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Abstract

Topological superconductivity is a relatively fresh topic of condensed matter physics. Being a
rich platform for intriguing and beautiful problems, it also has a huge and unrevealed potential for
technology, especially for quantum computing.

The notion of topological superconductivity is closely related to a possibility of presence of
a Majorana state — special topologically protected state, usually localized near some topological
defect in a topological superconductor. Despite numerous theoretical proposals of constructing this
state in condensed matter, its observation in experimental setup is still a big challenge

In this work the system of two one-dimensional superconducting wires connected with a
tunnel junction is considered. Under special conditions this system can host a Majorana fermion.
The properties of this system, such as subgap states, stationary supercurrent and ionization of the
Majorana state under oscillating external voltage are studied. The results of this work have the
potential in developing a new technique of detecting Majorana fermions in such systems.
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Chapter 1

Introduction

The system considered in this work is a pair of 1D superconductors connected with a Josephson

junction. For all the discussion presented it’s crucial for one of superconductors to be topological.

Topological superconductivity is a relatively fresh topic in physics. On the one hand it’s

connected to particle physics through the notion of Majorana fermion – the particle coinciding with

its own antiparticle [1]. It appears not only in Standard model context [2–4] , but also as a state

in solids [5–16]. Despite the difference between these entities, there is a clear analogy between

majoranas in condensed matter and majoranas in particle physics [17, 18].

On the other hand topological superconductivity is of interest to quantum computation com-

munity as a platform to build fault tolerant quantum memory [6, 19–21]. Although significant dif-

ficulties have appeared on this way, the intention to realize this program is still strong and gives the

motivation to build superconducting samples, which demonstrate signatures of nontrivial topology

and presence of Majorana fermions [22–24].

The proposition of using superconducting wires as carriers ofMajorana fermions came from

a seminal work of Kitaev [6]. The key ingredient of this system was a p-wave superconductivity

assumed to be present in a wire. It was shown, that under certain conditions the Majorana state can

be present at the end of the wire. After some time other propositions [25, 26] appeared, based on

seminconductor-superconductor heterostructureswith s-wave superconductivity, externalmagnetic

field and spin-orbit coupling. It was showed, that the sign of quantity g = B−
√

∆2 + µ2 ( where

B is magnetic field,∆ is the absolute value of superconducting order parameter and µ is a chemical

potential) can be used as a topological index, and a Majorana state will appear where the sign of g

is changing.

The model, considered in this work is close to the ones used in [25, 26]. It consists of

two superconducting wires connected with a tunnel junction. However instead of domain wall of

the sign of g, a tunnel barrier between areas with g > 0 and g < 0 is introduced. This model

is formulated in detail in chapter 2. The spectrum of this model and stationary supercurrent are

studied in chapter 3 and the ionization of theMajorana state under small external oscillating voltage

is considered in chapter 4. Chapter 5 stands for the discussion of obtained results and their possible

experimental realization, while chapter 6 concludes the study.
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Chapter 2

The model

Themodel studied here is mostly inspired by the works [25] and [26] with the main difference being

the presence of a tunnel contact between the wires. As will be shown in subsequent chapters, the

barrier doesn’t affect the appearance of Majorana state, but has important consequences for other

properties of the system. In this chapter the model itself is presented.

2.1 Problem statement

The system under consideration consists of two 1D s-wave superconducting wires connected with a

tunnel junction. There is a strong spin-orbit coupling assumed to be present and external magnetic

field is applied in the direction perpendicular to the wire. The Hamiltonian of the bulk of each wire,

written in the Bogoliubov-de-Gennes formalism, is similar to the ones presented in [25] and [26]:

H =

∫
dy Ψ† (y)HΨ(y) Ψ =


ψ↑

ψ↓

ψ†
↓

−ψ†
↑

 (2.1)

H =

(
p2

2m
− µ0

)
τz + upσzτz +Bσx +∆τϕ (2.2)

Here σi and τi are Pauli matrices in spin and particle-hole subspaces respectively, τϕ =

τx cosϕ − τy sinϕ, with ϕ being the superconducting phase, µ0 is a chemical potential, B is an

external magnetic field, ∆ is the absolute value of superconducting order parameter and u is spin-

orbit coupling constant with the dimension of velocity. The wire is aligned along the y-axis, while

the direction of the magnetic field coincides with x-axis. Note, that only one component of spin-

orbit is nonzero due to 1D nature of the problem.

The tunnel junction is introduced by applying an external electrical field. Its potential pro-

file U (y) is presented on figure 2.1(a). Inside each wire the potential is assumed to be homoge-

neous, though its value can be different to the right and to the left of the junction. The junction

itself is modeled by a sharp peak of the potential.

To take this into account one should include an additional term U (y) τz in (2.2). However
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this term can be combined with the second term of by (2.2) by introducing an effective chemical

potential µ (y) = µ0 − U (y) (see figure 2.1(b)). From now on all presence of the external field

will be hidden in µ (y).

The superconducting phase ϕ in left and right wires, ϕL and ϕR, can also be different. The

phase inside the barrier is undefined as ∆(y) = 0 there.

Figure 2.1: (a) y-profile of external electrical field. (b) y-profile of effective chemical potential

Finally, the BdG Hamiltonian for the model reads:

H =

(
p2

2m
− µ (y)

)
τz + upσzτz +Bσx +∆(y) τϕ(y) (2.3)

with

µ (y) =


µL, −L

2
< y

µb, −L
2
< y < L

2

µR,
L
2
< y

∆(y) =

∆, y > L
2
, y < −L

2

0, −L
2
< y < L

2

(2.4)

ϕ (y) =

ϕL, −L
2
< y

ϕR,
L
2
< y

(2.5)

with L being the size of the junction. Note, that the parameters B, u, ∆ and m are taken to be

constant across the system.

This setup is close to one of the models considered by Oreg et al. in [25] (”Spatially varying

µ” section). The difference is in the profile of µ (y) – in [25] there is a step in effective chemical

potential, while here this function has a well.

In [25] it’s also shown that theMajorana fermion appears at the interface between areas with

different signs of the difference B −
√
µ2 +∆2. As will be shown further, this is also relevant to
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the system presented here. Note, that ifB > |∆| this condition can always be satisfied by choosing
appropriate µL and µR.

When two wires of different sign of g are assumed in this work, the trivial wire will always

be on the left, while the topological wire will always be on the right.

Themodel, described by (2.3) and (2.4) possesses a big number of external parameters. Dif-

ferent areas in this parameter space require different approaches and sometimes lead to completely

different physics. Here certain experimentally reasonable constraints are assumed:

µL, µR ≪ B ≈ ∆ ≪ mu2 ≪ |µb| (2.6)

The experimental justification of this choice is given in chapter 5. From the theoretical

point of view the benefit of constraints µL, µR ≪ B ≈ ∆ ≪ mu2 is that they make it possible

to use approximate wavefunctions in the wires. The inequality mu2 ≪ |µb| sets the system in the

tunneling regime.

2.2 The dispersion of a homogeneous wire

Before discussing the properties of the junction it’s necessary to consider a dispersion of a homoge-

neous wire modeled with the Hamiltonian (2.2). Although this can be done exactly, it’s instructive

to obtain this dependence step by step, starting with a simpler model and adding terms until the

Hamiltonian (2.2) is restored.

The starting point is the Hamiltonian consisting only of kinetic energy and chemical po-

tential terms: H = p2

2m
− µ. It has simple parabolic dispersion presented on fig. 2.2(a). When

the spin is introduced and spin-orbit coupling term upσz is added, the parabola splits in two (fig.

2.2(b)), each one corresponding to its own z-projection of the spin. After introducing a magnetic

field with Bσx term, the gap at the intersection opens (fig. 2.2(c)). The next step is introduc-

ing the BdG formalism, by adding the multiplier τz everywhere except for magnetic field term:

H =
(

p2

2m
− µ0

)
τz + upσzτz + Bσx. This procedure doubles the spectra in a way that each

eigenvector with energyE obtains a partner eigenvector with energy−E, so two additional energy
branches appear, being a mirror reflection of initial dispersion. This is presented on fig. 2.2(d),

with the dashed lines being BdG partners. The last step is adding the superconducting term ∆τϕ,

which opens the gap where dashed and solid lines intersect (fig. 2.2(e)).

As was mentioned before, the dispersion can be found explicitly. As was pointed out in

[25], it can be done by squaring the Hamiltonian (2.2) twice and solving a resulting biquadratic
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equation, leading to:

E2
1,2 (p) = B2 +∆2 + ξ2p + (up)2 ± 2

√
B2∆2 +B2ξ2p + (up)2 ξ2p (2.7)

with ξp = p2

2m
− µ. This dependence, presented on fig. 2.2(f), has two positive and two

negative branches, as any BdG dispersion with electron-hole symmetry does. In further discussion

only positive ( E > 0) branches are considered , if opposite is not mentioned.

Figure 2.2: The dispersion of different Hamiltonians: a) mere kinetic energy and chemical poten-

tial: H = p2

2m
− µ b) spin-orbit coupling added: H = p2

2m
− µ0 + upσz c) magnetic field added:

H = p2

2m
−µ0+upσz+Bσx d) BdG formalism introduced: H =

(
p2

2m
− µ0

)
τz+upσzτz+Bσx

e) The complete Hamiltonian of homogeneous wire: H =
(

p2

2m
− µ0

)
τz + upσzτz +Bσx +∆τϕ.

The parameters of the Hamiltonians for the plotting are: B = 0.2, ∆ = 0.3, u = 0.9, m = 1,

µ = 0.11

If the constrains (2.6) are assumed, the lower branch of this spectra has three minima: one

of them is at p = 0 exactly, and two others are at p = ±2mu in the leading order. The last two

are not very interesting – the energy gap there is approximately equal to ∆, as it should be due to

perturbative introduction of superconducting term. On the contrary, the minimum at p = 0, which

is given by[25]:

E2 (0) = |g| , g = B −
√
∆2 + µ2 (2.8)

is the most important peculiarity of the spectrum. First, as µ ≪ B ≈ ∆, it’s the true gap of the

spectrum as
∣∣∣B2 −

√
∆2 + µ2

∣∣∣ ≈ ∣∣∣B −∆− µ2

2∆

∣∣∣ ≪ ∆. Second, the sign of g defines whether

the wire host a Majorana state. Here it’s useful to introduce the terminology: if g > 0 the wire is

called ”topological”, otherwise it’s called ”trivial”. In [25] and [26] it was derived, that the contact
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of trivial and topological wire hosts a Majorana state. It can also be shown (see section 3.5.1), that

this state is present at the end of a topological wire and isn’t there for a trivial one.

Note, that when two wires are considered, there are two gaps, gL,R = B −
√

∆2 + µ2
L,R.

When the magnetic field B is close to ∆, one can change the signs of gL,R by changing µL,R

respectively.

For further discussion it’s necessary to clarify the place of gL,R in the parameter hierarchy

of the problem. To do so, we introduce β = B−∆. AsB ≈ ∆, we find that β ≪ B,∆. Recalling

µL,R ≪ B,∆, one immediately finds that gL,R = B −
√
∆2 + µ2

L,R ≈ β − µ2
L,R

2∆
≪ B,∆.

2.3 Short-wave and long-wave wavefunctions

Though the wavefunctions of (2.2) can be found explicitly, their form is complicated enough to stall

any further analysis. However, with the parameter hierarchy introduced in the previous section the

Hamiltonian (2.2) can be treated perturbatively with the following strategy.

