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action between phonons that is essential for stability of two–dimensional crystal is strongly
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and auxetic Poisson ratio in two–dimensional crystalline membranes. I find that actual critical

indices may dramatically differ from values given by self–consistent screening approximation.
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Chapter 1

Introduction

1.1 Motivation

Theory of elasticity of two–dimensional crystalline membranes as we know it today has been

developing since 1980s [1] and is able to qualitatively describe some unique two–dimensional

elastic phenomena such as crumpling and buckling [2], yet there are many qualitative and

quantitative problems unsolved. Such theory mostly served to describe polymerized membranes

in biological matter (e.g. red blood cells), however recently interest to that field of study has

been revived with experimental observation of graphene — single atom layer of carbon. That is

exactly an application I would keep in mind below.

Most prominent and curious phenomena of elastic physics of graphene are anomalous Hooke’s

law and negative Poisson ratio. On Figure 2a you can see experimentally measured stress 𝜎

versus strain 𝜉 dependence of free–hanging graphene sheet [3]. That dependence is believed to

be described by power law

𝛿𝜉 =
𝐿𝜎 − 𝐿𝜎=0

𝐿𝜎=0

∝ 𝜎

𝑌0

(︂
𝜎

𝜎*

)︂𝛼−1

, 𝜎 ≪ 𝜎*. (1.1)

Here 𝑌0 ≃ 22 eV·Å−2 is (bare) graphene Young modulus and 𝜎* ≃ .5 N·m−1 is characteristic

scale of non–linear regime. Exponent 𝛼 > 0 is not known exactly, but several analytical ap-

proximations and numerical studies suggest that its value lies in range .6 . 𝛼clean . .7 for the

clean membranes and 𝛼dis . .3 for disordered membranes (e.g. graphene with dislocations).

(a) Crumpled piece of paper. (b) Buckling transition.

Figure 1: Illustration of crumpling and buckling phenomena.
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(a) Experimental evidence of anomalous
Hooke’s law 𝛼fit ≈ .1 in graphene [8].

(b) Definition of Poisson ratio.

Figure 2: Unusual elastic phenomena peculiar to two–dimensional membranes.

Poisson ratio (PR) is defined as the strain ratio in perpendicular directions when stress is

applied only along one direction (see Figure 2b). In conventional linear regime it is given by

material dependent lame coefficients and is usually positive, which means that stretching in one

direction leads to shrinking in another.

𝜈0 = −𝜀𝑦
𝜀𝑥

=
𝜆

2𝜇 + (𝐷 − 1)𝜆
.

For graphene 𝜈0 ≈ .1. However, it so happens that in non–linear regime (1.1) Poisson ration

becomes universal for all two–dimensional crystalline surfaces number, which is believed to be

negative [4]. Also in such regime in addition to absolute Poisson ratio a differential one is

defined.

𝜈 = −𝜉𝑦(𝜎𝑥, 0) − 𝜉𝑦(0, 0)

𝜉𝑥(𝜎𝑥, 0) − 𝜉𝑥(0, 0)
, 𝜈diff = − 𝜕𝜉𝑦(𝜎𝑥, 𝜎)/𝜕𝜎𝑥

𝜕𝜉𝑦(𝜎𝑥, 𝜎)/𝜕𝜎𝑥

⃒⃒⃒⃒
𝜎𝑥=𝜎

.

Universal value of Poisson ratio in the regime 𝜎𝐿 ≪ 𝜎 ≪ 𝜎* has been believed [5, 6] to be

unprecedentedly close to 𝜈scsa = −1
3
, however it was recently explicitly shown [7] that there is

no reason to believe in exact relation 𝜈diff = 𝜈scsa.

Both anomalous Hooke’s law and auxetic phenomena may be understood with the simple

notion of ripples – small waves on the membrane surface, which are always present due to

thermal fluctuations (see Figure 3). At finite temperature free-standing surface is nearly flat

but due to folds its projected area is smaller that of the same membrane at absolute zero 𝑇 = 0,

i. e. it is shrunk in both directions. Thus, application of external tensions will at first flatten

the surface and only after that stretch the crystalline structure, which means that it is easier

to spring out the membrane at small stresses. Also such initial thermal decrease of projected

area is naturally isotropic, so flattening by pulling in any direction leads to expansion in both,

i.e. negative Poisson ratio.

8



1.2 Problem statement

In my thesis I am going to study elastic properties of two–dimensional crystalline membrane in

non-linear (universal) stress regime 𝜎 ≪ 𝜎*. In order to do that at first I am going to derive

model of 2D membrane under the finite stress (Chapter 2) and develop a controlled perturbation

theory (Chapter 3) in order to obtain analytical expressions depicting anomalous Hooke’s law.

Specifically, I am going to use perturbative approach to answer the following questions.

1. How does the critical exponent 𝛼 from anomalous Hooke’s law differ from the known

approximate values, namely, self–consistent screening approximation[9]? (Section 3.3)

2. Can the value of Poisson ratio 𝜈 in universal regime be expressed in terms of 𝛼 or is it

an independent critical index? How does it differ from its value given by self–consistent

screening approximation [10]? (Section 3.4)

I am going to reinforce my conclusions based on perturbation theory with numerical Monte

Carlo simulations using the effective energy functional I have derived. In Chapter 4 I explain

how simulations are made and review and discuss existing articles reporting on numerical values

of critical indices.

Appendix A contains calculations that are too lengthy to be present in main text.

Conclusions and results summary are present in Chapter 5.

Figure 3: Graphene lattice with ripples [source].
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Chapter 2

Theoretical model

2.1 Free Energy of two–dimensional membrane

The model used to describe two–dimensional crystals (tethered surfaces) for the past several

decades [11] takes into account surface bending energy and bonding potential [12, Ch. 6].

𝐸 = κ̄
∑︁
⟨xy⟩

(1 − nx · ny) +
∑︁
⟨xy⟩

𝑉 (|rx − ry|) .

Here x is a discrete index running through the 𝐷 = 2–dimensional lattice nodes and sum is

taken of neighboring atoms, normal vectors nx are located at the center of adjacent cell (see

Figure 4). At zero temperature 𝑇 = 0 membrane is presumed to be perfectly flat, at finite

temperature its profile is given by r(x) function.

r(x) =

⎛⎜⎝𝑥1 + 𝑢1(x)

𝑥2 + 𝑢2(x)

ℎ(x)

⎞⎟⎠ x = (𝑥1, 𝑥2) ∈ R2.

In the limit of continuous media energy of smooth (without self–intersections) nearly flat surface

could be expanded in gradients of r(x).

Figure 4: Parametrization of membrane in plane phase.
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Bending energy Membrane surface is parametrized with equation 𝑧 = ℎ(x+u(x)). As it will

be seen below it is enough to approximate 𝑧 ≈ ℎ(x), then normal vector expressed as follows.

n =
1√︀

1 + (∇ℎ)2

⎛⎜⎝−𝜕1ℎ

−𝜕2ℎ

1

⎞⎟⎠ ℎx+e𝑖 ≈ ℎx + (e𝑖,∇)ℎx +
1

2
(e𝑖,∇)2ℎx.

In the equation below κ̃ is proportional to κ̄. Proportionality coefficient depends on the lattice

type and is equal to 1 for square lattice and 1/
√

3 for graphene hexagonal lattice.

nx · nx+e𝑖 =

√︃
1 + (∇ℎx)2

1 + (∇ℎy)2

[︂
1 +

(∇ℎx,∇(ℎy − ℎx))

1 + (∇ℎx)2

]︂
y=x+e𝑖

≈ 1 − 1

2
(∇𝛼(e𝑖∇)ℎx)2.

