vαL – component of the flow velocity in the Lagrangian reference frame. In this case it will be

exactly the fluctuation part of the velocity field.
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The correlator of the magnetic field’s components will be considered at points taken in one

horizontal plane.

On other scales, the correlator should be isotropic and satisfy the incompressibility of the flow

velocity:

Cαβ(r) = C1(r)δαβ + C2(r)
rαrβ
r2

; (113)

d

dr
(C1(r) + C2(r)) = −C2(r)

r
(114)

Functions C1(r) and C2(r) monotonically decrease and tend to zero at r � R, C2(0) = 0.

Let us now study the behavior of the magnetic fields correlators in the plane. The derivation of

the equation for field correlators resembles the derivation of the Focker-Planck equations.

It is convenient to write down the equation on magnetic field evolution:

∂tBα = Bν∂νvα − vν∂νBα + κ∇2Bα +B3∂3vα; (115)

∂tB3 = −vν∂νB3 + κ∇2B3 (116)

and substrate fluctuation term in the velocity that we will further denote as vα:

∂tBα = Bν∂νvα − vν∂νBα + κ∇2Bα +B3∂3Σα − zΣν∂νBα; (117)

∂tB3 = −vν∂νB3 + κ∇2B3 − zΣν∂νB3 (118)

According to this equations the magnetic field induction can be changed during small amount due to the

presence of velocity of the flow and dissipation:

Bα(r
′, t+ δt) ≈ Bα(r

′, t) + ∂tBα(r
′, t)δt ≈

≈ Bα(r
′, t) +

(
Bν∂νvα − vν∂νBα + κ∇2Bα +B3Σα − zΣν∂νBα

)
δt ≈ (119)

≈ Bα(r
′, t) +

Bν∂ν

t+δt∫
t

dτvα(τ)−
t+δt∫
t

dτvν(τ)∂νBα

+
(
B3Σα − zΣν∂νBα + κ∇2Bα

)
δt ≈

≈ Bα(r
′, t) +Bν∂ν

t+δt∫
t

dτvα(τ)−
t+δt∫
t

dτvν(τ)∂νBα

It looks similarly for z-component of the field:

B3(r
′, t+ δt) ≈ B3(r

′, t)−
t+δt∫
t

dτvν(τ)∂νB3 (120)

The equation for the correlation function contains the first time derivative:

∂tFαβ(r, t) = 〈Bα(r
′, t)∂tBβ(r

′ + r, t)〉+ 〈∂tBα(r
′, t)Bβ(r

′ + r, t)〉 (121)
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The direct substitution (115) give following result:

∂tFαβ(r) = 2κ∇2Fαβ(r) + ΣαF3β(r) + ΣβFα3(r) +

+
〈
Bν(r

′)∂νvα(r
′)Bβ(r

′ + r) +Bα(r
′)Bν(r

′ + r)∂νvβ(r
′ + r)− (122)

−vν(r
′)∂νBα(r

′)Bβ(r
′ + r)−Bα(r

′)∂νBβ(r
′ + r)vν(r

′ + r)
〉

The average in the right side contains derivatives of the fluctuating part of the velocity in the

first degree. It is difficult to directly calculate the value of this average. The calculations will require a

substitution of the magnetic field induction known at the time that occurred earlier at δt according to

(119). Due to the short-correlated velocity field, we can choose the time interval δt much longer than the

correlation time of the velocity field and much smaller than the inverse Lyapunov exponent.

There are several types of summands. There are summands linear in δt, and terms quadratic in

velocity. In the limit δt → 0, the terms linear by this time interval will be small, and the terms that are

quadratic in the fluctuation velocity will remain moderate.

In the end, the following equation on correlator is obtained:

∂tFαβ = [Cµν(0)− Cµν(r)] ∂µ∂νFαβ + ∂µCνβ(r)∂νFαµ + ∂µCνα(r)∂νFµβ − (123)

−Fµν∂µ∂νCαβ(r) + ΣαF3β + ΣβFα3 + 2κ∇2Fαβ (124)

It turns out to be hooked with cross correlators.

Equations for cross and z-z correlators are similarly derived:

∂tF3α = [Cµν(0)− Cµν(r)] ∂µ∂νF3α + ∂µCνα(r)∂νF3µ + ΣαF33 + 2κ∇2F3α (125)

∂tF33 = [Cµν(0)− Cµν(r)] ∂µ∂νF33 + 2κ∇2F33 (126)

Note that in all equations, summands appearing in the derivation are proportional to zΣν∂ν . The sum of

all such summands in each equation yields zero when integrated by r′ due to the presence of the total

derivative in the integrand.

The behavior of autocorrelations of vertical components F33 and then cross correlators F3α

should be previously determined to find out the behavior of correlator’s components in horizontal plane.

Note that themain contribution in correlator at the early stage of the evolutionwill be given by nonhomogeneous

term containing vertical component of magnetic field induction. It will be demonstrated later which term

in correlator will be main and on what times.