At first step only kinetic and spin-orbit terms are left in the Hamiltonian (2.2), so

H ≈
(
p2

2m
+ upσz

)
τz (2.9)

As the presence of the Majorana state depends on sign of gL,R, all the topological physics

appears at the energies E ∼ g ≪ mu2, so the energy term can also be omitted in Schroedinger

equation . This leads to a couple of solutions for the momenta: pshort ≈ ±2mu and plong ≈ 0 with

a corresponding wavefunctions — short-wave and long-wave ones.

Despite the fact that all the omitted terms in (2.9) are indeed smaller than the those retained,

it can’t be taken as zero order Hamiltonian — it’s spectrum is ungapped, so all the solutions of

Schroedinger equation are running waves and can’t form a localized state. To introduce the gap

one needs to add a superconductung term to (2.9). For short-wave (p ≈ 2mu) wavefunctions this

approximation is sufficient. These wavefuntions are treated in section 3.3.

For long-wavewavefunctions we can’t add the superconducting termwithout adding amag-

netic term, as they both significantly alter the momenta, and, consequentially, the wavefunctions.

However, for this case the kinetic term, proportional to p2, is much smaller than the spin-orbit term

and thus can be omitted. The resulting Hamiltonian is similar to the ones used in [25, 26] and

treated in section 3.4.
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Chapter 3

Stationary properties

The stationary properties of the system are defined by its spectrum. In this chapter an effective

boundary condition for long-wave wave functions is introduced, wavefunctions are obtained, sub-

gap states are found and and the stationary supercurrent is investigated.

3.1 Boundary condition

To obtain the spectrum of the system it’s necessary to find the wavefunctions inside the barrier. As

the barrier chemical potential is the biggest energy parameter of the problem, they are defined by

the Hamiltonian:

H(y) =

(
p2

2m
+ µb

)
τz, −L

2
< y <

L

2
. (3.1)

As low energies are under consideration, in Schroedinger equation the energy term can be

omitted, so pb ≈ ±i
√
2mµb. Matching the wavefunctions and their derivatives inside and outside

the barrier, we take barrier wavefunctions out of the problem and obtain the following boundary

condition for wavefunctions on the left and on the right of the barrier:ψL + b∂yψL = t(ψR + b∂yψR)

ψR − b∂yψR = t(ψL − b∂yψL)
(3.2)

where ψL,R = ψ
(
∓L

2

)
, b = (2mµb)

− 1
2 = 1

pb
— the penetration depth for the particle inside

the barrier and t = e−
L
b — the tunneling constant assumed to be small: t ≪ 1. This condition

means, that the size of the barrier L should be much bigger than the penetration depth b.

The condition (3.2) is invariant under the combined action L ↔ R, y → −y. To simplify
further analysis we reverse the direction in the left wire and shift both ends of the wires from y = L

2

to y = 0. The boundary condition than becomes:ψL − b∂yψL = t(ψR + b∂yψR)

ψR − b∂yψR = t(ψL + b∂yψL)
(3.3)
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This transformation is illustrated on fig. 3.1. Note

The boundary condition (3.3) can be rewritten with the spinor Ψ = (ψL, ψR)
T and Pauli

matrices ŝi in LR space:

(1− tŝx)Ψ− (1 + tŝx) b∂yψ = 0 (3.4)

Since for all t ̸= 1 (recall, that t≪ 1) the matrix is 1±tŝx in invertible multiplying the last equation
by (1− tŝx) / (1 + t2) yields:

(
1− 2t̃ŝz − b̃∂y

)
Ψ = 0 (3.5)

where t̃ = t
1+t2

, b̃ = 1−t2

1+t2
b. In the leading order in t, which corresponds to the tunneling limit,

t̃ = t, b̃ = b.

Figure 3.1: Illustration of switching the direction of left wire

One can argue that in tunneling limit the second and the third term in (3.5) are much smaller

than the first one and should not be taken when the leading order is considered. However, if the

second term is omitted, the wires become disconnected, and no tunnel effects can be found. The

same is true for the third term — if it’s not present, the boundary condition immediately implies

Ψ(0) = 0, so the wires become disconnected again.

3.2 Short-wave wavefunctions

As was pointed in section 2.3, the short-wave wavefunctions should be described with the Hamil-

tonian (2.9) with a superconducting term:

H =

(
p2

2m
− upŝzσz

)
τz +∆τϕ (3.6)

here the multiplier ŝz is added in the spin-orbit coupling term, as the direction of the left wire is

inverted, so to write a correct Hamiltonian for LR space, one needs to change p to −p for the left
wire — which is adding −ŝz multiplier to each momentum.

Denoting η = p2

2m
− upŝzσz, one can rewrite (3.6) as H = ητz +∆τϕ. As ŝzσz commutes
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withH one can treat it as a number, so the dispersion is E2 = η2 +∆2 (the number corresponding

to eigenstate of ŝz will be denoted as sz while the number, corresponding to the eigenstate of σz
will be denoted as ςz). Thus η = ±i

√
∆2 − E2, as the case |E| < ∆ is assumed. For momenta

one can write the equation:

p2 − 2muszςzp− 2mη = 0 (3.7)

which for short-wave momenta gives pshort ≈ 2muszςz +
η
u
szςz. Choosing the sign of η in a way,

that the wavefunction decays at x→ +∞, we obtain:

pshort ≈ 2muszςz + i

√
∆2 − E2

u
(3.8)

Now the wavefunction can be constructed by putting (3.8) into the Schroedinger equation

(ητz +∆τϕ)Ψ = EΨ. The solutions are:

Ψsz ,ςz (x) =

 1

ei(szςzγ+ϕsz )


eh

e2imuszςzx−
√

∆2−E2

u
x |sz, ςz⟩ (3.9)

where |sz, σz⟩ are eigenvectors of ŝzσz, γ = −π
2
+ arcsin E

∆
and ϕ1 = ϕL, ϕ−1 = −ϕR Thus the

long-wave part the wavefunction can be written as:

Ψshort =
∑

sz=±1

∑
ςz=±1

Csz ,ςzΨsz ,ςz (x) (3.10)

3.3 Eliminating short-wave wavefunctions from boundary con-

dition

As the Majorana state lives at low energies, it’s expected to be predominantly long-wave. This

argument is in accord with [25] and [26], where the Majorana state was an eigenstate of a linearized

Hamiltonian, which is relevant only for long-wave physics. So, it’s reasonable to eliminate the

short-wave components from the problem, reformulating the boundary condition (3.5).

The wave function can be decomposed in short-wave and long-wave parts: Ψ = Ψshort +

Ψlong. Inserting it into (2.9) and using the fact, that plong ≪ pshort ≈ 2muszσz, one can obtain at the

boundary:

(1− 2tŝx)Ψlong + (1− 2tŝx − 2ibumŝzσz)Ψshort = 0 (3.11)
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Multiplying by the (1− 2tŝx)
−1 and omitting t2 terms,we obtain:

Ψlong = (−1 + iζ (1 + 2tŝx) szσz)Ψshort (3.12)

with ζ = 2bum.

Now, using the expansion (3.10) and renormalizing the coefficients: Cszςz → − (1− iζszςz)Cszςz

one can rewrite the boundary condition for ςz spin component of the wavefunction as:

Ψlong,ςz =

(
1 +

2iζtŝzσz
1 + iζŝzσz

) ∑
sz=±1

Csz ,ςz

 1

ei(szςzγ+ϕsz )


eh

e2imuszςzx−
√

∆2−E2

u
x |sz, ςz⟩ (3.13)

This can be multiplied by
(
1 + 2iζtŝzσz

1+iζŝzσz

)−1

, which up to a t2 correction yields:

(
1− 2iζtŝzσz

1 + iζŝzσz

)
Ψlong,ςz =

∑
sz=±1

Csz ,ςz

 1

ei(szςzγ+ϕsz )


eh

e2imuszςzx−
√

∆2−E2

u
x |sz, ςz⟩ (3.14)

For each ςz the above equation can be interpreted as the requirement that the l.h.s. 4-vector

(in LR- and eh-spaces) lies in the 2d linear space L2 spanned by the the two vectors in the sum in

the r.h.s.. This can be reformulated as the requirement that the l.h.s. be orthogonal to the comple-

mentary 2d space L2. There are two basic vectors Ψszςz (sz = ±1) spanning L2 for each ςz:

Ψszςz =

 1

−ei(szςzγ+ϕsz )

 |sz, ςz⟩ (3.15)

Thus one needs to multiply (3.14) by
(
Ψ

T

+ςz ,Ψ
T

−ςz

)
from the left and, after all evaluating the matrix

product, find the effective boundary condition for long-wave wavefunctions in the form: 1 −e−i(ςzγ−ϕL) A −Ae−i(ςzγ−ϕL)

A∗ −A∗ei(ςzγ+ϕR) 1 −ei(ςzγ+ϕR)

Ψlong,ςz = 0 (3.16)

here A = − 2iζtςz
1+iζςz

and the elements are ordered as (Le, Lh,Re,Rh).

When studying wavefunctions in superconductors, it is more convenient to work with zero

phase ϕ. This can be achieved by gauging the phase difference into the boundary condition. Indeed,

suppose Hϕ describes a wire with phase ϕ. Then, Hϕ = U †
ϕH0Uϕ with Uϕ = e−

iτzϕ
2 and the wave

functions are also related via unitary rotation ψϕ = U †
ϕψ̃. So the transform Û = diag (UϕL

, UϕR
)L,R

will eliminate all the phases from the wires and put them into the boundary condition. Substituting

Ψlong,ςz = U †Ψ̃ into (3.16) one arrives at an even simpler boundary condition on the zero-phase
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function Ψ̃:  1 −e−iςzγ A −Ae−i(ςzγ+φ)

A∗ −A∗ei(ςzγ+φ) 1 −eiςzγ

 Ψ̃long,ςz = 0 (3.17)

where φ = ϕR − ϕL. Note, that any physical quantity can depend only on phase difference φ, but

not on ϕL or ϕR separately.

It’s also convenient to rewrite it in the form acting on the left and right wire wavefunctions:

MLψ̃
L
long +MRψ̃

R
long = 0

ML =

 1 −e−iσzγ

A∗ −A∗ei(σzγ+φ)


eh

MR =

A −Aei(σzγ+φ)

1 −eiσzγ


eh

(3.18)

This form is especially useful for finding subgap states localized near the barrier.

3.4 Low momenta and linearized Hamiltonian

To utilize boundary condition (3.16) or (3.17), it’s necessary to find low momenta wavefunctions

in homogeneous wire (this functions constitute ψlong in (3.16) and (3.17). As was pointed in section

2.3, for this purpose one can use the linearized version of the Hamiltonian (2.2), like in [25] and

[26]:

H = −µτz + upσzτz +Bσx +∆τx (3.19)

here zero phase ϕ is assumed and µ is equal µL or µR depending on the wire considered. As was

mentioned before, a nonzero phase can be restored by using Uϕ matrix. This Hamiltonian is valid

only for the right wire. To obtain the solution in the left wire one needs to reverse the sign of

p in (2.2). Instead of doing so, the unitary transform ψL = σxψR can be utilized, as H (−p) =

σxH (p)σx.