κ̄
∑︁
⟨xy⟩

(1 − nx · ny) ≈ κ̃
2

ˆ
𝑑𝐷x (𝜕𝛼𝜕𝛽ℎx)2 =

ˆ
𝑑𝐷x

[︀
(∇2ℎx)2 − 2 det(𝜕𝛼𝜕𝛽ℎx)

]︀
.

The last two terms of are mean and Gaussian curvature, second term may be omitted since it

is a perfect derivative and boundary contributions are negligible in thermodynamic limit.

Potential energy The same way potential energy can be expanded in displacement gradients.

𝑉 (|rx − ry|) = 𝑉 (0) + 𝜕𝜇𝑉 (0)

[︂
(e𝑖,∇)𝑟𝜇x +

1

2
(e𝑖,∇)2𝑟𝜇x + . . .

]︂
+ . . .

After averaging over lattice basis vectors I obtain expression (2.1) with coefficients 𝑡, 𝜆̃, 𝜇̃ having

some tensor structure. It happens because generally couplings like (𝜕𝛼𝑟𝛼)2 and (𝜕𝛼𝑟𝛽) (𝜕𝛽𝑟𝛼)

and other quartic terms are also possible, however, in the text below full rotational invariance

is assumed for simplicity.

Continuous limit Altogether, energy is written as

ℱ [r] =
1

2

ˆ
𝑑𝐷x

[︃
κ̃
(︀
∇2ℎ

)︀2
+ 𝑡 (𝜕𝛼𝑟𝛽)2 +

𝜇̃

2
(𝜕𝛼r · 𝜕𝛽r)2 +

𝜆̃

4
(𝜕𝛼𝑟𝛽)4

]︃
. (2.1)

Sign of 𝑡 governs transition between crumpled and plane phases as may be seen from mean–field

consideration [1, 13]. For my purposes membrane could be considered deep in the plane phase

(𝑡 < 0), then it is convenient to rescale r ↦→ 𝜉0r and introduce κ = 𝜉20κ̃, 𝜇 = 𝜉40 𝜇̃, 𝜆 = 𝜉40 𝜆̃ with

𝜉20 = −𝑡/(𝜇̃ + 𝐷𝜆̃/2).

ℱ [r] =
1

2

ˆ
𝑑𝐷x

[︂
κ(∇2ℎ)2 +

𝜇

2
(𝜕𝛼r · 𝜕𝛽r− 𝛿𝛼𝛽)2 +

𝜆

4
(𝜕𝛼r · 𝜕𝛼r−𝐷)2

]︂
. (2.2)
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2.1.1 External stress

In the presence of external stress free energy should obtain −𝜎𝛼𝛽𝛿𝜕𝛼𝑟𝛽 addition [1] similarly to

term −𝑝𝛿𝑉 in thermodynamics of gases.

ℱtot[r, 𝜎𝛼𝛽] = ℱ [r] + ℱext[r, 𝜎𝛼𝛽], ℱext = −
ˆ

𝑑𝐷x𝜎𝛼𝛽(x)𝜕𝛼𝑟𝛽(x).

Generally, one has to distinguish between coupling stress directly to strain tensor as it is done

in [14, §3] and using more precise definition of work. As I will show below difference between

these two options is negligible.

In this work I will only consider the case of the uniform stress 𝜎𝛼𝛽 = const(x). It is realized,

for example, in the case of suspended rectangular or circular membrane to which uniform tension

along the edge is applied. In each of these cases I can rewrite additional term as boundary

integral.

ℱext = −𝜎𝛼𝛽

ˆ
Ω

𝑑𝐷x 𝜕𝛼𝑟𝛽(x) = −𝜎𝛼𝛽

˛
x∈𝜕Γ

𝑛𝛼(x)𝑟𝛽(x)𝑑𝑙.

I define stretching coefficients as the ratio of given length and initial length (at 𝑇 = 0) and

shift integration variable in ℱtot in such way 𝑟𝜇 = 𝜉𝜇𝛼𝑥𝛼 + 𝛿𝑟𝜇 that external term becomes

r–independent, thus, may be excluded from action.

ℱtot[𝜉𝜇𝛼𝑥𝛼 + 𝛿𝑟𝜇, 𝜎𝛼𝛽] = ℱ [𝜉𝜇𝛼𝑥𝛼 + 𝛿𝑟𝜇] − 𝐿𝐷𝜉𝛽𝛼𝜎𝛼𝛽

since 𝛿𝑟𝜇 = 0 at the boundary by construction. It is easier to see how that happens on the

explicit examples below.

Rectangle Simplest possible case, which considered in the rest of the paper, is the sample of

rectangular shape.

Ωrect =

[︂
−𝐿0

𝑥

2
,
𝐿0
𝑥

2

]︂
×
[︂
−𝐿0

𝑥

2
,
𝐿0
𝑥

2

]︂
.

Strain tensor and stress term has the simplest possible form

𝜉𝑥𝑥 =
𝐿𝑥

𝐿0
𝑥

, 𝜉𝑦𝑥 = 0,

𝜉𝑥𝑦 = 0 𝜉𝑦𝑦 =
𝐿𝑦

𝐿0
𝑦

.
ℱext = −𝜎𝑥𝑥𝐿𝑥𝐿

0
𝑦 − 𝜎𝑦𝑦𝐿𝑦𝐿

0
𝑥.

Here 𝐿𝑥, 𝐿𝑦 are the actual size of the membrane, i.e. are the sizes of the projected area, when

𝐿0
𝑥, 𝐿

0
𝑦 are the sizes of the x–grid.
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Circle Another way to have uniform stress tensor is to impose circular geometry.

Ωcirc = {x : |x| < 𝑅0}.

Similarly, actual 𝑅 is a function of stress.

𝜉𝑟𝑟 =
𝑅

𝑅0

, 𝜉𝜙𝑟 = 0,

𝜉𝑟𝜙 = 0 𝜉𝜙𝜙 = 0.

ℱext = −𝜎𝑟𝑟𝜋𝑅𝑅0.

General approach In general case of non–uniform stress, similar expressions may be obtained

in thermodynamic limit. Following the idea of the paper [7], I am going to work in the setting

with fixed spatial derivative ⟨𝜕𝛼𝑟𝛽⟩ = 𝑚𝛼𝛽(x) rather than given stress tensor 𝜎𝛼𝛽(x). I define

Legendre transform of the functional ℱ̃𝑡𝑜𝑡 according to the usual rule

ℱ̃tot[𝑚𝛼𝛽] =

[︂
ℱ𝑡𝑜𝑡[𝜎𝛼𝛽] +

ˆ
𝑑𝐷x𝜎𝛼𝛽(x)𝑚𝛼𝛽(x)

]︂
𝜎𝛼𝛽=𝜎𝛼𝛽(𝑚𝛼𝛽)

(2.3)

where 𝜎𝛼𝛽 is expressed in terms of 𝑚𝛼𝛽 through the inverse of the relation

𝑚𝛼𝛽 = ⟨𝜕𝛼𝑟𝛽⟩ℱtot
= − 1

𝐿𝐷

𝛿ℱtot

𝛿𝜎𝛼𝛽

.

In its turn, such functional has to satisfy

𝜎𝛼𝛽 =
1

𝐿𝐷

𝛿ℱ̃tot

𝛿𝑚𝛼𝛽

.

In the article [7] it is stated that ℱ̃tot[𝑚𝛼𝛽] coincides with ℱ evaluated with the constriction

⟨𝜕𝛼𝑟𝛽⟩ = 𝑚𝛼𝛽, such action can written as

𝑒−ℱ1/𝑇 = 𝑒−ℱ/𝑇 𝛿[𝜕𝛼𝑟𝛽 −𝑚𝛼𝛽].