Firstly, the method that allows to obtain correlator’s evolution at large times will be illustrated

at the case of two-dimensional flow. Then we will go back to the quasi-two-dimensional problem and

determine the evolution of correlator in this case at large times.
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4.2 The results of two-dimensional problem

The correlators of themagnetic field components in the plane at the initial stage grow exponentially

with time. For a two-dimensional flow, it is possible to show [11] that this is due to the presence of a source

in the system of equations for correlators. The equation for the correlators in the plane has the following

form:

∂tFαβ = [Cµν(0)− Cµν(r)] ∂µ∂νFαβ + ∂µCνβ(r)∂νFαµ + ∂µCνα(r)∂νFµβ − (127)

−Fµν∂µ∂νCαβ(r) + 2κ∇2Fαβ

The two-dimensional problem is isotropic, the correlators do not depend on the polar angle. Therefore they

are conveniently sought in the form Fαβ(r) = δαβS(r)+
rαrβ
r2

Y (r). Then such substitution in (127) will be

made and all terms will be revealed. During calculations, many repetitive constructions arise, which can

be conveniently calculated once (see Appendix), and then used repeatedly. After all the transformations

in the equation, the corresponding coefficients for the tensors δαβ and
rαrβ
r2

will be separated and then the

system of equations on them will be obtained (without writing out the dissipative contribution, taking it

into account as a cut-off scale rd):

∂tS = [C1(0)− C1(r)− C2(r)] ∂
2
rS + [C1(0)− C1(r) + 2C2(r)]

∂rS

r
− (128)

−
[
C ′′

1 (r) +
C ′

1(r)

r
+

2C2(r)

r2

]
S(r) +

2Y

r2

[
C1(0)− C1(r) +

C ′
1(r)

2r

]
;

∂tY = [C1(0)− C1(r)− C2(r)] ∂
2
rY + [C1(0)− C1(r) + 2C2(r)]

∂rY

r
− 4C2(r)

r
∂r (S + Y ) (129)

The following closed equation can be obtained on the function Φ = Y + r∂r (Y + S):

∂tΦ = [C1(0)− C1(r)− C2(r)]

(
∂2
rΦ− 1

r
∂rΦ

)
(130)

It is worth noting that all the scalar functions introduced above can be represented in the form of the action

of some tensor operator on the correlator:

S =
[
δαβ −

rαrβ
r2

]
Fαβ; Y =

[
2rαrβ
r2

− δαβ

]
Fαβ; Φ = rβ∂αFαβ (131)

A closed system with two functions can be obtained by choosing Y as the second one that contains Φ in

the inhomogeneous part:

∂tY = [C1(0)− C1(r)− C2(r)] ∂
2
rY + [C1(0)− C1(r) + 2C2(r)]

∂rY

r
+

4C2(r)

r
Y − 4C2(r)

r
Φ (132)

Φ here just acts as a source due to which the Y-component will give an exponentially growing contribution

at the growth stage.

Let’s look further, how the presence of a source provides growth on a certain range of times.
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We write the system of equations on the scales of interest to us rd � r � R :λ−1∂tΦ = (r2∂2
r − r∂r) Φ +DΦ(Φ), rd � r � R

λ−1∂tY = (r2∂2
r + 7r∂r + 8)Y − 8Φ +DY (Y ), rd � r � R.

(133)

We know the behavior of the functionsC1(r) andC2(r) for r � R and r � R. These functions determine

the solution of the system (133). We do not know the exact behavior of these functions for r ∼ R, so it is

not enough to consider the behavior of correlators on scales r � R. It is necessary to find their behavior

on r � R, and then match these two solutions on r ∼ R.

r � R : λ−1∂tΦ = R2
(
∂2
r − 1

r
∂r
)
Φ +DΦ(Φ), r � R

λ−1∂tY = R2
(
∂2
r +

1
r
∂r
)
Y − 8Φ +DY (Y ), r � R.

(134)

The solution of the first equation should be found primarily. This is a partial differential equation, which

is convenient to solve by making the Laplace transform in time:(
r2∂r − r∂r − p

)
φp = 0, r � R (135)(

∂2
r +

1

r
∂r −

p

R2

)
φp = 0, r � R (136)

The first equation has a power-law solution, the solution of the second is expressed in terms of themodified

Bessel functions:

φp = r−1−
√
p+1

[
1 + bp

( r

R

)2√p+1
]
, r � R (137)

φp ≈ BpR
−
√
p+1rK1

(√
pr

R

)
, r � R (138)

Correlators of magnetic fields are defined throughout the space. They are smooth functions, therefore two

different asymptotics should be matched on scales of the order of the correlation radius R. This system of

equations can be written in the matrix form:(
bp + 1, bp + 1 +

√
p+ 1(bp − 1)

)
ĝ = Bp (K1(

√
p,−√

pK0(
√
p))) (139)

It is interesting to study the behavior of the coefficients at small p, since they correspond to large times, the

behavior of the system onwhichwe are interested. From the fact that the elements of thematrix ĝ are finite,

we can establish the behavior of the asymptotic coefficients on small scales bp ∼ b0 + b1p ln p, b0, b1 ∼
1, p → 0 and on large scales Bp ∼ p, φp ∼ p r

R
K1(

r
R

√
p), p → 0.

The Green function is obtained from solution of (135):

GΦ(p|r, r′) =
(r′)−2+

√
p+1

2
√
p+ 1

r−1−
√
p+1

[
1 + bp

( r

R

)2√p+1
]
, r > r′ (140)
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GΦ(p|r, r′) =
(r′)−2−

√
p+1

2
√
p+ 1

r−1+
√
p+1

[
1 + bp

(
r′

R

)2
√
p+1
]
, r < r′ (141)

In the Laplace domain, the function is determined by the convolution of the Green’s function with the

initial field distribution, which is localized on the scales∼ l ∼ rd (this assumption is used here and below

to simplify calculations and avoid a range of intermediate asymptotics).