Remembering, that β = B−∆ ≪ B,∆, one can treat this Hamiltonian perturbatively and

decompose it as H = H0 + V0:

H0 = upσzτz +∆(σx + τx) (3.20)

V = −µτz + βσx (3.21)

AsH0 commutes with σxτx, it’s convenient to rewrite it in the basis of common eigenstates

16



of σx and τx. Denoting them as |σx, τx⟩ and arranging the order as (|+,+⟩ , |−,−⟩ , |+,−⟩ , |−,+⟩)
one can rewrite H0 + V as:

H0 =


2∆ up 0 0

up −2∆ 0 0

0 0 0 up

0 0 up 0

 , V =


β 0 −µ 0

0 −β 0 −µ
−µ 0 β 0

0 −µ 0 −β

 (3.22)

It’s easy to see, that the wavefunctions from the subspace Span (|+,+⟩ , |−,−⟩) (we denote them as

ψmedium) require no perturbation to obtain the eigenstates in the leading order. Indeed, diagonalizing

the upper subblock ofH0, one finds, thatE =
√

(2∆)2 + (up)2. When the low energy states are the

objects of interest (E ∼ gL,R), one finds, that p = ± i∆
2u

in the leading order, and the corresponding

wavefunctions are |+,+⟩ ± i |−,−⟩.
The other two eigenstates (we denote them as ψlongest) are a little bit more complicated.

Diagonalizing the lower subblock of H0, one immediately finds, that E = ±up. This corresponds
to the fact, that H0 is the version of H with a closed gap g on lower branch (see fig. 2.2,(e)), so

in the zeroth order these states cannot form anything localized at all. To find them correctly, one

needs to take into account the perturbation V and solve the secular equation using the following

ansatz:

ψ = r1 |+,+⟩+ r2 |−,−⟩+ q1 |+,−⟩+ q2 |−,+⟩ (3.23)

with ri ≪ qj for all pairs (i, j). In the leading order (remember, that bothE and up are of the order

of gL,R now) this results in a couple of equations:
(
−E +B −∆− µ2

2∆

)
q1 + upq2 = 0

upq1 +
(
−E −B +∆+ µ2

2∆

)
q2 = 0

(3.24)

recall, that g = B −∆− µ2

2∆
and find E2 = g2 + u2p2.

Now it’s time to present these wavefunctions in original BdG basis. The expressions here

are relevant only for the right wire and for E > 0. To find the wavefunctions in the left wire, the

transform ψL = σxψR is used, while for finding the negative energy states we utilize electron-hole

transform: ψE<0 = τyσyKψE>0 withK being a complex conjugation operator.
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For E > 2∆wavefunctions ψmedium are:

ψout, in
medium

∣∣∣∣
E>2∆

=


1

E∓
√
E2−4∆2

2∆

E∓
√
E2−4∆2

2∆

1

 e
±ix

√
E2−4∆2

u (3.25)

For E < 2∆ wavefunctions ψmediumare

ψgrow, dec
medium

∣∣∣∣
E<2∆

=


1

E±i
√
4∆2−E2

2∆

E±i
√
4∆2−E2

2∆

1

 e
±x

√
4∆2−E2

u (3.26)

For E > |g| wavefunctions ψlongest are:

ψout, in
longest

∣∣∣∣
E>g

=


1

E∓
√

E2−g2

g

−E∓
√

E2−g2

g

−1

 e±
ix
√

E2−g2

u (3.27)

For E < |g| wavefunctions ψlongest are:

ψgrow, dec
longest

∣∣∣∣
E<g

=


1

E±i
√

g2−E2

g

−E±i
√

g2−E2

g

−1

 e±
x
√

g2−E2

u (3.28)

3.5 Subgap states

To find the bound states one needs to make two linear combinations (each for its own wire) of

decaying wave functions from (3.26) and (3.28) at x = 0 and put them into boundary condition

(3.3). For the right wire they can be taken directly from (3.26) , (3.28), while for the left wire

they should be multiplied by σx from the left (see the beginning of section 3.4).. These linear

combinations can be written as:

ψ̃L = CL
mediumσxψ

dec
medium + CL

longestσxψ
dec
longest ψ̃R = CR

mediumψ
dec
medium + CR

longestψ
dec
longest (3.29)

18



where CL
medium, C

L
longest, C

R
medium, C

R
longest are the undefined coefficients. Note, that the spinor ψdec

medium

is the same for the left and for the right wires.

Putting these combinations into boundary condition (3.3), we obtain four equations for these

coefficients. If this system has a non-trivial solution at energy E0, than there is a bound state with

this energy. The condition of solvability can be written as:

detF = 0 (3.30)

where matrix F is given by:

F =
(
MLσxψ

dec
medium, MLσxψ

dec
longest MRψ

dec
medium, MRψ

dec
longest

)
(3.31)

As E ∼ gL,R ≪ ∆, the medium-wave spinor can be taken in its low-energy form: In most of this

work the low energy version ψdec
medium ≈ (1,−i,−i, 1)T will be sufficient.

For dealing with ψdec
longest it is convenient to introduce two quantities χL,R:

coshχL,R =
gL,R√

g2L,R − E2
sinhχL,R =

E√
g2L,R − E2

(3.32)

If g > 0, the corresponding parameter χ is real and growing monotonously with E. For

g < 0 the parameter χ is complex, but can be written as χ = −χ̃ + iπ with real and monotonous

χ̃.

With these parameters the spinors ψdec
L(R),longest at x = 0 can be written as:

ψdec
L(R),longest =


− sinhχL(R) − i

− coshχL(R)

coshχL(R)

sinhχL(R) + i

 (3.33)

This parametrization completes the toolset used for studying the subgap spectrum.

3.5.1 The case of zero tunneling

Consider first equation (3.30) with t = 0. This corresponds to absolutely unpenetrable barrier, or,

which is same, to independent wires ended with a vacuum. The computation of the determinant in

(3.30) becomes a rather easy problem and results in:

detF
∣∣∣
t=0

= −16 (i sinh (χL) + cosh (χL)− 1) (i sinh (χR) + cosh (χR)− 1) (3.34)
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If both gL, gR are negative (triv-triv junction), this determinant cannot be equal to zero at

all, as coshχL,R are also negative and the real part in each bracket always non zero. If one of gL,

gR (triv-top junction), say gR, there is only one solution at E = 0. If both gL, gR(top-top junction)

are positive, there are two solutions at E = 0.

This result proves, that the presence of Majorana mode in a isolated wire is defined only by

the sign of g and justifies the notion of topology in this system.

3.5.2 Weak tunneling

To take into account the tunneling effect one may expand detF in t. Note, that there is no first

order in t due to the structure of boundary condition (3.17). The decomposition can be written as:

detF = d0 + d2t
2 + . . . (3.35)

where d0 is given by (3.34). d2 can be computed in a same way, but appears to be a rather complex

formula. However, in tunneling limit the second term in (3.35) is small, so the only values of E

that should be considered are the ones where d0 is close to zero.

For triv-triv junction there are no such points, so in the tunneling limit there are no bound

states for this case.

For triv-top junction there is a solution for E = 0, which corresponds to χL = iπ, χR = 0.

Computing d2 for these parameters, one finds that it’s exactly zero, so there is no correction to

Majorana energy— as it should be, as this state protected by particle-hole symmetry. This solution

with the first correction in t is presented in appendix A.

For top-top junction the situation is more interesting. In that case there are two solutions at

E = 0, which should split for nonzero t. Calculating d2 at E = 0 and expanding d0 for small E,

one finds:

d0 =
16E2

gRgL
d2 = − 256t2ζ4

(1 + ζ2)2
cos2

ϕ

2
(3.36)

Using, that ζ = 2bum≪ 1, one can find the energy levels:

E1,2 = ±4tζ2
√
gRgL cos

ϕ

2
(3.37)

this answer is relevant only if these level are well below the gaps: tζ2√gRgL ≪ min [gR, gL].
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3.6 Stationary supercurrent

The stationary supercurrent for a Josephson contact is given by [27]:

I = −2e

ℏ
∑
p

tanh
(

εp
2kBT

)
dεp
dφ

−

− 4e

ℏ
kBT

∫
cont.

dε log
[
2 cosh

(
ε

2kBT

)]
dρ

dφ
+

2e

ℏ
d

dφ

∫
dy

|∆|2

|c|
(3.38)

Here ϵp are the energies of the states localized near the barrier, ρ is the density of states and c (r) is

the interaction constant of the BCS theory, φ is a phase difference, kB is Boltzmann’s constant and

T is the temperature. The first term comes from the discrete spectrum and the sum is taken over all

states in it, the second term is the current from continuous spectra and the third term comes from

inhomogeneity of the order parameter. As pointed in [27], despite being generally nonzero, this

last term doesn’t contribute when step-model functions ∆ like in (2.4) are used. The applicability

of this approximation is a direct consequence of the tunneling regime considered in this work.

After omitting the third term and taking the low temperature limit one rewrites (3.38) as:

I = −2e

ℏ
∑
p

dεp
dφ

− 2e

ℏ

∫
cont.

εdε
dρ

dφ
(3.39)

As was shown in section 3.5, there are no subgap states in triv-top contact except Majorana

state. But this state lies exactly at zero energy regardless of the phase difference, so the derivative

in the first term of (3.39) will be zero and no supercurrent from the Majorana state is present.

To find the current from the continuous spectrum with (3.39) one needs to know the density

of states. As there is a derivative over φ taken, one needs to find the phase dependent part of ρ

only. It can be done by using the relation between the density of states and the scattering matrix

[28]:

ρ (ϕ) =
1

2πi

∂

∂ε
log det Ŝ + const. (3.40)

The s-matrix connects the coefficients between the wavefunctions going to barrier and from

it. It can be obtained with the help of wavefunctions (3.26), (3.25), (3.28) and (3.27) and bound-

ary condition (3.3). To deal with radicals some additional parameters are used. When the given

wavefunction is localized (E < g), θ-parametrization is used:

θL,R : sin θL,R =
E

gL,R
, cos θL,R > 0 (3.41)
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this parametrization is useful for both trivial and topological wires. When the wavefunction prop-

agates (E > g), the η- or κ-parametrization is used, depending on the sign of g:

ηR : cosh ηR =
E

gR
, sinh ηR > 0 κL : coshκL =

E

|gL|
, sinhκL > 0 (3.42)

To keep all the parameters real, η will be used for a topological wire, whereas κ will be used for a

trivial wire. All the parameters θL,R, κL and ηR are always real and positive when used.

As the dimension of s-matrix depends on the number of propagating modes, and thus on

the energy, it’s necessary to investigate different energy ranges separately.

ForE ≪ ∆ onemay use low energy limit of functionsψdec
medium: ψdec

medium ≈ (1,−i,−i, 1)T e− 2∆x
u

and also set γ = −π
2
arcsin E

∆
≈ −π

2
. When E ∼ ∆ one has to use γ as it is, and high energy of

ψdec
longest: ψdec

longest ≈ (1, 0, 0, 1) e−
Ex
u .

The eigenstates for the system at energies near g are presented in appendix A, in leading

and subleading order on t. Here we focus on the result for the supercurrent in different cases.

3.6.1 Supercurrent for E between |gL| and gR

Recall, that the trivial wire is placed on the left while the topological wire is on the right. There are

two slightly distinct cases, which differ by relation between gL and gR.