Or equivalently with integral over 𝑠𝛼𝛽 runs along imaginary line.

ℱ1[r,𝑚𝛼𝛽] = −𝑇 ln

ˆ
𝐷[𝑠𝛼𝛽] exp

[︂
−ℱ
𝑇

+

ˆ
𝑠𝛼𝛽
𝑇

(𝜕𝛼𝑟𝛽 −𝑚𝛼𝛽) 𝑑𝐷x

]︂
= −𝑇 ln

ˆ
𝐷[𝑠𝛼𝛽] exp

[︂
−ℱtot[𝑠𝛼𝛽]

𝑇
−
ˆ

𝑠𝛼𝛽
𝑇

𝑚𝛼𝛽𝑑
𝐷x

]︂
Evaluating integral over 𝑠𝛼𝛽 in saddle approximation I come to (2.3).
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2.1.2 Harmonic approximation

It was shown in previous section that in order to describe free–standing membrane with fixed

uniform applied stress 𝜎𝛼𝛽, one can consider action

ℱ [r] =
1

2

ˆ
𝑑𝐷x

[︂
κ(∇2ℎ)2 +

𝜇

2
(𝜕𝛼r · 𝜕𝛽r− 𝛿𝛼𝛽)2 +

𝜆

4
(𝜕𝛼r · 𝜕𝛼r−𝐷)2

]︂
. (2.4)

with shifted variable ℱ = ℱ [𝜉𝜇𝛼𝑥𝛼 + 𝛿𝑟𝜇] and imposed conditions

𝛿𝑟𝑥,𝑦|𝜕Ω = 0,
𝛿ℱ

𝛿𝜉𝛽𝛼(x)
= 𝜎𝛼𝛽(x). (2.5)

In order to simplify action I make substitution

r(x) =

⎛⎜⎝𝜉1𝑥1 + 𝑢1(x)

𝜉2𝑥2 + 𝑢2(x)

ℎ(x)

⎞⎟⎠
and expand all therms in (2.4). Let me define a strain tensor as

𝑢𝛼𝛽 =
1

2

(︀
𝜉(𝛼)𝜕𝛽𝑢𝛼 + 𝜉(𝛽)𝜕𝛼𝑢𝛽 + 𝜕𝛼u · 𝜕𝛽u + 𝜕𝛼ℎ · 𝜕𝛽ℎ

)︀
then I can rewrite the following terms

𝜕𝛼r · 𝜕𝛽r = (𝜉(𝛾)𝛿𝛼𝛾 + 𝜕𝛼𝑢𝛾 + 𝜕𝛼ℎ𝛾)(𝜉(𝛾)𝛿𝛽𝛾 + 𝜕𝛽𝑢𝛾 + 𝜕𝛽ℎ𝛾)

= (𝜉(𝛼)𝛿𝛼𝛾 + 𝜕𝛼𝑢𝛾)(𝜉(𝛽)𝛿𝛽𝛾 + 𝜕𝛽𝑢𝛾) + 𝜕𝛼ℎ · 𝜕𝛽ℎ

= 𝜉(𝛼)𝜉(𝛽)𝛿𝛼𝛽 + 2𝑢𝛼𝛽.

𝜕𝛼r · 𝜕𝛼r = 𝜉2𝛼 + 2𝑢𝛼𝛼,

where Einstein summation rule is presumed as always, so that, for example, 𝜉2𝛼 = 𝜉𝛼𝜉
𝛼 = 𝜉2𝑥+𝜉2𝑦 .

Here I define proportional deformations 𝜀𝛼 in the following way supposing that 𝜉𝛼 ≈ 1.

𝜀𝛼 

𝜉𝛼𝜉(𝛼) − 1

2
≈ 𝜉𝛼 − 1 =

∆𝛼𝐿

𝐿
, 𝜀 =

1

2

(︃
𝜉2𝑥 − 1

𝜉2𝑦 − 1

)︃

Local proportional deformations for uniaxial deformations are given by diagonal elements of

strain tensor, I denote them as 1
2
𝐾𝛼.

𝐾𝛼 
 2𝑢𝛼(𝛼), K =

(︃
2𝑢𝑥𝑥

2𝑢𝑦𝑦

)︃
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I modify expressions further.

1

4
(𝜕𝛼r · 𝜕𝛽r− 𝛿𝛼𝛽)2 =

1

4
(𝜉(𝛼)𝜉(𝛽)𝛿𝛼𝛽 − 𝛿𝛼𝛽 + 2𝑢𝛼𝛽)(𝜉(𝛼)𝜉(𝛽)𝛿𝛼𝛽 − 𝛿𝛼𝛽 + 2𝑢𝛼𝛽)

= (𝜀(𝛼)𝛿𝛼𝛽 + 𝑢𝛼𝛽)(𝜀(𝛼)𝛿𝛼𝛽 + 𝑢𝛼𝛽)

= 𝜀2𝛼 + 2𝜀(𝛼)𝑢𝛼𝛼 + 𝑢2
𝛼𝛽

= 𝜀𝛼(𝜀𝛼 + 𝐾𝛼) + 𝑢2
𝛼𝛽.

1

4
(𝜕𝛼r · 𝜕𝛼r−𝐷)2 =

1

4
(𝜉2𝛼 − 𝛿𝛼𝛼 + 2𝑢𝛼𝛼)2

=

(︂
𝜀𝛼 +

1

2
𝐾𝛼

)︂
1𝛼𝛽

(︂
𝜀𝛽 +

1

2
𝐾𝛽

)︂
= 𝜀𝛼1𝛼𝛽(𝜀𝛽 + 𝐾𝛽) + (𝑢𝛼𝛼)2.

Here 1𝛼𝛽 is 2 × 2 matrix with all elements equal to unity. Sum of these terms is

𝜇

4
(𝜕𝛼r · 𝜕𝛽r− 𝛿𝛼𝛽)2 +

𝜆

8
(𝜕𝛼r · 𝜕𝛼r−𝐷)2 = 𝜀𝛼

[︂
𝜇𝛿𝛼𝛽 +

𝜆

2
1𝛼𝛽

]︂
(𝜀𝛽 + 𝐾𝛽) + 𝜇(𝑢𝛼𝛼)2 +

𝜆

2
𝑢2
𝛼𝛽.

So that free energy is given by (compare with [14, (4.1)])

ℱ [u, ℎ, 𝜀] =

ˆ
𝑑𝐷x

{︂
κ
2

(∇2ℎ)2 + 𝜇(𝑢𝛼𝛼)2 +
𝜆

2
𝑢2
𝛼𝛽 +

1

2
𝜀𝛼𝑀𝛼𝛽(𝜀𝛽 + 𝐾𝛽)

}︂
, (2.6)

where I have introduced matrix

𝑀𝛼𝛽 
 2𝜇𝛿𝛼𝛽 + 𝜆1𝛼𝛽, 𝑀 =

(︃
2𝜇 + 𝜆 𝜆

𝜆 2𝜇 + 𝜆

)︃
. (2.7)

and switched 𝐾𝛼 with their space averaged values.

𝐾𝛽 =

ˆ
𝑑𝐷x

𝐿𝐷
𝐾𝛽 =

ˆ
𝑑𝐷x

(︀
𝜕𝛽u · 𝜕(𝛽)u + 𝜕𝛽h · 𝜕(𝛽)h

)︀
since u(0) = u(𝐿) = 0.