Φp(r) =

∞∫
0

dr′Φ(0)(r′)GΦ(p|r, r′) ≈ f0

l∫
rd

dr′GΦ(p|r, r′) ∼

∼ f0
1

2
√
p+ 1(1−

√
p+ 1)

(
r

rd

)−1−
√
p+1 [

1 + bp

( r

R

)2√p+1
]

(142)

The evolution of function Φ(r, t) can be found by its image Φp(r) :

Φ(r, t) =

c+i∞∫
c−i∞

dp

2πi
epλtΦp(r) = f0

c+i∞∫
c−i∞

dp

2πi
epλt

1

2
√
p+ 1(1−

√
p+ 1)

(
r

rd

)−1−
√
p+1 [

1 + bp

( r

R

)2√p+1
]
(143)

The saddle-point approximation allows to calculate this integral at large times λt � 1. Function will

primarily grow in a complex manner with time [11]:

Φ(r, t) ∝ f0√
λt

r

rd
exp

(
−λt− 1

4λt
ln2

r

rd

)
, 2λt < ln

(
R

rd

)
(144)

It is worth noting noted that it is the most significant along the trajectory in (r, t) the space rm(t) =

rde
2λt. When rm(t) reaches the correlation scale of the flow velocity field, this approximation will not be

applicable.

The growth of the function is replaced by a decrease having a power-law manner [11] at times

λt � ln
(
R
r

)
:

Φ(r, t) ∝ f0
r2

R2

1

(λt)2
, λt � ln

(
R

r

)
. (145)

The Green function for Y(r,t) is found in a similar way[11]:

GY (p|r, r′) = r−3+
√
p+1 (r

′)2−
√
p+1

2
√
p+ 1

[
1 + ap

(
r′

R

)2
√
p+1
]
, r < r′ (146)

GY (p|r, r′) = r−3−
√
p+1 (r

′)2+
√
p+1

2
√
p+ 1

[
1 + ap

( r

R

)2√p+1
]
, r > r′ (147)

The expression for the solution is following:

yp(r) =

∞∫
0

dr′GY (p|r, r′)
(
y(0)(r′)− 8Φp(r

′)
)

(148)
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The term Φp(r), will prevail over other non-homogeneous one, since unlike y
(0)(r) that is localized on

the scale of the initial distribution, it is essential on a larger spatial scale. This contribution increases with

increasing r, like the Green’s function, which ensures exponential growth at one of the stages.

The solution can be separated by two parts:

yp(r) = y(1)p (r) + y(2)p (r); (149)

y(1)p (r) ∼ f0r
1−

√
p+1

(p+ 1)(2−
√
p+ 1)

(
R

r

)4−2
√
p+1 [

1−
( r

R

)4−2
√
p+1
]
; (150)

y(2)p (r) ∼ f0r
1−

√
p+1

(p+ 1)(2 +
√
p+ 1)

(
R

r

)4−2
√
p+1 [

ap + bp +
2apbp

2 +
√
p+ 1

]
(151)

The first contribution contains a singular point p = 3, so we will consider the contours of

integration lying in the space Re(p) < 3.

In the saddle-point approximation the asymptotics can be determined at different time intervals

[11]

Y (r, t) ∝ f0
l

r
e3λt,

1

4 ln

r

rd
� λt ≤ 1

4
ln

R2

lr
; (152)

After that, the field continues to grow in a somewhatmore complicatedway, slower than exponentially,

and the manner of this growth depends on the radius of correlation of the velocity field R:

Y (r, t) ∝ f0√
λt

R4

r3l
exp

{
−λt− 1

4λt
ln2

R2

rl

}
,
1

4
ln

R2

lr
≤ λt ≤ 1

2
ln

R2

lr
; (153)

Finally, the value of the function reaches a maximum value proportional to the parametrically large value

R2

r2
, then such growth is changed by a power decrease in time:

Y (r, t) ∝ f0
R2

r2
1

(λt)2
, λt � ln

R2

lr
(154)

The last asymptotics is obtained near the singular point p = 0, which describes the behavior of the

correlator at large times.

Thus, the correlation functions of the magnetic field components in the horizontal plane at scales

much smaller than the correlation radius of the velocity field r � R decay in the limit of the large times

following a power-law:

Fαβ(r) ∝
f0

(λt)2

(
−δαβ + 2

rαrβ
r2

) R2

r2
, rd � r � R (155)

Fαβ(r) ∝
f0

(λt)2
R2

r2
δαβ, r . rd (156)

Thus, a single-point correlator has a diagonal form, and a point-to-point correlator is determined by both

contributions δαβ и
rαrβ
r2

.

It is worth noting that the tensor of a different-point correlator is traceless.
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4.3 The results of quasi-two-dimensional flow

4.3.1 Correlation function F33

The equation for this correlation function is following:

∂tF33 = [Cµν(0)− Cµν(r)] ∂µ∂νF33(r) + 2κ∇2F33 (157)

Let’s reveal Cµν using relation (113) and substituting:

∂tF33 = [C1(0)− C1(r)] ∂
2
µF33(r) + 2κ∇2F33 + C2(r)

rµrν
r2

∂µ∂νF33; (158)

Note that rµrν∂µ∂ν =
(
x ∂
∂x

+ y ∂
∂y

)2
−
(
x ∂
∂x

+ y ∂
∂y

)
= (r∂r)

2 − r∂r = r2∂2
r .