The case |gL| > gR

For gR < E < |gL| there is only one state wich goes towards the barrier, so the s-matrix has the
dimension 1, and thus it’s determinant coincides with it’s only matrix element. The determinant

which reads:

det Ŝ = − eηR + i

1 + ieηR
−

2iζ4t2e−iφ (1 + eiφ)
2 (−1 + eiθL

)
(e2ηR − 1)

(ζ2 + 1)2 (1 + eiθL) (eηR − i) 2
+O

(
t4
)

(3.43)

Using (3.39) (3.40), one finds, that:

I =
8e

πℏ
t2ζ4 sinφ

√g2L − g2R −
∫ |gL|

gR

dE

√
E2 − g2R√

1− E2

g2L
+ 1

 (3.44)

It’s easy to see, that I ≲ 8e
πℏt

2ζ4gR sinφ.
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The case |gL| < gR

For |gL| < E < gR the s-matrix (and its determinant) is:

det Ŝ =
eκL − i

−1 + ieκL
−

2iζ4t2e−iφ (1 + eiφ)
2
(e2κL − 1)

(
1 + eiθR

)
(ζ2 + 1)2 (eκL + i) 2 (−1 + eiθR)

+O
(
t4
)

(3.45)

Again with the help of (3.39) (3.40), one finds, that:

I =
8e

πℏ
t2ζ4 sinφ

(√
g2R − g2L − gR

∫ gR

|gL|

dE

E2

√
E2 − g2L

(√
1− E2

g2R
+ 1

))
(3.46)

The estimate for this case is I ≲ 8e
πℏt

2ζ4 |gL| sinφ.

3.6.2 Supercurrent for |gL| , gR < E ≪ ∆

In this case there are to states propagating towards the barrier – one in the right wire and one in the

left, so the s-matrix is 2x2. Arranging its elements in the following order:

Ŝ =

rLL tLR

tRL rRR

 (3.47)

we find:

rLL =
eκL − i

−1 + ieκL
+

2ζ4t2e−iφ (1 + eiφ)
2
(e2κL − 1) (eηR + i)

(ζ2 + 1)2 (eκL + i) 2 (−1− ieηR)
+O

(
t4
)

(3.48)

rRR = − eηR + i

1 + ieηR
+

2ζ4t2e−iφ (1 + eiφ)
2
(eκL − i) (e2ηR − 1)

(ζ2 + 1)2 (−1 + ieκL) (eηR − i) 2
+O

(
t4
)

(3.49)

tLR =
2ζ2te−iφ (1 + eiφ)

√
(e2κL − 1) (e2ηR − 1)

(ζ2 + 1) (eκL + i) (eηR − i)
+O

(
t3
)

(3.50)

tRL = −
2tζ2 (1 + eiφ)

√
(e2κL − 1) (e2ηR − 1)

(ζ2 + 1) (eκL + i) (eηR − i)
+O

(
t3
)

(3.51)

The computation of supercurrent is againmadewith (3.39) (3.40). Introducing gmax = max [gR, |gL|],
gmin = min [gR, |gL|] and

sg =

1, gR > |gL|

−1, gR < |gL|
(3.52)

23



one finds:

I =
8e

πℏ
t2ζ4 sinφ

(
sg

√
g2max − g2min − gR |gL|

∫ ∆

gmax

dE

E2

(√
E2 − g2R
gR

−
√
E2 − g2R
|gL|

))
(3.53)

It’s important to note, that this computation is irrelevant for E ∼ ∆, so ∆ here acts like hight

energy cutoff. However the current from these states can be estimated as

I ∼ e

ℏ
t2ζ4gmax log

(
∆

gmax

)
sinφ (3.54)

3.6.3 Supercurrent for |gL| , gR ≪ E ≲ ∆

To make the estimate for the supercurrent at energies E ≲ ∆ high energy limits of ψlongest can

be used, so the system ”forgets” about gL and gR and becomes effectively symmetric. Taking the

notation from (3.47), we find:

rLL = rRR = eiγ+

+ ζ2t2e−iφ

(
(−1 + e2iγ)

2
(1 + eiφ)

2

eiϑ − eiγ
+ 2eiγ

(
e2i(γ+φ) + e2iγ − 2eiφ

))
+O

(
t4
)

(3.55)

tRL = −tRL = iζt
(
1 + e2iγ

) (
−1 + eiφ

)
+O

(
t3
)

(3.56)

where cosϑ = E
2∆
, sinϑ > 0 . Using (3.39) (3.40), we find:

I ∼ e

ℏ
ζ2t2∆ sinφ. (3.57)

3.6.4 Analyzing the results

From the estimates below (3.46) and (3.44) one may see, that the current coming from the states

between gL and gR has a multiplier of the order gR or |gL|. The current from the states above gmax
and near it can be estimated with (3.54). It has the multiplier gmax log ∆

gmax
. Finally, according to

(3.57), the current from the states near ∆ is proportional to ∆. These results are schematically

presented on fig. 3.2.
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Figure 3.2: Supercurrent from different states

Thus we deduce that the current from the low energy states is negligible compared with the

current from the states near ∆. This shows us that the low energy states (E ≪ ∆) contribute to

stationary supercurrent by a very small quantity. The proportionality to ∆ in (3.57) is similar to

a conventional Josephson tunnel junction. We conclude, that measuring stationary supercurrent is

unlikely to reveal any topological physics in this system.
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Chapter 4

Ionization

In this chapter the model presented before is modified by introducing a small oscillating external

voltage. This perturbation allows the Majorana state to excite into continuum — the process we

will call ionization. The main goal here is to find the ionization rate when the typical size of the

photon is much smaller than the spectrum gap. Only regime with |gL| ≪ gR is considered —

this significantly simplifies the calculation, but still exhibits non-trivial physics with a number of

different subregimes.

4.1 Introducing the perturbation

The perturbation is introduced as an oscillating voltage applied to the junction. This alters the

Hamiltonian (2.3) in two ways — by the modification of the chemical potentials µL, µR and by

making the superconducting phase difference φ = ϕR − ϕL time dependent. The second effect is

governed by the Josephson relation:

U (τ) =
ℏ
2e

∂φ (τ)

∂τ
(4.1)

The ionization voltage is assumed to be small compared to other energy parameters, and

this smallness is present in both effects. However, if the frequency ω of voltage is also small,

the perturbation in ∆ induced by the second effect will have additional big multiplier ∆
ω
and will

dominate the perturbation in µ. In this chapter only this regime is considered.

Time dependence of phase difference is introduced as:

φ (τ) = φ0 + α cosωτ (4.2)

where φ0 is an initial time independent phase difference and α ≪ 1 is the amplitude of phase

oscillations.

As was shown in section 3.3, there is a gauge transform Uϕ, which redistributes the phase

difference between the wires, so the phase in a given wire can have any value. This ambiguity just

reflects a fact, that only phase difference φ is an observable quantity, but not the phases ϕL, ϕR
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separately. However, when treating the time dependent phase difference this gauge transform also

becomes time-dependent. After its application the additional term U̇ϕ(τ)U
†
ϕ(τ) ∝ ϕ̇ (τ) will appear,

but, as ω is small, it can be neglected. The corresponding condition on ω is established in section

4.3.8.

As the term U̇ϕ(τ)U
†
ϕ(τ) ∝ ϕ̇ (τ) is negligible, we again can gauge all the phase difference

into the boundary condition. Now the boundary condition is time-dependent. It’s not very con-

venient, and to avoid dealing with it we reformulate the problem in terms of tunnel Hamiltonian,

which allow us to treat both tunneling and time dependence simultaneously via perturbation theory.

4.2 Tunnel Hamiltonian approach

The main idea of this method is to hide all the time dependence and the tunnel effect in one single

operator. To do so we need to rewrite the Hamiltonian as H = HL + HR + HT , where HL,R are

the Hamiltonians of the left and right wire without any contact (corresponding to zero tunneling:

t = 0), and HT is a tunnel Hamiltonian both containing the time dependence and mixing the

wavefunctions from different wires. Here the following notation is used: the Hamiltonians HL,

HR and HT are 8x8 matrices in combined Nambu-Gorkov and LR-space. In LR-space they have

the following form:

HL =

hL 0

0 0


LR

HR =

0 0

0 hR


LR

HT =

 0 hLR

hRL 0


LR

(4.3)

The Hamiltonians hL and hR eventually coinside with (2.2) with zero boundary condition. The

Hamiltonian hLR = h†Rl in unknown — the goal is to make it in a way the corrections for the

wavefunctions are restored . This wavefunctions and their first tunneling corrections are listed in

appendix A.

The derivation of tunnel Hamiltonian matrix elements is presented in appendix B. Using the

notation
∣∣γ0 ⟩ forMajorana state and

∣∣ε, L0

⟩
,
∣∣ε,R0

⟩
for continuous spectra, we have the following:

HT =
(
ei

φ
2 + e−iφ

2

)
H̃T =

(
ei

φ
2 + e−iφ

2

) 0 h̃LR

h̃RL 0

 (4.4)

⟨
γ0
∣∣h̃RL

∣∣E,L0

⟩
= 4

√
ugRtζ

2f

(
E

|gL|

)
(4.5)

⟨
ϵ, R0

∣∣h̃RL

∣∣E,L0

⟩
= −16uζ2tf

(
E

|gL|

)
f

(
ε

gR

)
(4.6)

where f (x) =
√
x2 − 1

(
x+

√
x2 − 1

)
.

The fact, that all energy dependences here are described by a single function f (x) insinuates
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that maybe it’s possible to make this calculations in a more beautiful way.

4.3 Ionization rate for gR ≫ |gL|

4.3.1 Time dependence of perturbation

To obtain the ionization rate one should treatHT as perturbation. For unperturbed system, described

withH0 = HR+HL, the electrons cannot get from wire to another, butHT allows these processes,

so the ionization can be described as a set of jumps from right to left wire (see fig. 4.1).

Figure 4.1: Ionization processes in terms of tunnel Hamiltonian

The approach to multiphoton ionization is described in Appendix C. The first step is to

decompose the perturbation in Fourier series in frequencies. From (4.5) one finds, that HT ∝
cos φ(τ)

2
with φ (τ) = φ0 + α cosωτ . Using α ≪ 1, we write:

e
iφ(τ)

2 + e−
iφ(τ)

2 ≃ ei
φ0
2

∑
n

(iα)n

2nn!
(einωτ + e−inωτ ) + c.c =

=
∑
n

αn

22n−1n!
(einωτ + e−inωτ ) cos

(φ0

2
+ n

π

2

)
(4.7)
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so:

HT =
∑
n

HT,n

(
einωτ + e−inωτ

)
, HT,n ≈

∑
n

αn

22n−1n!
cos
(φ0

2
+ n

π

2

)
H̃T (4.8)

The same decomposition is valid for LR matrix elements of HT :

hLR =
∑
n

hLR,n

(
einωτ + e−inωτ

)
, hLR,n ≈

∑
n

αn

22n−1n!
cos
(φ0

2
+ n

π

2

)
h̃LR (4.9)

Then the rate is given by (see Appendix C):

I ∼ |⟨E|wE |γ⟩|2

NL(E)
, wE(E) =

∑
{ni}:E

HT,nN

N−1∏
j=1

G0

(
E +

j∑
s=1

ωns

)
HT,nj

(4.10)

here sum is taken over all sets {ni} : E so that
∑

i ωni
= E = min[gR, |gL|]. Each term in sum

(4.10) corresponds to some way (i.e. trajectory) to absorb photons with energies ωni
, such that the

total absorbed energy is equal to spectrum gap. Recall that Planck constant here is taken to be unity.