Harmonic approximation In order to move on, I first consider harmonic limit. I define

Green functions as

𝐿−𝐷
⟨
𝑢𝛼
q𝑢

𝛽
−q

⟩
= 𝐹 (𝑙)

q

𝑞𝛼𝑞𝛽
𝑞2

+ 𝐹 (𝑡)
q

(︂
𝛿𝛼𝛽 −

𝑞𝛼𝑞𝛽
𝑞2

)︂
,

𝐿−𝐷 ⟨ℎqℎ−q⟩ = 𝐺q.
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For simplicity I set 𝜉𝑥 = 𝜉𝑦 = 𝜉, then in harmonic approximation [15, D2].

𝐹 (𝑙)
q =

1

(2𝜇 + 𝜆)𝜉2 + (𝜇 + 𝜆)(𝜉2 − 1)

1

𝑞2

𝐹 (𝑙)
q =

1

𝜇𝜉2 + (𝜇 + 𝜆)(𝜉2 − 1)

1

𝑞2

𝐺q =
𝑇

κ𝑞4 + (𝜇 + 𝜆)(𝜉2 − 1)𝑞2

From here I see that for 𝑞 < 𝑞κ =
√︀

𝜇/κ ≃ 3 Å
−1

I can neglect1 𝑢𝑢 ≪ ℎℎ in expressions for

strain tensor 𝑢𝛼𝛽 and 𝐾𝛼. Since 𝑞κ is numerically of order ultraviolet cutoff 𝜋
𝑎
≃ 3 Å

−1
that is

what is usually done [15].

Now it is suitable to rescale 𝜉(𝛼)𝑢𝛼 ↦→ 𝑢𝛼, so that

𝑢𝛼𝛽 =
1

2
(𝜕𝛽𝑢𝛼 + 𝜕𝛼𝑢𝛽 + 𝜕𝛼ℎ · 𝜕𝛽ℎ) 𝐾𝛽 =

ˆ
𝑑𝐷x

𝐿𝐷

(︀
𝜕(𝛽)ℎ · 𝜕𝛽ℎ

)︀
.

High 𝑑𝑐 expansion Here I note that unharmonic terms contain no smallness which makes the

problem of calculating functional integral intractable analytically. I introduce fictitious large

parameter 𝑑𝑐 ≫ 1 — size of the h vector. Physical case correspond to 𝑑𝑐 = 1, however, keeping

arbitrary 𝑑𝑐 helps to develop controllable perturbation theory which will be done in Chapter 3.

ℱ [u,h] =
1

2

ˆ
𝑑𝐷x

{︂
κ(∇2h)2 + 2𝜇(𝑢𝛼𝛼)2 + 𝜆𝑢2

𝛼𝛽 + 𝑀𝛼𝛽

[︂(︂
𝜀𝛼 +

𝐾𝛼

2

)︂(︂
𝜀𝛽 +

𝐾𝛽

2

)︂
− 𝐾𝛼𝐾𝛽

4

]︂}︂
.

Where strain tensor now written is

𝑢𝛼𝛽 =
1

2
(𝜕𝛽𝑢𝛼 + 𝜕𝛼𝑢𝛽 + 𝜕𝛼h · 𝜕𝛽h) 𝐾𝛽 =

ˆ
𝑑𝐷x

𝐿𝐷

(︀
𝜕(𝛽)h · 𝜕𝛽h

)︀
.

1Conventional theory of elasticity neglects both 𝑢2 and ℎ2, thus, making the action Gaussian.
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2.1.3 Effective action for flexural phonons

In order to proceed I want to integrate out u—modes.

𝑒−ℱeff[h]/𝑇 =

ˆ
𝐷[u]𝑒−ℱ [u,h]/𝑇 .

I expand 𝑢𝛼𝛽 terms

(𝑢𝛼𝛽)2 =
1

4
(𝜕𝛽𝑢𝛼 + 𝜕𝛼𝑢𝛽 + 𝜕𝛼h · 𝜕𝛽h)2

=
1

2
(𝜕𝛼𝑢𝛽)2 +

1

2
𝜕𝛼𝑢𝛽 · 𝜕𝛽𝑢𝛼 + 𝜕𝛼𝑢𝛽 · (𝜕𝛼h · 𝜕𝛽h) +

1

4
(𝜕𝛼h · 𝜕𝛽h)2

(𝑢𝛼𝛼)2 =
1

4
(2𝜕𝛼𝑢𝛼 + 𝜕𝛼h · 𝜕𝛼h)2

= (𝜕𝛼𝑢𝛼)2 + 𝜕𝛽𝑢𝛽 · (𝜕𝛼h · 𝜕𝛼h) +
1

4
(𝜕𝛼h · 𝜕𝛼h)2

and divide energy into three parts

ℱ = ℱ𝑢 + ℱ𝑢ℎ + ℱℎ,

where ℱ𝑢 is quadratic in u, ℱ𝑢ℎ is linear in u and ℱℎ contains everything else.

ℱ𝑢 =
1

2

ˆ
𝑑𝐷x

{︀
𝜇
[︀
(𝜕𝛼𝑢𝛽)2 + 𝜕𝛼𝑢𝛽 · 𝜕𝛽𝑢𝛼

]︀
+ 𝜆(𝜕𝛼𝑢𝛼)2

}︀
.

ℱ𝑢ℎ =

ˆ
𝑑𝐷x

{︂
𝜇𝜕𝛼𝑢𝛽 · (𝜕𝛼h · 𝜕𝛽h) +

𝜆

2
𝜕𝛽𝑢𝛽 · (𝜕𝛼h · 𝜕𝛼h)

}︂
.

ℱℎ =
1

2

ˆ
𝑑𝐷x

{︂
κ(∇2h)2 +

𝜇

2
(𝜕𝛼h · 𝜕𝛽h)2 +

𝜆

4
(𝜕𝛼h · 𝜕𝛼h)2 + 𝑀𝛼𝛽 [. . . ]

}︂
.

I impose periodic boundary conditions since it is much easier to work with them than with zero

boundary conditions. Producing Fourier transformation

u(x) =

ˆ
(𝑑q)𝑒𝑖qxuq ≡

ˆ
𝑑𝐷q

(2𝜋)𝐷
𝑒𝑖qxuq =

1

𝐿𝐷

∑︁
q

𝑒𝑖qxuq (2.8)

and exploiting that u fields are real u−q = u*
q, I come to expressions

ℱ𝑢 =
1

2

ˆ
(𝑑q)(𝑢𝛼

q)*
{︀
𝜇𝑞2𝛿𝛼𝛽 + (𝜇 + 𝜆)𝑞𝛼𝑞𝛽

}︀
𝑢𝛽
q.