The correlator of vertical fields is invariant with respect to rotation in the horizontal plane,

therefore it will not depend on the polar angle:

∂2
µ = ∂2

r +
1
r
∂r.

With this in mind, we have:

∂tF33 = [C1(0)− C1(r)− C2(r)] ∂
2
rF33 + [C1(0)− C1(r)]

1

r
∂rF33 + 2κ∇2F33; (159)

Now we will deal with the dissipative term. It should be noted that the scale of dissipation due to the

strong shift changes and becomes r̃d = rd
Σ
λ
. The dissipative summand on the scales of interest is small in

comparison with the others, but it can not be neglected. It can be taken into account in a cut-off dissipation

scale. It is denoted as D (F ) .

The remaining terms contain only derivatives with respect to coordinates in the plane, and for

small z the correlator depends little on the vertical coordinate. Thus, the equation can immediately be

reduced to a two-dimensional:

The equation on F is following:

∂tF (r) = [C1(0)− C1(r)− C2(r)] ∂
2
rF (r) + [C1(0)− C1(r)]

1

r
∂rF (r) +D (F ) (160)

Let’s write down one more time the correlators of velocity field at r � R:

C1(r) = λ(R2 − 3r2); C2(r) = 2λr2; C1(0)− C1(r) = 3λr2; C1(0)− C1(r)− C2(r) = λr2 (161)

The dissipative term can be omitted in the region of interest, taking into account dissipation only in the

form of a scaling scale.

The equation (159) will have the following form in two different limits:

λ−1∂tF = r2∂2
rF + 3r∂rF ; r̃d � r � R (162)

λ−1∂tF = R2

(
∂2
rF +

1

r
∂rF

)
; r � R
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Those equations can be solved using Laplace transformation F → Fp, λ
−1∂t → p. Then we match two

different solutions at r � R and r � R at the boundary r ∼ R :(
r2∂2

r + 3r∂r − p
)
Fp = 0; r̃d � r � R (163)(

∂2
r +

1

r
∂r −

p

R2

)
Fp = 0; r � R

General solution of the first one:

Fp = r−1−
√
1+p + cpR

−2
√
p+1r−1+

√
p+1 (164)

General solution of the second one:

Fp = CpR
−1−

√
p+1K0

( r

R

√
p
)

(165)

Green function at r̃d � r � R :

GF (p|r, r′) =
1

(r′)2W (r′)
u(r)v(r′), r > r′ (166)

GF (p|r, r′) =
1

(r′)2W (r′)
u(r′)v(r), r′ > r; (167)

where u(r) = r−1+
√
p+1, v(r) = r−1−

√
p+1
[
1 + cp

(
r
R

)2√p+1
]
.

GF (p|r, r′) =
(r′)

√
p+1

2
√
p+ 1

r−1+
√
1+p

[
1 + cp

(
r′

R

)2
√
p+1
]
, r < r′ (168)

GF (p|r, r′) =
(r′)

√
p+1

2
√
p+ 1

r−1−
√
1+p

[
1 + cp

( r

R

)2√p+1
]
, r > r′ (169)

Matching: (
Fp(R− 0), F ′

p(R− 0)
)
ĝ = Cp

(
Fp(R + 0), F ′

p(R + 0)
)

(170)

(
cp + 1,−(cp + 1) +

√
p+ 1(cp − 1)

)
ĝ = Cp (K0(

√
p),−√

pK1(
√
p)) (171)

gives the following result at small p:

cp ∼ c0 + c1 ln
−1(p), Cp ∼ ln−1(p) (172)

In the end, the evolution of the correlators of the components of the magnetic field in the plane should be

found. For this purpose it will be enough to find the Laplace transform of functions F33 and F3α.
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Fp(r) =

∞∫
0

dr′GF (p|r, r′)F (0)
p (r′) = f0

l∫
r̃d

dr′(r′)
√
p+1 r

−1−
√
p+1

2
√
p+ 1

(
1 + cp

( r

R

)2√p+1
)

≈ (173)

≈ f0

(
r

r̃d

)−1−
√
p+1

1

2
√
p+ 1(

√
p+ 1 + 1)

(
1 + cp

( r

R

)2√p+1
)
;

Here and further the scale of dissipation and the scale of initial field distribution is assumed to be of one

order to avoid consideration of a large number of intermediate asymptotics: l ∼ r̃d.

We will primarily study correlator’s behavior at not very large times t.

F (r, t) =

c+i∞∫
c−i∞

dp

2πi
epλtf0

(
r

r̃d

)−1−
√
p+1

1

2
√
p+ 1(

√
p+ 1 + 1)

(
1 + cp

( r

R

)2√p+1
)

= (174)

= f0
r̃d
r

c+i∞∫
c−i∞

dp

2πi
e
pλt−

√
p+1 ln

(
r
r̃d

)
1

2
√
p+ 1(

√
p+ 1 + 1)

(
1 + cp

( r

R

)2√p+1
)
;

The saddle-point is determined by the maximum of the last exponent at times 2λt < ln
(

r
r̃d

)
. We can’t just

find a minimum of written earlier exponent at times smaller than the latest one because in this case we will

have a saddle-point p < 0 but p = 0 – is a singular point. Here the second term is not taken into account.