For unperturbed Green function we take a notaion:

G0 (E) =

GL (E) 0

0 GR (E)


LR

. (4.11)

In this section the focus is on the case where the topological gap is much larger than the

trivial one: |gL| ≪ gR. Then the right continuum has high energies and does not participate in the

ionization process. Indeed,

hLRGR (ϵ)hRL =
hLR|γ⟩⟨γ|hRL

ϵ
+

∫
|E|>gR

hLR|E,R0⟩⟨E,R0|hRL

ϵ− E

dE

NR(E)
(4.12)

So, when gR ≫ ϵ ∼ |gL|, the second term is small and can be neglected. Then, the product

. . . hRLGL (E)hLRGR (E)hRL . . . factorizes into individual factors, whichwe denote as Jnm (E) ≡
⟨γ|hRL,nGL (E)hLR,m|γ⟩.

4.3.2 Factorizing wE

As each entry in the sum within wE has the form . . . hlRGR (E)hRLGL (E)hLR . . . , we have:

√
I ∝

∑
N

∑
{ni}NM

Jn1n2Jn3n4 · · · JnN−1nN
(4.13)
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Here N has the meaning of total number of absorbed photons, M is the integer closest to |gL|
ω

,

and the second sum is taken over all sets {ni}NM of N items such that
∑N

i=1 ni = M . We set, the

number N to be even, hiding the last photon into unimportant prefactor.

The n,m-dependence factors out:

Jnm (E) =
αn+m

22(n+m)−2n!m!
cos
(φ0

2
+ n

π

2

)
cos
(φ0

2
+m

π

2

)
Q0 (E) (4.14)

Q0(E) = ⟨γ|h̃RLGL(E)h̃LR|γ⟩ ≡
∫

cont.

|⟨γ|h̃LR|ϵ⟩|2

E − ϵ

dϵ

NL(ϵ)
(4.15)

On each ionization step the particle can move to the state with energy E or −E, so:

Q0(E) = 2E

∞∫
|gL|

|⟨γ|h̃RL|ϵ⟩|2

E2 − ϵ2
dϵ

NL(ϵ)
(4.16)

recalling (4.5), we obtain:

Q0(E) = ET

[
−1 +

√
1− λ2

]
λ2

(4.17)

where λ = E
|gL|

, T =
gR(ζ2t)

2

|gL|
. We consider T ≪ 1, so the systems remains in a strong tunneling

limit.

Thus, the elementary block in our product for small enough E becomes:

Jnm
E + nω

≈ Jnm
E

=
(α
4

)n+m

BnBmT
−1 +

√
1− λ2

λ2
(4.18)

where

Bn =
2

n!
cos
(
ϕ0

2
+
πn

2

)
(4.19)

The prefactor (α/4)n+m yields (α/4)E/ω for any trajectory and therefore do not affect sum-

mation and optimization. Thus one has BnBmT
−1+

√
1−λ2

λ2 to optimize.

Now consider a slice of the ionization process, i.e. a part of the full ionization product,

which runs from energyE toE+∆E where∆E =Mω with a largeM. One can assume that within

that process, a large number N of photons is absorbed, but energy does not change significantly,

∆E ≪ E, so that λ can be considered a constant within that process.

This approach is invalid, if the optimal photon energy is larger than the slice size. If this

happens, one needs to enlarge the slice until it reaches the energy of optimal photon. It cannot be
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done, when the optimal photon energy is equal or larger than spectrum gap. This case is treated

separately in section 4.3.6.

For now, denoting

Tλ = −4T

[
−1 +

√
1− λ2

]
λ2

(4.20)

we rewrite:

J (λ) ≡
∑
N

∑
{n}MN

Jn1n2Jn3n4 · · · JnN−1nN

E
N
2

=
(α
4

)M∑
N

(−Tλ)
N
2 JN (4.21)

JN =
∑
{n}MN

N∏
i=1

cos(φ0

2
+ πn2i

2
)

ni!
(4.22)

So to obtain the ionization rate up to a prexponential constant, one should compute J (λ)

and take the product
∏
λk

J (λk) where λk corresponds for the k-th slice of the ionization process.

4.3.3 Estimation for optimal photon number

We begin dealing with (4.21) by finding the optimal photon numberN∗. This number corresponds

to the largest term in the sum (4.21).

The first step is to use Poisson summation formula:

∞∑
n=−∞

δ (x− n) =
∞∑

k=−∞

e2iπx (4.23)

so:

JN =

=

 ∞∑
k1=−∞

· · ·
∞∑

kN−1=−∞

N−1∏
i=1

(∫
dxie

2iπkixi
cos
(
φ0

2
+ πxi

2

)
Γ (xi + 1)

)
cos
(
φ0

2
+ πxN

2

)
Γ (xN + 1)

(4.24)

where xN ≡M −
∑N−1

i=1 xi. This can be rewritten as:

JN =
1

2N

∑
k

( ∑
s1=±1

· · ·
∑

sN=±1

)(
N−1∏
i=1

∫
dxi

)
eS[x] (4.25)
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with

S[x] = −
N∑
i=1

logΓ (xi + 1) + 2iπ
N−1∑
i=1

kixi + i
N∑
i=1

si

(φ0

2
+
πxi
2

)
(4.26)

As N and M are large, we assume that xi at saddle points are also large, so the Stirling ap-

proximation is relevant: logΓ (x) ≈ x logx − x. As we just make the estimation for saddle

point position, we can neglect all the terms in (4.26) except for the first one and get (recall, that

xN =M −
∑N−1

i=1 xi):

∂

∂xi
S[x] ≈ logxN − logxi (4.27)

So, at the saddle point all xi are equal to M
N
.

Each xi corresponds to it’s own ni. In saddle point approximation we can take only terms

with ni = xsaddlei in sum (4.22). Than the sum (4.21) becomes:

J (λ) ≈
∑
N

AN (−Tλ)
N
2 e−M log M

N =
∑
N

AN (−1)
N
2 e

N
2
logTλ−M log M

N (4.28)

with relatively slow function AN .

It’s easy to see, that the biggest term in (4.26) corresponds to the N∗ = 2M/ log 1
Tλ
. This

is the optimal photon number for the slice from E to E + ∆E of energy range with E = |gL|λ
and ∆E = ωM . Consequentially the optimal photon size is given by n∗ = M

N∗
= 1

2
log 1

Tλ
. From

(4.20) we see, that Tλ differs from T by a smooth depending on λ prefactor. We introduce a global

optimal photon size nT ≡ log 1
T
≫ 1 and find, that n∗ ∼ nT . It’s important to note, that n∗ doesn’t

depend on the energy slice sizeM , being an intensive parameter of the process.

4.3.4 Two regimes of factorized ionization

To treat (4.22) more accurately it’s convenient to use the multinomial formula:

dM

dxM

N∏
i=1

fi (x) =
∑
{ni}MN

 M

n1, n2, . . . , nN

 N∏
i=1

dni

dxni
fi (4.29)

For the cosine product it can be applied in a following way:

∑
{n}MN

N∏
i=1

cos(χ+ πni

2
)

ni!
=
∑
{n}MN

N∏
i=1

Dni
χ

ni!
cosχ =

1

M !
DM

χ cosN χ (4.30)
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where χ = φ0

2
. Then some algebra should be used:

1

M !
DM

χ cosN χ =
1

2NM !
DM

χ

N∑
k=0

CN
k e

iχ(N−2k) =
eiχN+iMπ/2

2NM !

N∑
k=0

CN
k (N − 2k)Me−2kiχ (4.31)

So:

JN =
ei

φ0
2
N+iMπ/2

2NM !

N∑
k=0

CN
k (N − 2k)Me−ikφ0 (4.32)

Now, in the sum, the ratio of consecutive summands is ak+1

ak
=

CN
k+1

CN
k

(
N−2k−2
N−2k

)M . This ratio

can be larger or less than unity. When ak+1

ak
< 1 for any k < N

2
, the largest ratio is a1

a0
= N(N−2

N
)M ≃

Ne−2M/N , so only a0 and aN should be taken into account. The summand a0 ∝ e
iNφ0

2 corresponds

to tunnelingN/2 electrons to the left andN/2 holes to the right, while the aN ∝ e
−iNφ0

2 corresponds

to tunnelingN/2 electrons to the right andN/2 holes to the left. So, the regime with only these two

terms being present is a pure Andreev reflection regime. TakingN = N∗, we rewrite the condition∣∣∣a1a0 ∣∣∣≪ 1 asM ≪ nT e
nT ∼ T log 1

T
.

When this condition is broken, the largest terms in (4.32) are not a0 and aN . This corre-

sponds to some mixture of Andreev and normal reflections and should be treated separately.

4.3.5 Pure Andreev reflection regime

In pure Andreev the sum (4.32) can be rewritten as:

J (λ) ≈
(α
4

)M∑
N

(−Tλ)N/2 NM

2N−1M !
cos
(
Nφ0

2
+
Mπ

2

)
(4.33)

The preexponent is not the object of interest, while the fixed parity of N should be taken into

account. Here we set N = 2K. With the help of polylogarithmic function

Li s (z) =
∑ zk

ks
(4.34)

we rewrite (4.33) as:

J (λ) =
(α
4

)M ∞∑
K=1

(−Tλ)K
(2K)M

22K−1M !
cos
(
φ0K +

Mπ

2

)
=

=
2

M !

(α
4

)M
ℜ

[
iM
∑
K

(−Tλ)K
(2K)M

22K
eiφ0K

]
=

=
2M+1

M !

(α
4

)M
ℜ
[
iMLi −M

(
Tλ
4
ei(φ0+π)

)]
(4.35)
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The polylogarithmic function can be rewritten in the following useful way

Li s(eµ) = Γ(1− s)
∑
r∈Z

(2rπi− µ)s−1 (4.36)

Substituting, we get

Li −M

(
Tλ
4
ei(ϕ0+π)

)
= Γ(1 +M)

∑
r∈Z

(
i[2rπ − π − φ0] + log

4

Tλ

)−M−1

Denoting log 4
Tλ

= nλ we have the ratio of consecutive terms in the sum (assuming they

are not too far from the largest term):

∣∣∣∣ar+1

ar

∣∣∣∣ ∼ (n2
λ + (γr + 2π)2

n2
λ + γ2r

)−1−M

∼
(
1 +

2π(2π + 2γr)

n2
λ + γ2r

)−M

∼ exp
[
4πM(π + γr)

n2
λ

]
where γr = i(2rπ − π − φ0). There are two values of r for which |π + γr| is smallest, for

the rest it is not smaller than 2π so that the rest of the terms are smaller by at least exp
[
−8π2M

n2
λ

]
.

This leads us to three additional subcases. When M ≫ n2
λ ∼ n2

T , the sum over r is

dominated by the largest terms: they correspond to r = 0, 1 for −π < φ0 < π. The small number

of terms in (4.36) corresponds to the large number of terms in (4.35), so in this case not only the

trajectories with N∗ contributes to ionization, but also the large number of neighboring ones.

WhenM ≪ n2
λ, the formula (4.36) isn’t useful. Instead we look directly at (4.35) and find,

that ifM < nT only first term is relevant — which is single photon case, treated in section 4.3.6.

When nT ≪M ≪ n2
T , the maximum term in (4.35) is at N∗ ∼ M

nT
.

The subcases nT ≪M ≪ n2
T and n2

T ≪M ≪ nT e
nT are presented below.

Subcase n2
T ≪M ≪ nT e

2nT

In this case we have

Li −M

(
Tλ
4
ei(φ0+π)

)
≃M !