ℱ𝑢ℎ =

ˆ
(𝑑q)

ˆ
𝑑𝐷x 𝑒𝑖qx(𝜕𝛼h · 𝜕𝛽h)

{︂
𝜇𝑖𝑞𝛼𝛿𝛽𝛾 +

𝜆

2
𝑖𝑞𝛾𝛿𝛼𝛽

}︂
𝑢𝛾
q.
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Gaussian integration For each momenta q ̸= 0 integration over 𝑢𝛼
q has the form 2

ˆ ∏︁
𝜇,𝜈

(𝑑𝑢𝜇
q)* ∧ 𝑑𝑢𝜈

q

2𝜋𝑖
exp

{︂
− 1

2𝑇
(𝑢𝛼

q)*𝐴q
𝛼𝛽𝑢

𝛽
q +

1

2𝑇
(𝐵q

𝛾 )*𝑢𝛾
q +

1

2𝑇
𝐵q

𝛾 (𝑢𝛾
q)*
}︂

=

= exp

{︂
1

2𝑇
(𝐵q

𝛾 )*(𝐴q)−1
𝛾𝛾′𝐵

q
𝛾′

}︂
𝑇𝐷

det𝐴q
,

with the following matrix and vector

𝐴q
𝛼𝛽 = 𝜇𝑞2𝛿𝛼𝛽 + (𝜇 + 𝜆)𝑞𝛼𝑞𝛽,

𝐵q
𝛾 =

𝑖

2

ˆ
𝑑𝐷x 𝑒−𝑖qx(𝜕𝛼h · 𝜕𝛽h) {𝜇𝑞𝛼𝛿𝛽𝛾 + 𝜇𝑞𝛽𝛿𝛼𝛾 + 𝜆𝑞𝛾𝛿𝛼𝛽} ,

Since det is simply a number (not a function of ℎ) it may be omitted in ℱeff, thus 𝐵+𝐴−1𝐵

is of interest. Inversion of the 2 × 2 matrix 𝐴q is easily done in the basis of q̂ = q/𝑞 and its

orthogonal partner q̂⊥ since matrix is diagonal in it 3.

𝐴q
𝛼𝛽 = 𝜇𝑞2𝛿𝛼𝛽 + (𝜇 + 𝜆)𝑞𝛼𝑞𝛽 = 𝑞2

(︁
𝜇𝑃⊥

𝛼𝛽 + (2𝜇 + 𝜆)𝑃
‖
𝛼𝛽

)︁
(𝐴q)−1

𝛼𝛽 =
1

𝑞2

(︂
1

𝜇
𝑃⊥
𝛼𝛽 +

1

2𝜇 + 𝜆
𝑃

‖
𝛼𝛽

)︂
.

Here 𝑃
‖
𝛼𝛽 = 𝑞𝛼𝑞𝛽/𝑞

2 is projector to the q line and 𝑃⊥
𝛼𝛽 = 𝛿𝛼𝛽 − 𝑞𝛼𝑞𝛽/𝑞

2 is projector to its

orthogonal complement.

Altogether, effective free energy constitutes of the following contributions

ℱeff = ℱℎ −
1

2
(𝐵q

𝛾 )*(𝐴q)−1
𝛾𝛾′𝐵

q
𝛾′

=
1

2

ˆ
𝑑𝐷x

{︂
κ(∇2h)2 + 𝑀𝛼𝛽

(︂
𝜀𝛼 +

𝐾𝛼

2

)︂(︂
𝜀𝛽 +

𝐾𝛽

2

)︂}︂
+ 𝛿ℱq=0

eff
+ 𝛿ℱq ̸=0

eff
.

where I singled out the interaction with q ̸= 0 coming from integration over u and 𝜇
2
ℎℎ, 𝜆

4
ℎℎ

terms and interaction on q = 0 produced by 𝐾𝐾 and 𝜇
2
ℎℎ, 𝜆

4
ℎℎ terms in ℱℎ.

Momentum dependent interaction

𝛿ℱ q̸=0
eff

=
1

8

ˆ ′
(𝑑q)

ˆ
(𝑑k𝑑k′)𝑘𝛼(−𝑘 − 𝑞)𝛽(hk · h−k−q)𝑘′

𝛼′(−𝑘′ + 𝑞)𝛽′(hk′ · h−k′+q) · 𝐶q
𝛼𝛽𝛼′𝛽′ ,

=
1

8

ˆ ′
(𝑑q)

ˆ
𝑑𝐷x 𝑑𝐷x′ (𝜕𝛼h · 𝜕𝛽h)|x · (𝜕𝛼′h · 𝜕𝛽′h)|x′ · 𝑒−𝑖qx 𝐶𝛼𝛽𝛼′𝛽′(−𝑖𝜕x′) 𝑒𝑖qx

′
. (2.9)

2For q = 0 coupling is absent and therefore 𝐵+𝐴−1𝐵 term is only contributes to the ℱeff for q ̸= 0.
3Here I explicitly used two dimensionality of the setup, so that further on 𝐷 = 2.
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From the line (2.9) it is clear that 𝐶𝛼𝛽𝛼′𝛽′ is contracted with tensor symmetric in 𝛼, 𝛽 and 𝛼′,

𝛽′ indices, thus, 𝛼 ↔ 𝛽 and 𝛼′ ↔ 𝛽′ permutations are allowed in expressions below.

𝐶q
𝛼𝛽𝛼′𝛽′ = 2𝜇𝛿𝛼𝛼′𝛿𝛽𝛽′ + 𝜆𝛿𝛼𝛽𝛿𝛼′𝛽′ − 2𝜇𝑞𝛼𝛿𝛽𝛾 + 𝜆𝑞𝛾𝛿𝛼𝛽

𝑞

(︂
1

𝜇
𝑃⊥
𝛾𝛾′ +

1

2𝜇 + 𝜆
𝑃

‖
𝛾𝛾′

)︂
2𝜇𝑞𝛼′𝛿𝛽′𝛾′ + 𝜆𝑞𝛾′𝛿𝛼′𝛽′

𝑞

= 2𝜇𝛿𝛼𝛼′𝛿𝛽𝛽′ − 4𝜇𝑃
‖
𝛼𝛼′𝑃

⊥
𝛽𝛽′ −

4𝜇2

2𝜇 + 𝜆
𝑃

‖
𝛼𝛼′𝑃

‖
𝛽𝛽′

tensor structure: #𝛼𝛼′#𝛽𝛽′

+
2𝜇𝜆

2𝜇 + 𝜆

[︁
𝛿𝛼𝛽𝛿𝛼′𝛽′ − 𝑃

‖
𝛼𝛽𝛿𝛼′𝛽′ − 𝛿𝛼𝛽𝑃

‖
𝛼′𝛽′

]︁
tensor structure: #𝛼𝛽#𝛼′𝛽′

Here I substitute 𝛿𝛼𝛽 = 𝑃
‖
𝛼𝛽+𝑃⊥

𝛼𝛽 everywhere and use that 𝑃
‖
𝛼𝛼′𝑃

‖
𝛽𝛽′ = 𝑞−4𝑞𝛼𝑞𝛽𝑞𝛼′𝑞𝛽′ = 𝑃

‖
𝛼𝛽𝑃

‖
𝛼′𝛽′ .

= 2𝜇𝑃⊥
𝛼𝛼′𝑃⊥

𝛽𝛽′ +
���������2𝜇𝜆

2𝜇 + 𝜆
𝑃

‖
𝛼𝛼′𝑃

‖
𝛽𝛽′

tensor structure: #𝛼𝛼′#𝛽𝛽′

+
2𝜇𝜆

2𝜇 + 𝜆

[︀
𝑃⊥
𝛼𝛽𝑃

⊥
𝛼′𝛽′ −�����𝑃

‖
𝛼𝛽𝑃

‖
𝛼′𝛽′

]︀
tensor structure: #𝛼𝛽#𝛼′𝛽′

= 2𝜇𝑃⊥
𝛼𝛼′𝑃⊥

𝛽𝛽′ +
2𝜇𝜆

2𝜇 + 𝜆
𝑃⊥
𝛼𝛽𝑃

⊥
𝛼′𝛽′ . (2.10)

For 𝐷 = 2 this expression may be simplified further owning to the existence of fully anti–

symmetric tensor 𝜖𝛼𝛽 that allows to present 𝑃⊥
𝛼𝛽 = 𝑝−2𝑝𝛼𝑝𝛽 where 𝑝𝛼 = 𝜖𝛼𝛽𝑞𝛽 is vector perpen-

dicular to q ⊥ p.