So, the value of the exponent at the saddle-point is λt− 1
2
√
p+1

ln
(

r
r̃d

)
= 0; p = −1 +

(
ln
(

r
r̃d

)
2λt

)2

.

We will get:

F (r, t) ∝ f0
r̃d
r

1√
λt

1

1 +
ln
(

r
r̃d

)
2λt

e−λt−
ln2

(
r
r̃d

)
4λt , 1 � 2λt < ln

(
r

r̃d

)
(175)

The calculations are similar to the case described below, there it is painted a little more.

F (r, t) = f0
r̃d
r

c+i∞∫
c−i∞

dp

2πi
e
pλt−

√
p+1 ln

(
r
r̃d

)
+2

√
p+1 ln

(
r
R

) 1

2
√
p+ 1(

√
p+ 1 + 1)

cp = (176)

= f0
r̃d
r

c+i∞∫
c−i∞

dp

2πi
e
pλt−

√
p+1 ln

(
R2

rr̃d

)
1

2
√
p+ 1(

√
p+ 1 + 1)

cp

Let’s find saddle point at larger times:

λt−
ln
(

R2

rr̃d

)
2
√
p+ 1

= 0; p1 = −1 +

 ln
(

R2

rr̃d

)
2λt

2

.

F (r, t) ∝ Xe
−λt− 1

4λt
ln2

(
R2

rr̃d

)
;

1

2
ln

(
r

r̃d

)
< λt <

1

2
ln

(
R2

rr̃d

)
;(177)

X ∼ f0
r̃d
r

∫
dp

2πi

cp
2
√
p+ 1(

√
p+ 1 + 1)

eZ
′′(p1)(p−p1)2/2 = /Z ′′(p1) = 2

(λt)3

ln2
(

R2

rr̃d

)/ = f0c0
r̃d
r

1√
λt

1

1 + ln(R2/(rr̃d))
2λt

.
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There are no singularity at p = 0. Thereforewewill have the following expression atλt � ln2
(

R2

rr̃d

)
F (r, t) ∝ f0c0

r̃d
r

1√
λt

e−λt (178)

So we obtain exponentially decreasing with time solution in the absence of source.

4.3.2 Correlation function F3α

The equation for this correlation function is following:

∂tF3α = [Cµν(0)− Cµν(r)] ∂µ∂νF3α(r, φ) + ∂µCνα(r)∂νF3µ + 2κ∇2F3α + ΣαF33(r) (179)

The correlator’s dependence on vertical coordinate is still weak. However, in contrast to the correlator

of vertical components, the cross correlator depend on the polar angle. We write the equation by a scalar

quantity P (r, φ) = rαF3α(r, φ) :

∂tP =
{
[C1(0)− C1(r)] rα∂

2
νF3α − C2(r)

rµrν
r2

rα∂µ∂νF3α

}
+ rα∂µC1(r)∂αF3µ + (180)

+rα∂µ

[
C2(r)

rαrν
r2

]
∂νF3µ + Σr cosφF +D (F3α) rα

Let us analyze what happens to each term separately, multiplying the entire equation by rα :

∂ν∂ν (rαF3α) = rα∂ν∂νF3α + 2∂νF3ν (181)

∂µ∂νP = ∂µ∂ν (rαF3α) = rα∂µ∂νF3α + ∂νF3µ + ∂µF3ν (182)

1

r
∂rP =

rν
r2
∂ν (F3µrµ) =

rµrν
r2

∂µF3ν +
rµ
r2
F3µ (183)

rµrν
r2

rα∂µ∂νF3α = ∂2
rP − 2

[
1

r
∂rP − P

r2

]
(184)

[Cµν(0)− Cµν(r)] rα∂µ∂νF3α =

= [C1(0)− C1(r)]

((
∂2
r +

1

r
∂r +

1

r2
∂2
φ

)
P (r, φ)− 2∂νf3ν

)
− C2(r)

(
∂2
r − 2

∂r
r

+
2

r2

)
P (r, φ)(185)

Due to the solenoidal nature of the magnetic field, the convolution is expressed in terms of the correlator

of vertical fields F33:

∂νF3ν = (∂1 〈B3(r
′)B1(r

′ + r)〉+ ∂2 〈B3(r
′)B2(r

′ + r)〉) = (186)

= 〈B3(r
′) [∂1B1(r

′ + r) + ∂2B2(r
′ + r)]〉 = −∂3F33 (187)
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In the spatial region of interest to us, this term turns out to be negligibly small in comparison with another

term in the inhomogeneous part of the equation.

rα∂νC1(r)∂αF3ν =
rα
r
C ′

1(r)rν∂αF3ν =
C ′

1(r)

r
[r∂rP − P ] (188)

rα∂µ

(
C2(r)

rαrν
r2

)
∂νF3µ =

C ′
2(r)

r
[r∂rP − P ] + rαC2(r)∂µ

[rαrν
r2

]
∂νF3µ ≈ (189)

≈ C ′
2(r)

r
[r∂rP − P ]

From the condition for the incompressibility of a liquid, the connection between the functions can be

obtained C1 и C2: C
′
1(r) + C ′

2(r) +
C2(r)

r
= 0. Then

∂νCαµ(r)rα∂µF3ν(r, φ) ≈ −C2(r)

[
2

r
∂rP − 2P

r2

]
(190)

Then we collect all founded contributions in one equation, omitting the diffuse term, since the scale of

the dissipation will be taken into account in the future as a cut-off of the integral on the dissipation scale:

∂tP = [C1(0)− C1(r)]

(
∂2
rP +

1

r
∂rP +

∂2
φP

r2

)
− C2(r)∂

2
rP +

+Σr cosφF ; (191)

The non-homogeneous term, proportional to z, is negligible compared to another non-homogeneous term

in the range of interest.