(
1

(nλ + i(π − φ0))M+1
+

1

(nλ + i(−π − φ0))M+1

)
(4.37)

For φ0 < 0 only the first term should be left, while for the φ0 > 0 only the the second one.

Thus the answer, obviously, depends on φ0 and can be obtained only for the case, say φ0 > 0.

So we set:

Li −M

(
Tλ
4
ei(φ0+π)

)
≃ M !

(nλ + i(π − φ0))M+1
(4.38)
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and:

J (λ) = 2
(α
2

)M
ℜ
[

iM

(nλ + i(π − ϕ0))M+1

]
(4.39)

Applying some algebra:

[nλ + i(π − ϕ0)]
M+1 =

[
n2
λ + (π − ϕ0)

2
]M+1

2 e
i(M+1) arctan π−ϕ0

nλ (4.40)

we find:

J (λ) = 2
(α
2

)M cos
(

Mπ
2

− (M + 1) arctan π−φ0

nλ

)
[n2

λ + (π − ϕ0)2]
M+1

2

(4.41)

This contains some complicated oscillations but within exponential accuracy we may write

J (λ) ∼ expM
[
log

α

2
− 1

2
log(n2

λ + (π − |φ0|)2)
]

(4.42)

The last thing to do is to take a product
∏
λk

J (λk). It results to the integration of the quantity

in the exponent over λ (the limits are 0 and 1 as λ = E
|gL|

):

sλ =M log
α

2
− M

2

1∫
0

log(n2
λ + (π − |φ0|)2)dλ (4.43)

Calculation of the λ-integral:

1∫
0

log(n2
λ + (π − |φ0|)2)dλ ≈

1∫
0

(
2 lognλ +

(π − |φ0|)2

n2
λ

)
dλ (4.44)

Separately we find (recall, that nT = log 1
T
):

1∫
0

lognλdλ ≈ lognT +
π − 2

2nT

− C2

n2
T

+O

(
1

n3
T

)
. (4.45)

where

C2 = 2

1∫
0

dλ

(
log

λ2

1−
√
1− λ2

)
≈ 0.689 (4.46)
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The last integral in (4.44) is:

1∫
0

1

n2
λ

dλ =

∫ 1

0

dλ
1(

nT + log λ2

1−
√
1−λ2

)2 =
1

n2
T

+O

(
1

n3
T

)
(4.47)

Thus, we get

sλ =
2 |gL|
ω

(
log

α

2
− lognT − π − 2

2nT

+
C2

n2
T

− (π − |φ0|)2

2n2
T

+O

(
1

n3
T

))
(4.48)

and the final result in this limit:

I ∝ exp
[
−2 |gL|

ω

(
log

2

α
+ lognT +

π − 2

2nT

− C2

n2
T

+
(π − |φ0|)2

2n2
T

+O

(
1

n3
T

))]
(4.49)

Subcase nT ≪M ≪ n2
T

In this case the dominating term in (4.35) have large index K, but the gaussian envelope is very

narrow, which means that the full series is dominated by a single term. This is in full agreement

with the fact that the form (4.36) of polylogarithm converges over a large number of r-terms. The

optimal term has the integer index K0 closest to the real saddle-point Kλ = M/nλ. We write

Kλ = K0 + ξλ, with ξλ ∈
(
−1

2
, 1
2

)
, so:

1

M !
LiM

(
e−nλ+i(φ0+π)

)
∝ 1

M !
e−nλ(Kλ−ξλ)+M log(Kλ−ξλ) = e

−M lognλ−
ξ2λn2

λ
2M

+O

(
n3
λ

M2

)
(4.50)

Here we have a nonlinear inM term. It means, that the answer for the ionization rate depends on

how we split the process into energy slices. So, we must take only one slice — the whole gap. As

we take only one slice, nλ changes significantly inside it. Therefore the optimal photon number is

not given by M
nλ

anymore, and, consequentially, ξλ becomes ill-defined.

However, we can use the term ξ2λnλ

2M
as an estimate for integer effects. It yields the following

correction in the ionization exponent:

I ∝ exp
[
−2 |gL|

ω

(
log

2

α
− lognT − π − 2

2nT

)
+O

(
ωn2

T

2 |gL|

)]
(4.51)

The linear term |gL|
ω

is obtained by averaging the action over λ as before. It isn’t relate to integer

effects and thus this procedure is legitimate.
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4.3.6 Single photon case

When the optimal photon size is larger than the slice size (nT > M ), one again cannot use the

procedure described in section 4.3.2 and divide the ionization process into pieces. In this case

the system just takes one photon with the size of the gap and ionize. This case can be calculated

exactly with conventional Fermi Golden rule (C.16) (with NL (E) in the denominator), where the

perturbation is the term of (4.8) corresponding to the closest to |gL|
ω

larger integer. We denote this

integer asM , consistent with the previous notation. The result is:

I =
αM

2M−2M !
t2ζ4gR cos

(
φ0

2
+
πM

2

) √
M2ω2 − g2L
Mω

(4.52)

Note, thatMω is the actual energy of the destination state of the ionization. WhenMω becomes

equal to |gL|, this expression gives zero. However, when this happens, the ionizing harmonic of
HT changes, soM switches toM + 1, and the result again becomes nontrivial.

4.3.7 Andreev+Normal reflection regime

Now consider the caseM ≫ nT lognT (or, which is the same,M ≪ N∗ logN∗). In this case the

sum (4.32) is not defined by the two edge terms. We write:

N∑
k=0

CN
k (N − 2k)Me−ikφ0 =

N∑
k=0

e−S0(k)−ikφ0 (4.53)

where the action S0 is

S0 = − logCN
k −M log(N − 2k) =

= −N logN + k log k + (N − k) log(N − k)−

−M log(N − 2k)− 1

2
log

N

2π(N − k)k
+ . . . (4.54)

The stationary point of that action obeys ∂S0/∂k = 0:

log k − log(N − k) +
2M

N − 2k
+

1

2k
− 1

2(N − k)
= 0 (4.55)

As expected, k → N − k changes the sign of this. We seek for the stationary point with

k < N/2. We have the transcendent equation (terms ∼ 1/k, 1/N are neglected)

log
(
N

k
− 1

)
=

2M/N

1− 2k/N
(4.56)
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This is generally unsolvable, but if we assume thatM/N ≫ 1 then we get k/N ≪ 1 and

the asymptotic is

k0 = Ne−2M/N (4.57)

We remind that this happens in the regimes 1 ≪M/N ≪ lnN . At the same time, to have

k ≫ 1 produces the additional constraintM/N ≪ 1
2
lnN . At this saddle point, k = k0, we have

∂2S0

∂k2
≈ 1

k
+

1

N − k
+

4M

(N − 2k)2
≈ 1

k0
+

4M

N2
=

1

N

(
e2M/N +

4M

N

)
≈ 1

k0
(4.58)

where we made use ofM/N ≫ 1. The action itself is:

S0 = −M logN +O (k0 logN) (4.59)

We now integrate using the Poisson formula:

N/2∑
k=0

e−S0(k)−ikφ0 =
∑
p∈Z

e−S0(k0)−ik0(φ0−2πp)

∫
dke

− 1
2k0

(k−k0)2−i(k−k0)(φ0−2πp)
=

=
∑
p∈Z

√
2πk0e

−S0(k0)−ik0(φ0−2πp)−2(
φ0
2
−πp)2k0 (4.60)

Assuming φ0 is not close to ±π the above is dominated by the term with p = 0 because

k0 ≫ 1. If we are close to π phase difference, there are two main terms, but, to an exponential

accuracy the answer is still the same. In the above, we only integrated near the saddle-point with

k0 < N/2, there remains the symmetric saddle at N − k0. This adds the complex conjugate to the

result (but first we must restore some prefactors):

iMeiχN

M !2N

N∑
k=0

CN
k (N − 2k)Me−2kiχ = 2

√
2πk0

M !2N
e−S0−2χ2k0 cos

[
−2k0φ0

2
+
Nφ0

2
N
Mπ

2

]
(4.61)

The next step is to sum this overN . Remember that k0 = Ne−2M/N andS0 = S0(M,N, k0(M,N)).

Up to the preexponent we have:

J ∝ ℜ iM

M !

(α
4

)M∑
N

(
−Tλ

4

)N/2√
k0e

−S0−
φ2
0
4
k0+i

φ0
2
(N−2k0) (4.62)

We drop the terms proportional to k0 from the action as they are beyond our accuracy.
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Recalling, that N = 2K, we write:

J ∝ 1

M !

(α
4

)M
ℜ

[
iM
∑
N

(
−Tλ

4

)K

e−S0+iφ0K

]
(4.63)

This contains the same polylogaritm as in (4.35). AsM ≫ nT e
nT , we should treat it exactly as in

the first subcase of the section 4.3.5. Thus we can just take the answer (4.49), but add an additional

correction:

I ∝ exp
[
− 2 |gL|

ω

(
log

2

α
+ lognT +

π − 2

2nT

− C2

n2
T

+
(π − |φ0|)2

2n2
T

+O

(
1

n3
T

))
+

+O

(
|gL|
ωnT

e−nT log
|gL|
ω

)]
(4.64)

This correction comes from (4.59). At large enough |gL|
ω

it can become the greatest term in the

exponent. This means, that in this case the approximation taken in (4.59) is insufficient.

4.3.8 The adiabaticity condition

In section (3.6) we gauged the time-dependent phase difference intoHT . This transformation gen-

erated the terms U̇U † = φ̇τz in the wires, and these terms were neglected.This approach in valid,

when the ionization from the terms φ̇τz is weaker than than the ionization from HT .

To estimate the ionization caused by φ̇τz we turn off the tunneling and look at the transitions

in left and right wire separately.

In the left wire the transitions are possible only between the states of continuous spectrum.

As φ̇τz. is homogeneous, the jumps are possible only between the states with equal momenta. From

each state |E,L0⟩ with E ∼ |gL| the transitions are possible only to the state |−E,L0⟩ and into
two another states with energies of the order of ∆.

The matrix element ⟨E,L0| τz |−E ′, L0⟩ ∼ E
∆
NL (E) δ (E − E ′). The smallness E

∆
oc-

curs, as low energy states in leading order are eigenstates of the same eigenvalue of σxτx, which

anticommutes with τz. The matrix element ⟨E,L0| τz |E2, L0⟩ (with E2 ∼ ∆) is proportional to

NLδ (E − E2). Therefore the basic block ⟨E0| φ̇τzG ˙φτz |E0⟩ of the ionization process is propor-
tional to ω2|gL|

∆2 . This should be compared with ⟨γ|HTGHT |γ⟩, which is given by the formula

(4.17) and has the order |gL|T . So, if ω ≪ ∆
√
T , the adiabaticity holds.

Actually, the adiabaticity condition is even weaker, as φ̇ has only the first harmonic in ω

and therefore less efficient thanHT , which allows to optimize the photon size. The ionization with

φ̇τz always uses photons of the size ω and it scales as e−M(log 1
α
+log ∆

ω ). So, HT prevails when the
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condition

ω ≪ ∆

log 1
T

(4.65)

holds.

The fact, that in adiabaticity condition ω is compared with ∆, not with |gL|, means, that
even the single photon limit from section 4.3.6 is achievable.

4.4 Results

Here we collect results for the ionization rate within exponential accuracy. We have the following

notations: T =
gR(ζ2t)

2

|gL|
≪ 1 — ”dressed” tunneling constant relevant for the ionization, M =

|gL| /ω— the total number of energy quanta needed to ionize,nT = log 1
T
– twice the optimal size

of a photon (in quanta of ω). The optimal photon number is given by N∗ =
2M
nT
.