𝑝𝛼𝑝𝛽
𝑝2

=
𝜖𝛼𝛼′𝜖𝛽𝛽′𝑞𝛼′𝑞𝛽′

𝑝𝛾𝑝𝛾
=

(𝛿𝛼𝛽𝛿𝛼′𝛽′ − 𝛿𝛼′𝛽𝛿𝛼𝛽′)𝑞𝛼′𝑞𝛽′

𝜖𝛾𝜇𝜖𝛾𝜈𝑞𝜇𝑞𝜈
=

𝛿𝛼𝛽𝑞
2 − 𝑞𝛼𝑞𝛽
𝑞2

= 𝑃⊥
𝛼𝛽

Therefore, 𝑃⊥
𝛼𝛼′𝑃⊥

𝛽𝛽′ = 𝑝−4𝑝𝛼𝑝𝛽𝑝𝛼′𝑝𝛽′ = 𝑃⊥
𝛼𝛽𝑃

⊥
𝛼′𝛽′ In other words, only for 𝐷 = 2 operator 𝑃⊥

may be presented as tensor product of two vectors.

𝑃⊥
𝐷=2 =

(︃
0 0

0 1

)︃
=
(︁

0 1
)︁
⊗

(︃
0

1

)︃
𝑃⊥
𝐷=3 =

⎛⎜⎝0 0 0

0 1 0

0 0 1

⎞⎟⎠ ̸= v ⊗w

All in all, for 𝐷 = 2 dimensional case expression (2.10) becomes

𝐶q
𝛼𝛽𝛼′𝛽′ =

4𝜇(𝜇 + 𝜆)

2𝜇 + 𝜆
𝑃⊥
𝛼𝛽𝑃

⊥
𝛼′𝛽′ = 𝑌0𝑃

⊥
𝛼𝛽𝑃

⊥
𝛼′𝛽′ , 𝑌0 =

2𝜇(2𝜇 + 𝐷𝜆)

2𝜇 + 𝜆(𝐷 − 1)
,

where 𝑌0 is Young modulus of two dimensional membrane. And since in 2D
⃒⃒⃒
𝑃⊥
q k
⃒⃒⃒

= |[k× q̂]|,
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with unit vector q̂ = q/𝑞, contribution 𝛿ℱq ̸=0
eff

can be rewritten as

𝛿ℱq ̸=0
eff

=
𝑌0

8

ˆ ′
(𝑑q)

ˆ
(𝑑k𝑑k′)[k′ × q̂]2[k× q̂]2(hk′ · h−k′+q)(hk · h−k−q).

Momentum independent interaction Now let me get back to the q = 0 contribution.

Remembering how to come from integration to summation over discrete impulses (2.8) I modify

the following expressions

1

2

ˆ
𝑑𝐷x

{︂
𝜇

2
(𝜕𝛼h · 𝜕𝛽h)2 +

𝜆

4
(𝜕𝛼h · 𝜕𝛼h)2

}︂
=

=
1

2

1

4𝐿𝐷

ˆ
(𝑑k𝑑k′)

[︀
2𝜇(k · k′)2 + 𝜆(𝑘𝑘′)2

]︀
(hk · h−k)(hk′ · h−k′) +

ˆ ′
(𝑑q) . . .

Space averaged anomalous deformations transformed as

𝐾𝛼 =

ˆ
𝑑𝐷x (𝜕𝛼h · 𝜕(𝛼)h) =

1

𝐿𝐷

ˆ
(𝑑k)𝑘𝛼𝑘(𝛼)(hk · h−k),

1

2

ˆ
𝑑𝐷x𝑀𝛼𝛽𝐾𝛼𝐾𝛽 =

1

2

1

𝐿𝐷

[︀
2𝜇(𝑘2

𝑥(𝑘′
𝑥)2 + 𝑘2

𝑦(𝑘′
𝑦)

2) + 𝜆(𝑘𝑘′)2
]︀

(hk · h−k)(hk′ · h−k′)

Sum of the two contributions gives

𝛿ℱq=0
eff

=
𝜇

2𝐿𝐷

ˆ
(𝑑k𝑑k′)𝑘𝑥𝑘𝑦𝑘

′
𝑥𝑘

′
𝑦(hk · h−k)(hk′ · h−k′) =

𝜇

2𝐿𝐷

[︂ˆ
𝑑𝐷x (𝜕𝑥h · 𝜕𝑦h)

]︂2
.

Effective action Altogether, effective free energy depending only on out–of–plane fluctua-

tions reads (compare with [7, (19)])

ℱeff[h] =
1

2

ˆ
𝑑𝐷x

{︂
κ(∇2h)2 + 𝑀𝛼𝛽

(︂
𝜀𝛼 +

𝐾𝛼

2

)︂(︂
𝜀𝛽 +

𝐾𝛽

2

)︂}︂
+

𝜇

2𝐿𝐷

[︂ˆ
𝑑𝐷x (𝜕𝑥h · 𝜕𝑦h)

]︂2
+

+
𝑌0

8

ˆ
(𝑑q𝑑k𝑑k′)

[k× q]2[k′ × q]2

𝑞4
(hk · h−k−q)(hk′ · h−k′+q).
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2.1.4 Balance equation

Constriction (2.5) has the physical meaning of balance equation and stretching factors 𝜀 are

thermodynamic variables that play the role of the volume.

𝜎𝛼 =
𝜕𝑓

𝜕𝜀𝛼
, 𝑓 =

𝐹

𝐿2
= − 𝑇

𝐿2
ln

ˆ
𝐷[h]𝑒−ℱeff[h,𝜀]/𝑇 .

If strain tensor was linearized 𝑢𝛼𝛽 = 1
2
(𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼) then as it is seen from (2.6), equation of

balance would simply read

𝜎0
𝛼 = 𝑀𝛼𝛽𝜀𝛽

with matrix 𝑀𝛼𝛽 given by (2.7). Presence of the ℎ2 term in strain tensor leads to non–linear

equation of balance [8].

𝜎𝛼 = 𝑀𝛼𝛽

(︀
𝜀𝛽 +

⟨︀
𝐾𝛽

⟩︀)︀
,

⟨︀
𝐾𝛽

⟩︀
(𝜀) =

´
𝐷[h]𝐾𝛽𝑒

−ℱeff[h,𝜀]/𝑇´
𝐷[h]𝑒−ℱeff[h,𝜀]/𝑇

, (2.11)

This equation may be inverted and 𝜀 = 𝜀(𝜎) dependence obtained.(︃
𝜀𝑥

𝜀𝑦

)︃
=

1

𝑌0

(︃
1 −𝜈0

−𝜈0 1

)︃(︃
𝜎𝑥

𝜎𝑦

)︃
− 1

2

(︃⟨︀
𝐾𝑥

⟩︀
(𝜎)⟨︀

𝐾𝑦

⟩︀
(𝜎)

)︃
(2.12)

where 𝑌0 and 𝜈0 are classical expressions for Young’s modulus and Poisson ratio respectively.

Because of the non–linearity, equation (2.11) may have non–zero deformation 𝜀 even in the

absence of stress 𝜎 = 0, then true deformations would be given by 𝜀(𝜎) − 𝜀(0).

Absolute Poisson ratio Let me now consider a membrane subjected to an uniaxial stress

in the 𝑥 direction 𝜎𝑥 = 𝜎, 𝜎𝑦 = 0. The balance equations (2.12) become simpler and I extract

expression for PR.