∂tP = [C1(0)− C1(r)− C2(r)] ∂
2
rP + [C1(0)− C1(r)]

(
1

r
∂rP +

∂2
φP

r2

)
+ Σr cosφF ; (192)

Then the variables in the equation are separated:

P (r, φ) = Π(r) cosφ; (193)

∂tΠ = [C1(0)− C1(r)− C2(r)] ∂
2
rΠ+ [C1(0)− C1(r)]

(
1

r
∂rΠ− Π

r2

)
+ ΣrF (194)

We obtain equation on Π using (161):

λ−1∂tΠ =
[
r2∂2

r + 3r∂r − 3
]
Π+

Σ

λ
rF ; r � R (195)

λ−1∂tΠ = R2

(
∂2
r +

1

r
∂r −

1

r2

)
Π+

Σ

λ
rF ; r � R

Laplace transformation: Φ → Φp, λ−1∂t → p.(
r2∂2

r + 3r∂r − 3− p
)
Φp = 0; r̃d � r � R (196)(

∂2
r +

1

r
∂r −

1

r2
− p

R2

)
Φp = 0; r � R
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Solutions:

Πp ∼ r−1−
√
p+4

(
1 + bp

( r

R

)2√p+4
)
, r � R (197)

Πp ∼ BpR
−1−

√
p+4K1

(
r
√
p

R

)
, r � R (198)

Green function at r̃d � r � R :

GΠ(p|r, r′) =
(r′)−

√
p+4

2
√
p+ 4

[
1 + bp

(
r′

R

)2
√
p+4
]
r−1+

√
p+4, r < r′ (199)

GΠ(p|r, r′) =
(r′)

√
p+4

2
√
p+ 4

[
1 + bp

( r

R

)2√p+4
]
r−1−

√
p+4, r > r′ (200)

Matchinf of two solutions:(
bp + 1, −bp − 1 +

√
p+ 4(bp + 1)

)
ĝ = Bp

(
K1(

√
p), −1

2
(K0(

√
p) +K2(

√
p))

)
; (201)

bp ∼ b0 + b1p, Bp ∼ p, p → 0 (202)

Π(r, t) =

c+i∞∫
c−i∞

dp

2πi
epλt

R∫
0

dr′GΠ(p|r, r′)
(
Π(0)

p (r′) +
Σ

λ
r′Fp(r

′)

)
(203)

For further calculations namely to study the behavior of the correlator of the magnetic field components

in the plane it is sufficient to know only the image of this function:

Πp(r) ≈
f0

2
√
p+ 4(

√
p+ 4 + 1)

(
r̃d
r

)2
√
p+4 [

1 + bp

( r

R

)2√p+4
]
+

+

R∫
0

dr′GΠ(p|r, r′)
Σ

λ
r′f0

(
r′

r̃d

)−1−
√
p+1

1

2
√
p+ 1(

√
p+ 1 + 1)

(
1 + c33p

(
r′

R

)2
√
p+1
)

=

= Πhom
p (r) + Π(1)

p (r) + Π(2)
p (r); (204)

which is formed from a homogeneous and two non-homogeneous parts. The contribution from the homogeneous

part will be significantly less than from the non-homogeneous part, since it will be typed on the scale of

the initial distribution l, which is much smaller than the characteristic distances on which the behavior

of the different-point correlators is studied. The first inhomogeneous part is determined by the Green

function at r′ < r :
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Π(1)
p (r) =

Σ

λ

f0r
−1−

√
p+4

4
√
p+ 1

√
p+ 4(1 +

√
p+ 1)

[
1 + bp

( r

R

)2√p+4
]
·

·
r∫

0

dr′(r′)1+
√
p+4

(
r′

r̃d

)−1−
√
p+1
[
1 + c33p

(
r′

R

)2
√
p+1
]
=

Σ

λ

f0r

4
√
p+ 1

√
p+ 4(1 +

√
p+ 1)

(
r

r̃d

)−1−
√
p+1

·(205)

·
[

1

1 +
√
p+ 4−

√
p+ 1

+
c33p

1 +
√
p+ 1 +

√
p+ 4

( r

R

)2√p+1
] [

1 + bp

( r

R

)2√p+4
]

and the second one forms at the scale r′ > r :

Π(2)
p (r) =

Σ

λ

f0
4
√
p+ 1

√
p+ 4(1 +

√
p+ 1)r̃d

( r

R

)−1+
√
p+4
(
R

r̃d

)−
√
p+1

(206)[
1

1−
√
p+ 1−

√
p+ 4

+
bp

1−
√
p+ 1 +

√
p+ 4

+
c33p

1 +
√
p+ 1−

√
p+ 4

+
c33p bp

1 +
√
p+ 1 +

√
p+ 4

]
The ultimate goal is to study the behavior of the correlations of the magnetic field components

in the plane, for which it is sufficient to know the behavior of the cross correlator F3α.