Figure 4.2: Different regimes of the ionization for |gL| ≪ gR

There are four different regimes, which presented on fig.4.2 and given by the formulas

(4.49), (4.51), (4.52) and (4.64). Here we list these results again:

1. Single-photon case: M < nT . In this case, the tunneling parameter T is so small that it is

best to use a single photon to minimize the TN/2 factor in the amplitude Jnm. In this case

the result (formula (4.52)) can be found even with the preexponent and yields:

I =
αM

2M−2M !
t2ζ4gR cos

(
φ0

2
+
πM

2

) √
M2ω2 − g2L
Mω

(4.66)

2. Fixed number of photons case: nT ≪ M ≪ n2
T . In this case it is optimal to use multiple

photons, more specificallyN∗ =
2M
nT

photons (rounded to the nearest integer). The contribu-

tion of the processes with different N is negligible. The integer effects are important here,

but don’t contribute in the leading terms. The ionization rate (formula (4.51)) is:

I ∝ exp
[
−2 |gL|

ω

(
log

2

α
− lognT − π − 2

2nT

)
+O

(
ωn2

T

2 |gL|

)]
(4.67)
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3. Fluctuating photon number case: n2
T ≪ M ≪ nT e

nT . Now, for combinatorial reasons,

contributions from N ̸= N∗ become important. The fluctuations δN = N −N∗ is typically

much larger than unity but much smaller than N∗. Thus, no integer effects remain. We get

(formula (4.49)):

I ∝ exp
[
−2 |gL|

ω

(
log

2

α
+ lognT +

π − 2

2nT

− C2

n2
T

+
(π − |φ0|)2

2n2
T

+O

(
1

n3
T

))]
(4.68)

4. Mixed Andreev and normal reflections: nT e
nT ≪ M . In this case there is an additional

correction to the ionization rate, which can be even larger than leading term — in this case

the result isn’t valid. However, when this correction remains small, the ionization rate is

(formula (4.64)) is:

I ∝ exp
[
− 2 |gL|

ω

(
log

2

α
+ lognT +

π − 2

2nT

− C2

n2
T

+
(π − |φ0|)2

2n2
T

+O

(
1

n3
T

))
+

+O

(
|gL|
ωnT

e−nT log
|gL|
ω

)]
(4.69)

These results are relevant, when the adiabaticity condition ω ≪ ∆
log 1

T

discussed in section 4.3.8

holds.
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Chapter 5

Discussion

In this chapter the obtained results are summarized and the potential experimental realization of

the system is discussed.

5.0.1 Results summary

The results, obtained in chapters 3 and 4 has different potential for experiment realization. The

subgap spectra can be obtained through the conductance measurements like was done in [22] and

[24]. However as the conductance peak can be weakened by thermal broadening and scattering on

the impurities, so it can be difficult to test that there are no states except for Majoranas – especially

for the states near the gap. The results of chapter 3 tell, that measuring the system’s supercurrent

wouldn’t be much different from the short Josephson junction problem.

However the ionization rates from the chapter 4 have a potential for experiment. Indeed,

if the system has no Majorana state, the ionization rate will at least get an extra factor of 2 in the

exponent in front of log 2
α
term, as when there is noMajorana near the barrier, to make transition one

needs to break a cooper pair and overcome the gap twice. It’s unclear, whether the other corrections

are observable — on the hand the all are multiplied by a large factor of |gL|
ω
, on the other hand —

they may be overshadowed by larger terms. Even the ”large correctrion” lognT = log log 1
T
has a

double logarithm and may not be visible in real observation.

Despite all that, authors hope, that the obtained results can be used for developing tech-

niques for detecting Majorana fermions in 1D superconducting wires. We also believe, that the

analysis of the physics of this model can lead to deeper understanding of the processes taking

place inside the superconducting wires with strong spin-orbit and external magnetic field and their

Josephson contacts.

5.0.2 Possible experimental realization

The system, described in chapter 2, can be potentially be built in experimental setup similar to the

ones used in [22] and [24].

The first problem, that seemingly makes all the work useless, is the fact that 1D supercon-

ductors don’t exists due to the presence of fluctuations. However there is a bypass— one can make
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superconducting wires artificially, taking a metallic or semiconducting wire and proximiting it to

a strong superconductor. This is a well known method, used, for example, in [22] and [24].

The proposed setup for the system is presented on 5.1. A metallic or semiconducting wire

(yellow) is being put on a insulator (gray) and proximitized to couple of superconductors (violet

and cyan). It’s important to make the superconductors separate, to obtain a phase difference and

avoid shortcutting the barrier. The barrier itself can be created using a gate (red) with a big negative

voltage on it. The chemical potentials in the wires can be adjusted in a similar way, by using a gates

near each wire (green).

Figure 5.1: Possible experimental realization of the system

The procedure of adjusting the parameters of the model from the chapter 2 can be the fol-

lowing: at first the system is created, with superconductivity order parameter inside the wires being

as similar, as possible. This may require a really advanced technique of fabricating the samples.

After that the magnetic field B is turned on and being adjust to be a little larger than∆. After that

the gates should be set to switch the wires to desired topology and create a tunnel barrier.

When the model was chosen, it was considered that it’s much easier to make spatially in-

homogeneous electric than magnetic field. It’s also important, that the spin-orbit coupling energy

inside the wire should be much stronger than the the superconducting gap. However, there is a

hope that this condition can generally be satisfied, as the proximitized superconductivity can be

weakened by a proper fabrication process.
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Chapter 6

Conclusion

In this work we have considered the system of two superconducting wires connected with a tunnel

junction. A strong spin-orbit and a magnetic field perpendicular to the wire were assumed. The

transparency of the barrier were set to be weak, so the system operates in tunneling regime. The

model is introduced in detail in chapter 2.

The low-energy spectrum was obtained for different topological indexes of the wires. The

subgap states, found in section 3.5, are quite predictable. In triv-top contact there is only one subgap

state — a Majorana state, on zero energy, as it should be. In top-top contact there are two subgap

states, which are Majorana states, each from its own wire. As there is a finite transparency of the

barrier, these states are not at zero energy and demonstrate the energy splitting, calculated in section

3.5.2. In triv-triv contact there are no subgape states — this result, as well as the presence of only

Majorana states in other contacts, wasn’t obvious for us before, but also not especially surprising.

The supercurrent from low energy states was calculated in section 3.6. The main result is

that it is expected be much smaller than the current from high energy states and probably won’t be

observable.

In chapter 4 the model was modified by introducing time dependent perturbation. Even the

simple case, when gap in the trivial wire is much smaller than the gap in topological one and the

ionization amplitude factorizes, demonstrates a rich physics with four different subregimes. The

ionization rates for Majorana state for these subregimes were calculated, as well as the limits of

applicability and their physical meaning is established.

Authors hope, that this work can give further incites for both developing experimental tech-

niques of detecting Majorana states in 1D superconductors and theoretical studies of properties of

such systems.
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Appendix A

Wavefunctions for the stationary contact

Here the eigenstates of the junction are presented in leading and subleading order on the tunneling

constant t. Only long-wave (ψmedium and ψlongest) part is presented here, as it’s sufficient for chapter

4.

The states in Nambu-Gorkov space are written in bra-ket notation. For zero tunneling they

are:
∣∣γ0 ⟩— the Majorana state and

∣∣ε, L0

⟩
,
∣∣ε,R0

⟩
— continuous spectra in the left and in the

right wire respectfully. The corrections are denoted as
∣∣γ1 ⟩, ∣∣ε, L1

⟩
,
∣∣ε,R1

⟩
.

It’s important to note, that the first order correction for any state is located in the wire

opposite to the one hosting the leading order. This can be reflected with spinors in LR-space as:

Ψγ =

 0∣∣γ0 ⟩


LR

+

∣∣γ1 ⟩
0


LR

+ ... (A.1)

ΨR =

 0∣∣ε,R0

⟩


LR

+

∣∣ε,R1

⟩
0


LR

+ ... (A.2)

ΨL =

∣∣ε, L0

⟩
0


LR

+

 0∣∣ε, L1

⟩


LR

+ ... (A.3)

The states are normalized as:

⟨
γ0
∣∣γ0 ⟩ = 1

⟨
ϵ, R0

∣∣ε,R0

⟩
= NR (ϵ) δ (ϵ− ε)

⟨
ϵ, L0

∣∣ε, L0

⟩
= NL (ϵ) δ (ϵ− ε) (A.4)

where

NL (ε) =
4πu

√
ε2 − g2L

(
e2κL(ε) + 1

)2
ε

NR (ε) =
4πu

√
ε2 − g2R

(
e2ηR(ε) + 1

)2
ε

(A.5)

Note, that for calculating s-matrix another normalization, providing ⟨ϵ| v |ε⟩ = δ (ϵ− ϵ)

should be used, with v = uσzτz for long-wave states. The normalization used here serves for

computing tunnel Hamiltonian matrix elements.

The definition of the ηL,R, ηL and κR is given in the 3.6. The indexes L,R near the spinors

are relate to the wire, where this spinor is present. All the wavefucntions listed here are relevant
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for both |gL| < gR and |gL| > gR cases.

The Majorana state is:

⟨
x
∣∣γ0 ⟩ = 1

2

√
gR
u


−1

i

−i
1


R

e−
gRx

u (A.6)

⟨
x
∣∣γ1 ⟩ = 1

2

√
gR
u
ζt
(
ei

ϕ
2 + e−iϕ

2

)



−i
1

1

−i


L

e−
2∆x
u − iζ


−i
−1

1

i


L

e−
|gL|x

u

 (A.7)

Continuous states from the right wire are:

⟨
x
∣∣E, R0

⟩
=

(
−ieηR(E) − 1

)


−1

−eηR(E)

eηR(E)

1


R

e−
ix
√

E2−g2
R

u +
(
eηR(E) + i

)

−eηR(E)

−1

1

eηR(E)


R

e
ix
√

E2−g2
R

u (A.8)

⟨
x
∣∣E R1

⟩∣∣∣
E<gL

= tζ
(
e2ηR(E) − 1

) (
ei

ϕ
2 + e−iϕ

2

)
×

×




−i
1

1

−i


L

− e−
2∆x
u − 2iζ

(1 + e−iθL(E))


−ie−iθL(E)

−1

1

ie−iθL(E)


L

e
−x
√

g2
L
−E2

u

 (A.9)

⟨
x
∣∣E R1

⟩∣∣∣
E>gL

= tζ
(
e2ηR(E) − 1

) (
ei

ϕ
2 + e−iϕ

2

)
×

×




−i
1

1

−i


L

e−
2∆x
u − 2iζ

(1 + ie−κl(E))


e−κL(E)

−1

1

−e−κL(E)


L

e
ix
√

E2−g2
L

u

 (A.10)
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Continuous states from the left wire are:

⟨
x
∣∣ε, L0

⟩
=

(
eκL(ε) − i

)


1

−eκL(ε)

eκL(ε)

−1


L

e+i

√
ε2−g2

L
u

x +
(
−1 + ieκL(ε)

)

eκL(ε)

−1

1

−eκL(ε)


L

e−i

√
ε2−g2

L
u

x (A.11)

⟨
x
∣∣ε, L1

⟩∣∣∣
ε<gR

= ζt
(
e2κL(ε) − 1

) (
ei

ϕ
2 + e−iϕ

2

)
×

×


2iζ

(−1 + eiθR(ε))