𝜈 = −𝜀𝑦
𝜀𝑥

=
𝜈0 + 𝑌0

⟨︀
𝐾𝑦

⟩︀
(𝜎, 0)/2𝜎

1 − 𝑌0

⟨︀
𝐾𝑥

⟩︀
(𝜎, 0)/2𝜎

≈ −
⟨︀
𝐾𝑦

⟩︀
(𝜎, 0)⟨︀

𝐾𝑥

⟩︀
(𝜎, 0)

.

Last approximation is done in the limit of large anomalous deformations, 𝜎 ≪ 𝑌0

⟨︀
𝜁𝛼
⟩︀
∼ 𝑌0𝑇/κ.

Differential Poisson ratio For the finite stress 𝜎𝑥 = 𝜎 + 𝛿𝜎, 𝜎𝑦 = 𝜎 linear responses 𝛿𝜀𝑦 =

−𝜈diff𝛿𝜀𝑥 are connected via, so called, differential Poisson ratio. From (2.12) follows

𝜈 = −𝜀𝑦
𝜀𝑥

=

𝜈0 + 𝑌0

2

(︂
𝜕⟨𝐾𝑦⟩
𝜕𝜎𝑥

)︂
𝜎𝑦

1 − 𝑌0

2

(︂
⟨𝐾𝑥⟩
𝜕𝜎𝑥

)︂
𝜎𝑦

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝜎𝑥=𝜎𝑦=𝜎

≈ −

(︀
𝜕
⟨︀
𝐾𝑦

⟩︀
/𝜕𝜎𝑥

)︀
𝜎𝑦(︀

𝜕
⟨︀
𝐾𝑥

⟩︀
/𝜕𝜎𝑥

)︀
𝜎𝑦

.
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Chapter 3

Perturbation theory

Effective action for flexural phonon derived in previous chapter can be split into three parts.

ℱ (2)
eff

[h] =
1

2

ˆ
(𝑑p)

[︀
κ𝑝4 + 𝜀𝛼𝑀𝛼𝛽𝑝

2
(𝛽)

]︀
(hp · h−p),

ℱq=0
eff

[h] =
1

4

ˆ
(𝑑k𝑑k′)

1

𝐿𝐷

[︂
𝑘2
(𝛼)

𝑀𝛼𝛽

2
𝑘′2
(𝛽) + 2𝜇𝑘1𝑘2𝑘

′
1𝑘

′
2

]︂
(hk · h−k)(hk′ · h−k′)

ℱq ̸=0
eff

[h] =
𝑌0

8

ˆ
(𝑑k𝑑k′)

ˆ ′
(𝑑q)[k× q̂]2[k′ × q̂]2(hk · h−k−q)(hk′ · h−k′+q)

As it is evident from Subsection 2.1.4 all information about Hooke’s law is contained in corre-

lation function (I drop brackets and bar sign from now on)

𝐾𝛼 =

ˆ
𝑑𝐷x

𝐿𝐷

⟨︀
(𝜕𝛼h · 𝜕(𝛼)h)

⟩︀
=

ˆ
(𝑑p)

𝐿𝐷
𝑝2(𝛼)

⟨︀
(hp · h*

p)
⟩︀

= 𝑑𝑐

ˆ
(𝑑p)𝑝2(𝛼)𝒢p,

where 𝒢p is exact Green’s function. Before developing a perturbation theory I take a deeper

look at interaction structure.

3.1 Diagrammatics

Bare Green’s function is given by

⟨︀
ℎ𝜇
pℎ

𝜈
−q

⟩︀
0

=

ˆ [︃∏︁
k,𝛼𝛽

𝑑ℎ𝛼
k ∧ (𝑑ℎ𝛽

k)*

2𝜋𝑖(𝑇𝐿𝐷)𝑑𝑐

]︃
ℎ𝜇
p(ℎ𝜈

q)* exp

[︃
− 1

2𝑇𝐿𝐷

∑︁
p

[︀
κ𝑝4 + 𝜎0

𝛽𝑝
2
(𝛽)

]︀
(hp · h*

p)

]︃

= (2𝜋)𝐷𝛿(p− q)𝛿𝜇𝜈𝐺0
p, 𝐺0

p =
𝑇

κ𝑝4 + 𝜎0
1𝑝

2
1 + 𝜎0

2𝑝
2
2

.

I have two distinct types of interaction presented on Figure 5.

𝑌0

q ̸= 0

ℎk

ℎ*
k+q

ℎk′

ℎ*
k′+q

[k× q̂]2 [k′ × q̂]2
𝑀𝛼𝛽

q = 0

ℎk

ℎ*
k+q

ℎk′

ℎ*
k′+q

𝑘2
𝛼

𝑘′2
(𝛼)

Figure 5: Interaction diagrams.
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Because of the momentum constriction tadpole–like diagrams are only allowed for momenta

non–bearing interactions. That is why there is only self–energy like contribution in first order

in 𝑌0.

𝒢p+ = −𝑌0

𝑇

ˆ
(𝑑k𝑑k′𝑑′q)[k× q̂]2[k′ × q̂]2

⟨
(hp · h*

p)(hk ·h*
k+q)(hk′ ·h*

k′−q)

⟩
0

= −𝑑𝑐𝑌0

𝑇

ˆ ′
(𝑑q)[p× q̂]4(2𝜋)𝐷𝛿(k = 0)[𝐺0

p]2𝐺0
p−q

= −𝑑𝑐𝑌0

𝑇
[𝐺0

p]2
ˆ ′

(𝑑q)[p× q̂]4𝐺0
p−q.

Another correction, of the same order in 𝐿−𝐷, comes from ℱq=0
eff

term with𝑀𝛼𝛽 and the following

coupling.

𝒢p+ = − 1

𝑇

ˆ
(𝑑k𝑑k′)

𝐿𝐷
𝑘2
(𝛼)𝑀𝛼𝛽(𝑘′

(𝛽))
2

⟨
(hp · h*

p)(hk ·h*
k)(hk′ · h*

k′)

⟩
= −𝑑2𝑐

𝑇
𝑝2(𝛼)𝑀𝛼𝛽

ˆ
(𝑑k′)

𝐿𝐷
(𝑘′

(𝛽))
2(2𝜋)𝐷𝛿(k = 0)(2𝜋)𝐷𝛿(k′ = 0)[𝐺0

p]2𝐺0
k′

= −𝑑2𝑐
𝑇
𝑝2(𝛼)𝑀𝛼𝛽[𝐺0

p]2
ˆ

(𝑑k′)(𝑘′
(𝛽))

2𝐺0
k′ .

Tadpole diagram with 2𝜇𝑘1𝑘2𝑘
′
1𝑘

′
2 is zero because of its tensor structure. Diagrams correspond-

ing to these two contributions are depicted on Figure 6.

𝐺0
p 𝐺0

q−p 𝐺0
p

𝑌0

𝐺0
p 𝐺0

p

𝐺0
k

𝑀

Figure 6: First–oder corrections (in interaction strength).

The problem with the former expressions is that 𝜎0
1, 𝜎

0
2 are some unknown numbers here,

they are connected with true tension 𝜎1,2 through (2.11). In other words, I would like to operate

with

𝐺p =
𝑇

κ𝑝4 + 𝜎1𝑝21 + 𝜎2𝑝22

instead of 𝐺0
p. It so happens that’s exactly what momenta–free interaction ℱq=0 is responsi-

ble for. One way to see that is to use Ward’s identity [7], but simpler way is to isolate all

contributions in leading order in 𝐿−𝐷.
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Infinite size 𝐿 limit

Any diagram that does not vanish in 𝐿 → +∞ limit has the form of the diagram that one

can produce using only momenta–bearing interaction 𝑌0 with bare Green function 𝐺0
p replaced

by the 𝐺p. Function 𝐺p is given by the series re–summed on Figure 7. It so happens that

𝐺p
=

𝐺0
p

+
𝐺0

p 𝐺p

𝒢k

𝑀

Figure 7: Stress renormalization equation.

renormalization of 𝜎 provided by 𝑀𝛼𝛽 changes 𝜎
0 ↦→ 𝜎 exactly. Diagrammatic equation on Fig.