4.3.3 Correlation function Fαβ

Wewill further investigate the correlations of the components of themagnetic field in the horizontal

plane.

The equations for the correlators have the following form:

∂tFαβ = L̂µν
αβFµν + (Σαrβ + Σβrα)

Π(r) cosφ

r2
, (207)

where L̂µν
αβ is he same operator as in two-dimensional problem.

The quasi-two-dimensional situation differs from the two-dimensional one by the presence of

an inhomogeneous term, which depends on the vertical component of the magnetic field. As for the

homogeneous part some quantities such as the effective dissipation scale and the amplitude f0 should

be redefined. Both these circumstances are caused by the presence of a shear flow.

Let us find out how much will be the contribution to the correlator produced by inhomogeneous

terms. The behavior ofmagnetic fields atmoderate polar angles sinφr ∼ 1, cosφr ∼ 1will be considered.

Then the general structure of the tensor will be the same as in the two-dimensional case, but the evolution

of the scalar functions Φ and Y, which determine the behavior of correlators, can change due to the

presence of an inhomogeneous contribution. Further it is necessary to understand, howmuch this evolution

will change.

First we investigate the closed equation on Φ, which was previously defined as Φ = rβ∂αFαβ:

∂tΦ = [C1(0)− C1(r)− C2(r)]

(
∂2
r −

1

r
∂r

)
Φ + c1Σ

Π(r)

r
+ c2ΣΠ

′(r) (208)
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As will be shown later, the contributions from the inhomogeneous part turn out to be small, so we are not

interested in the exact values of the numerical coefficients c1 and c2.

The solution will have the following form n the image space:

Φp(r) = Φ2D
p (r) + Σ

R∫
0

dr′GΦ(p|r, r′)
[
c1

d

dr
Πp(r

′) + c2
Πp(r

′)

r′

]
(209)

We first find a derivative of the first part of Π
(1)
p (r) of the inhomogeneous term arising due to

the shear flow:

d

dr
Π(1)

p (r) =
Σ

λ

f0
4
√
p+ 1

√
p+ 4(1 +

√
p+ 1)

(
r

r̃d

)−1−
√
p+1

[
−

√
p+ 1

1 +
√
p+ 4−

√
p+ 1

+
c33p

√
p+ 1

1 +
√
p+ 1 +

√
p+ 4

( r

R

)2√p+1

+ (210)

+
bp(2

√
p+ 4−

√
p+ 1)

1 +
√
p+ 1 +

√
p+ 4

( r

R

)2√p+4

+
c33p bp(2

√
p+ 4 +

√
p+ 1)

1 +
√
p+ 1 +

√
p+ 4

( r

R

)2√p+4+2
√
p+1
]

and than the second one Π
(2)
p (r):

d

dr
Π(2)

p (r) =
Σ

λ

f0(
√
p+ 4− 1)

4
√
p+ 1

√
p+ 4(1 +

√
p+ 1)r̃dR

( r

R

)−2+
√
p+4
(
R

r̃d

)−
√
p+1

(211)[
1

1−
√
p+ 1−

√
p+ 4

+
bp

1−
√
p+ 1 +

√
p+ 4

+
c33p

1 +
√
p+ 1−

√
p+ 4

+
c33p bp

1 +
√
p+ 1 +

√
p+ 4

]
Acontribution containing

Πp(r)

r
will have the same powers of r as the above, but slightly different coefficients

depending on p.

The term Π
(2)
p (r) gives an expression, part of the terms in which has a singularity at the point

p = 0 :

R∫
0

dr′GΦ(p|r, r′)
Σ

λ

d

dr′
Π(2)(r′) =

f0
Σ
λ

8
√
p+ 4(p+ 1)(1 +

√
p+ 1)Rr̃d

·

·

[ r∫
0

dr′
(
r′

R

)√
p+4−2(

R

r̃d

)−
√
p+1

(r′)
√
p+1−2r−1−

√
p+1

[
1 + bp

( r

R

)2√p+1
]
+(212)

+

R∫
r

dr′
(
r′

R

)√
p+4−2(

R

r̃d

)−
√
p+1

(r′)−
√
p+1−2r−1+

√
p+1

[
1 + bp

(
r′

R

)2
√
p+1
]]

·

·
[

1

1−
√
p+ 1−

√
p+ 4

+
bp

1−
√
p+ 1 +

√
p+ 4

+
c33p

1 +
√
p+ 1−

√
p+ 4

+
c33p bp

1 +
√
p+ 1 +

√
p+ 4

]
=
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After integration, there will be several contributions, some of which will be singular at p → 0 :

=
f0

Σ
λ

8
√
p+ 4(p+ 1)(1 +

√
p+ 1)Rr̃d

·

·

[( r

R

)√p+4−2
(
R

r̃d

)−
√
p+1

1(√
p+ 1 +

√
p+ 4− 3

)
r2

[
1 + bp

( r

R

)2√p+1
]
+(213)