−1

ieiθR(ε)

−ieiθR(ε)

1


R

e−x

√
g2r−ε2

u +


1

−i
−i
1


R

e−
2∆x
u

 (A.12)

⟨
x
∣∣ε, L1

⟩∣∣∣
ε>gR

= ζt
(
e2κL(ε) − 1

) (
ei

ϕ
2 + e−iϕ

2

)
×

×


2itζ

(−1 + ie−ηR(ε))


−1

−e−ηR(ε)

e−ηR(ε)

1


R

e
ix
√

E2−g2
R

u +


1

−i
−i
1


R

e−
2∆x
u

 (A.13)
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Appendix B

Tunnel Hamiltonian derivation

The goal in derivation tunnel Hamiltonian is to make it restoring the corrections of the wavefunci-

tons from appendix A. Recalling, that in LR-space the Hamiltonian has the form (4.3), we write

the unperturbed Green function as:

G0 (E) =
1

E + i0

0 0

0
∣∣γ0 ⟩⟨γ0 ∣∣


LR

+

∫ ∞

gL

dε

NL (ε)

1

E + i0− ε

∣∣ε, L0

⟩⟨
ε, L0

∣∣ 0

0 0


LR

+

+

∫ ∞

gl

dε

NR (ε)

1

E + i0− ε

0 0

0
∣∣ε,R0

⟩⟨
ε,R0

∣∣


LR

(B.1)

with NL,R from (A.5). The corrections for the spinors should be calculated as:

Ψ1 (E) = G0 (E)HTΨ0 (E) (B.2)

So, for different states:

∣∣γ1 ⟩ = ∫ ∞

gL

dε

NL (ε)

1

−ε+ i0

∣∣ε, L0

⟩ ⟨
ε, L0

∣∣hLR∣∣γ0 ⟩ (B.3)

∣∣E + i0, R1

⟩
=

∫ ∞

gL

dε

NL (ε)

1

E − ε+ i0

∣∣ε, L0

⟩ ⟨
ε, L0

∣∣hLR∣∣E R0

⟩
(B.4)∣∣E + i0, L1

⟩
=

1

E + i0

∣∣γ0 ⟩ ⟨γ0 ∣∣h†LR∣∣E,L0

⟩
+

+

∫ ∞

gl

dε

NR (ε)

1

E − ε+ i0

∣∣εR0

⟩ ⟨
ε,R0

∣∣h†LR∣∣E,L0

⟩
(B.5)

Now, multiplying the third equation by
⟨
γ0
∣∣ and ⟨ϵ, R0

∣∣, find:
⟨
γ0
∣∣E + i0, L1

⟩
=

1

E + i0

⟨
γ0
∣∣h†LR∣∣E,L0

⟩
(B.6)⟨

ϵ, R0

∣∣E + i0, L1

⟩
=

1

E − ϵ+ i0

⟨
ϵ, R0

∣∣h†LR∣∣E,L0

⟩
(B.7)

The l.h.s. of this equation can be calculated with the help of appendix A. After doing so,

we arrive to the result (4.5).
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Appendix C

Multiphoton ionization

This appendix is focused on high-order perturbation theory, ionization rates in particular. In this

Appendix Planck constant is taken to be unity.

C.1 Basics about Green’s functions

The starting point is the general setup of a discrete bound state subject to a weak and slow per-

turbation V (t).The bound state energy is zero. The goal is to obtain the ionization rate. The time

evolution of the wave function obeys the Schroedinger equation:

i
∂

∂t
Ψ = (H0 + V )Ψ (C.1)

In the absence of perturbations, the solution is Ψ(t) = Ψ0 (since E0 = 0 it is literally time-

independent). For further analysis it’s convenient to consider the unperturbed retarded Green’s

function GR(E) defined so that:

GR(E)(E + i0−H0) = 1 (C.2)

If the bound state is normalized, ⟨γ|γ⟩ =1 and the continuous spectrum is normalized according to

⟨E|E ′⟩ = N(E)δ(E − E ′) with some reasonably nice N(E) then:

I = |γ⟩⟨γ|+
∫

|E⟩⟨E|
N(E)

dE (C.3)

Similarly, H0 and GR in the energy representation:

H0 =

∫
|E⟩⟨E|
N(E)

EdE GR(ϵ) =
|γ⟩⟨γ|
ϵ+ i0

+

∫
|E⟩⟨E|

(ϵ+ i0− E)N(E)
dE (C.4)

Integrals over E include all states in the continuous spectrum. Where the latter is degenerate, a

summation over the degenerate states must be carried out. From now on the ”R” index for retarded

Green’s function will be omitted.
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In time representation the Green’s function obeys:(
i
∂

∂t2
−H0

)
G(t2, t1) = δ(t2 − t1) (C.5)

One can formally introduce the Green’s function in energy representation with two arguments as a

Fourier-transform of G(t2, t1):

G (E2, E1) =

∫∫
eiE2t2−iE1t1G(t2, t1)dt1dt2 (C.6)

As H0 is time independent, G (t2, t1) = G (t2 − t1, 0), so:

G (E2, E1) = 2πδ (E2 − E1)G (E1) (C.7)

One can also find, that for any eigenstate |E0⟩

G (t) |E0⟩ = −ie−iE0tθH (t) |E0⟩ (C.8)

With the help of Green’s function the Schroedinger equation (C.1) can be solved as:

Ψ(t) = Ψ0 +

∫
G0(t− t′)V (t′)Ψ0(t

′)dt′+∫∫
G0(t− t′)V (t′)G0(t

′ − t′′)V (t′′)Ψ0(t
′′)dt′dt′′ + . . . (C.9)

where the Ψ0 is unperturbed wavefunction. This equation can be rewriteen by the introducion

C.2 Fermi Golden Rule (first order)

Consider first the lowest order to the Fermi Golden rule by only keeping the linear term in V . Let

the Fourier decomposition of V be:

V (t) =
∑
n

Vne
−iωnt (C.10)

(Hermiticity demands V (t) = V (t)∗ so that Vn = V ∗
−n). Suppose there is an unperturbed contin-

uous spectrum parameterized by E, with ⟨E|E ′⟩ = f(E)δ(E − E ′). The first step is to calculate
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⟨E|Ψ(t)⟩, i.e. the quantum amplitude of being in state |E⟩ at time t. It is:

⟨E|Ψ(t)⟩ = ⟨E|
∫
G0(t− t′)V (t′)Ψ0(t

′)dt′⟩ =
∫
⟨E|G0(t− t′)V (t′)|Ψ0⟩dt′ =

=

∫ ∫
⟨E|G0(t− t′)|E ′⟩⟨E ′|V (t′)|Ψ0⟩dt′

dE ′

N(E)

=

∫
e−i(t−t′)EθH(t− t′)⟨E|V (t′)|Ψ0⟩dt′ =

= e−iEt
∑
n

∫
eit

′(E−ωn)θH(t− t′)⟨E|Vn|Ψ0⟩dt′ (C.11)

Assuming that the perturbation was turned on at t′ = 0 the integral over t′ is taken from t0

to t and gives:

⟨E|Ψ(t)⟩ = e−iEt
∑
n

⟨E|Vn|Ψ0⟩
eit(E−ω) − 1

i(E − ωn)
(C.12)

Thus, the probability density of being in the state |E⟩ is (omit all frequencies except the
resonant on should be ommited since the contributions from non-resonant frequencies can be ne-

glected at long times):

ρ(E) = |⟨E|Vn|Ψ0⟩|2
4 sin2 t(E−ωn)

2

(E − ωn)2
(C.13)

so that the probability of being in a state between E and E + δE is at large times:

P (E + δE,E) = |⟨E|Vn|Ψ0⟩|2
E+δE∫
E

dE

N(E)

4 sin2 t(E−ωn)
2

(E − ωn)2
=

= 2t|⟨E|Vn|Ψ0⟩|2
E+δE∫
E

d(tE/2)

N(E)

4 sin2 t(E−ωn)
2

t2(E − ωn)2
=

= 2t|⟨E|Vn|Ψ0⟩|2
π

N(E)
θH(ωn − E)θH(E + δE − ωn) (C.14)

In other words, the probability density at large t behaves exactly like the δ-function:

ρ(E) = 2π|⟨E|Vn|Ψ0⟩|2δ(E − ωn) (C.15)

which is the well-known Fermi Golden rule. (Note, that the probability is dP = ρ(E)dE/f(E) –

do not forget the normalization). Thus, the ionization rate (i.e. P/t) for a single photon is expressed
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as:

I =
2π|⟨E|Vn|Ψ0⟩|2

N(E)
(C.16)

C.3 Fermi Golden Rule (high order)

Tho treat the higher-order perturbation theory it’s convenient to rewrite (C.9) as:

Ψ(t) = Ψ0 +

∫ ∫
G0(t− t′)W (t′, t′′)Ψ0(t

′′)dt′dt′′ (C.17)

where W incorporates all powers of perturbation theory:

W = V + V G0V + V G0V G0V + . . . (C.18)

The perturbation V in energy space is:

V (E ′, E) ≡
∫
V (t′, t)eit

′E′−iEtdt′dt =

∫
V (t)ei(E

′−E)tdt =

=
∑
n

Vn

∫
ei(E

′−E−ωn)tdt =
∑
n

Vn2πδ(E
′ − E − ωn) (C.19)

The second term of the perturbation theoryW2 = V GV in energy representation reads:

W2(E2, E1) =

∫
V (E2, E)G0(E,E

′)V (E ′, E1)
dEdE ′

(2π)2
=∑

nm

2πδ(E2 − E1 − ωn − ωm)VnG0(E1 + ωm)Vm (C.20)

Very similarly, the N -th-order term is:

WN(E2, E1) =
∑

n1,...,nN

2πδ

(
E2 − E1 −

N∑
i=1

ωni

)
VnN

N−1∏
j=1

G0

(
E1 +

j∑
s=1

ωns

)
Vnj

(C.21)

The above expression sums over all processes involving N photons. Note how the Green’s

functions contains the cumulative energy of all photons absorbed by the time. The δ-function at

the start of the expression indicates that the energy is changed by
∑
ωni

. It makes more sense to

sort processes within W not by photon count N but rather by the total energy gained, since the

total ionization rate should be dominated by ionization to the lowest accessible continuum state.
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Defining this activation energy as E , write:

WE(E2, E1) = 2πδ(E2 − E1 − E)wE(E1) (C.22)

wE(E) =
∑
{ni}:E

VnN

N−1∏
j=1

G0

(
E +

j∑
s=1

ωns

)
Vnj

(C.23)

The summation is over all sets of photons ni that total an energy of E , i.e. such sets that
∑N

i ωni
=

E . The photon number N itself depends on the particular photon set ni. The total composite per-

turbation W can be written as a sum of WE with different E . However, only one term is relevant

— the one with E = min |gR|, |gL|. (If the elementary frequency quantum ω is large enough, this

is replaced by the lowest E that surpasses the minimum gap).

Now the Fermi Golden rule result (C.16) can be rederived for WE . It’s easy ti see that W

has the same energy structure as the single-photon perturbation V . Both operators simply shift the

energy. Thus, one may simply putWE into the Fermi Golden rule instead of V to get the full-theory

results:

I =
2π|⟨E|wE |Ψ0⟩|2

N(E)
(C.24)

Thus to find the ionization rate one should calculate wE from (4.10).
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