+
( r

R

)√p+4−2
(
R

r̃d

)−
√
p+1

1

r2
(
3 +

√
p+ 1−

√
p+ 4

) + bp
1

R2
(√

p+ 4 +
√
p+ 1− 3

) ( r

R

)√p+1−1
(
r̃d
R

)√
p+1
]
·

·
[

1

1−
√
p+ 1−

√
p+ 4

+
bp

1−
√
p+ 1 +

√
p+ 4

+
c33p

1 +
√
p+ 1−

√
p+ 4

+
c33p bp

1 +
√
p+ 1 +

√
p+ 4

]
We will consider the behavior of the fields at the longest times λt � ln R

r
.We are looking for a

maximum of exponent at large times:

λt− 1

2
√
p+ 4

ln
R

r
− 1

2
√
p+ 1

ln
R

r̃d
− 1√

p+ 4 +
√
p+ 1− 3

(
1

2
√
p+ 1

+
1

2
√
p+ 4

)
= 0 (214)

The saddle point will approach zero at long times:

λt− 1

3p0/4

(
1

2
+

1

4

)
= 0; (215)

p0 =
1

λt
→ 0 (216)

Integration in the vicinity of this saddle point yields the same power law ∝ 1
(λt)2

, as in the two-

dimensional case.

Similar results are obtained for the remaining terms for other contributions to Φ, as well as for

the equation for the function Y, which has the following form:

∂tY = L̂2D
Y Y + L̂2D

Φ Φ + c3Σ
Π(r)

r
, c3 ∼ 1 (217)

L̂2D
Y , L̂2D

Φ – are the same operators as in the two-dimensional case.

Thus, due to the shear flow, the dissipation scale changes, increasing by Σ
λ
times, as well as the

initial amplitude f0. The new amplitude has the form f0√
κ̃t

∼ 1
r̃d

√
λt

∼ λ
Σ

1√
κt
.

Thus, for large times, single-point and point-to-point correlators decrease in the same power

manner with time, however, they depend on the shear in different ways:

Fαβ ∝ λ

Σ

f0√
κt(λt)2

(
−2rαrβ

r2
+ δαβ

)
R2

r2
, λt � ln

R

r
, r � rd

Σ

λ
(218)
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Fαβ ∝
(
λ

Σ

)3
f0√

κt(λt)2
R2

r2d
δαβ, λt � ln

λR

Σrd
, r � rd

Σ

λ
(219)

The above results are valid for moderate polar angles sinφr, cosφr ∼ 1. At angles close to 0 or π/2 due

to the anisotropy of the problem dips can occur when the polar angle is approached to these values.

A single-point correlator decreases faster with increasing shear than a point-to-point correlation

function. We also note that the correlators are monotonically decreasing as a function of distance.

5 Conclusion

Thus, in this paper the behavior of the magnetic field in a chaotic quasi-two-dimensional flow

with a strong shift at timesmuch higher than the inverse Lyapunov exponent is considered. In the Lagrangian

frame of reference, the situation is similar to the two-dimensional problem, in which there is a singular

point and there is no additional flow, and differs from it only by the appearance of a strong shear.

In a two-dimensional problem, the fields grow exponentially with time, then the correlations

weaken, and the fields begin to decrease with time following a power-law. The nature of the change of the

magnetic field with time in this formulation is the same as in the two-dimensional case, up to a multiplier

that occurs due to the diffusion along the vertical coordinate z. Thus, the regularities obtained in the work

confirm the possibility of the appearance of magnetic fields in astrophysical objects due to the Dynamo

effect. The structure of the correlators is very similar to the two-dimensional case. However, the presence

of the strong shear effect on the amplitude of the fields. In particular, the values of the fields in the non-

dissipative case significantly exceed the values of the fields for the two-dimensional case and are large

in the vertical gradient parameter Σ
λ
� 1. In the presence of finite dissipation, the opposite effect occurs.

The main difference from the two-dimensional case arises only in the fact that there is a change in the

effective scale of dissipation rd, which increases in proportion to the magnitude of the shear in
Σ
λ
times.

Thus, with the final dissipation at sufficiently large times, the value of the field begins to decrease with

the increase in the shear. Since in real flows there is always a final dissipation, the presence of a shear in

the flows leads to a weakening of the Dynamo effect.

The author is grateful toKolokolov I.V., LebedevV.V., Vergeles S.S. andGabitov I.R. for numerous

discussions, advices and corrections. The work would not have been written without their participation.
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6 Appendix: The differentiation of tensors

Formulas for the differentiation of certain tensors that depend on polar coordinates are presented

in this section. They were often encountered in finding the behavior of correlators over long times:

∂ν

(rαrβ
r2

)
=

δανrβ + δβνrα
r2

− 2
rαrβrν
r4

; (220)
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∂α

(rαrβ
r2

)
=

rβ
r2
; (221)

∂µ
δβνrα
r2

= δβν
r2δαµ − 2rαrµ

r4
; (222)

∂µ
rαrβrν
r4

=
r4(δβµrαrν + δαµrβrν + δνµrαrβ)− 4r2rαrβrνrµ

r8
; (223)

∂ν∂µ

(rαrβ
r2

)
=

δανδβµ + δαµδβν
r2

+ 8
rαrβrνrµ

r6
− (224)

−2
δβµrαrν + δνµrαrβ + δαµrβrν + δβνrαrµ + δανrβrµ

r4
;

∂ν∂ν

(rαrβ
r2

)
= − 2

r2

(
2rαrβ
r2

− δαβ

)
; (225)

rµ∂µ

(rαrβ
r2

)
= 0; (226)

rα∂ν

(rαrβ
r2

)
= δβν −

rβrν
r2

. (227)
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