Figure 7 reads

𝐺p = 𝐺0
p −𝐺0

p𝐺p𝑝
2
(𝛼)

𝑀𝛼𝛽

2𝑇

ˆ
(𝑑k)𝑘2

(𝛽)𝑑𝑐𝒢k.

and results in correction of 𝜎, namely,

𝐺p =
(︀
(𝐺0

p)−1 + 𝛿𝜎𝛼𝑝
2
(𝛼)

)︀−1
, 𝛿𝜎𝛼 =

𝑀𝛼𝛽

2

ˆ
(𝑑k)𝑘2

(𝛽)𝑑𝑐𝒢k =
1

2
𝑀𝛼𝛽

⟨︀
𝐾̄𝛽

⟩︀
.

That being said, I exclude interaction with q = 0 completely. In other words, from now on I

work with the following expression for free energy.

ℱ (2)
eff

[h] =
1

2

ˆ
(𝑑p)

[︀
κ𝑝4 + 𝜎𝛽𝑝

2
(𝛽)

]︀
(hp · h−p), (3.1)

ℱeff[h] =
𝑌0

8

ˆ
(𝑑k𝑑k′)

ˆ
q ̸=0

(𝑑q)[k× q̂]2[k′ × q̂]2(hk · h−k−q)(hk′ · h−k′+q)

Green function from now one stands for

𝐺p =
𝑇

κ𝑝4 + 𝜎1𝑝21 + 𝜎2𝑝22
.

and the only 𝑌 –interaction vertex present on Figure 5 is left.
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High 𝑑𝑐 expansion

Now I develop perturbation theory. Since initial action does not contain small parameter in

fort of unharmonic term I construct it myself by treating h as a vector of size 𝑑𝑐. Each Green

function function bubble of proportional to 𝑑𝑐, so I have to encounter screening of ℱint via

polarization bubble.

𝑌q
=

𝑌0
+

𝑌0

𝐺p

𝐺q−p

𝑌q

Figure 8: Screening of interaction.

Interaction constant effectively starts bearing momentum 𝑌q and given by

𝑌q

2
=

𝑌0

2

(︂
1 +

𝑌0

2
Πq

)︂−1

where Πq is polarization operator given by

Πq =
𝑑𝑐
𝑇

ˆ
(𝑑k)𝐺k𝐺q−k[k× q̂]4 =

𝑑𝑐𝑇

κ𝜎
𝑃

(︂
q

𝑞0

)︂
𝑃 (q) =

ˆ
(𝑑k)

𝑘4 + 𝑘2
1

[k× q̂]4

(k− q)4 + (𝑘1 − 𝑞1)2
.

Here 𝑞0 =
√︀

𝜎/κ is characteristic scale set by stress and 𝑃 (q) is dimensionless Polarization

operator that is calculated in Appendix A.2. At the moment it is only important how 𝑃

behaves at large argument values.

𝑃 (𝑞 ≫ 1) =

ˆ
(𝑑k)[k× q̂]4

𝑘4(k− q)4
=

3

16𝜋

1

𝑞2
.

From here new characteristic scale set by interaction strength 𝑞* appears, that tends to infinity

together with 𝑑𝑐. Since all the anomalous physics comes from 𝑞 ≪ 𝑞* range, such artificial

parameter expected to give good approximation.

𝑌q

2
≈ 1

Πq

=
κ𝜎
𝑑𝑐𝑇

1

𝑃 (q/𝑞0)
,

𝜎

κ
≡ 𝑞20 ≪ 𝑞2 ≪ 𝑞2* ≡ 3

16𝜋

𝑑𝑐𝑌0𝑇

κ2
,

After the screening is accounted for, 𝑌q becomes explicitly small in 1/𝑑𝑐 → 0. To draw all

the diagrams in 𝑛–th order one has to count number of loops (closed Green’s function lines) —

each gives 𝑑𝑐 and numbers of interaction lines — each gives 1/𝑑𝑐.
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3.2 Scaling Ansatz

Here I for a moment forget about perturbation theory and describe general statement that

is known about exact Green function. Formally, exact Green function is given by sum of

asymptotic perturbation series, which can be formally rewritten as the series for exact self–

energy Σp and exact polarization operator Πq.

𝒢p =
(︀
𝐺−1

p + 𝑇Σp

)︀−1 𝒴q

2
=

𝑌0

2

(︂
1 + Πq

𝑌0

2

)︂−1

. (3.2)

In diagrams below solid line denotes exact Green function 𝒢p and dashed line stands for 𝒴q

— interaction screened with exact polarization operator. There is an ansatz for exact Green

Σ = + + . . .

Π = + + . . .

Figure 9: Formal asymptotic series for self–energy and polarization operator.

function

𝒢p =
𝑇

κp𝑝4 + 𝜎1𝑝21 + 𝜎2𝑝22
, κp = κ

⎧⎨⎩1, 𝑝 ≫ 𝑝*,

(𝑝*/𝑝)𝜂, 𝑝 ≪ 𝑝*.
(3.3)

That asymptotically satisfies equations (3.2) since scaling of bending rigidity implies the same

scaling for any diagram in series presented on Figure 9.

Σp ∝ κ
𝑑𝑐𝑇

(︂
𝑝*
𝑝

)︂𝜂

𝑝4, Πq ∝ 𝑑𝑐𝑇

κ2𝑞2

(︂
𝑞

𝑝*

)︂2𝜂

, 𝑝, 𝑞 ≪ 𝑝* =

√︂
3𝐴

16𝜋

𝑑𝑐𝑌0𝑇

κ2
.

Here 𝑝* coincides with the scale set by interaction strength defined in previous section up to

an unknown prefactor 𝐴 of order unity and 𝜂 > 0 is unknown critical index. Number 𝜂 is

unambiguously connected with exponent (1.1) from anomalous Hooke’s law

𝛼 =
𝜂

2 − 𝜂

as will be shown later, so it is of great interest to find that number.

27



3.2.1 Self–consistent screening approximation

Self–consistent screening approximation (SCSA) allows [9] to find 𝜂 in some manner, it has

no controllable parameter, yet believed to give numerically satisfactory results [5]. The idea

of approximation is to take only the first terms in series on Figure 9, i e. solve the following

system of equations.

𝒢p
=

𝐺p
+

𝐺p
𝒢q−p

𝒴q

𝒢p

𝒴q
=

𝑌0
+

𝑌0
𝒢k−q

𝒢k

𝒴q

Figure 10: System of self–consistent screening approximation equations.

These diagrams (Figure 10) correspond to analytical expressions

Πq =
𝑑𝑐
𝑇

ˆ
(𝑑k)𝒢k𝒢k−q[k× q̂]4, 𝒢p =

(︀
𝐺−1

p + 𝑇Σp

)︀−1

𝑇Σp =

ˆ ′
(𝑑q)𝒢p−q𝑌q[p× q̂]4,

𝑌q

2
=

𝑌0

2

(︂
1 + Πq

𝑌0

2

)︂−1

.

In the absence of strain (𝜎 = 0) there are two regimes presented in (3.3). For 𝑝 ≫ 𝑝*, I

assume the integral over q comes from 𝑞 ∼ 𝑝 and substitute 𝑌q ∼ 𝑌0 and see my assumption

satisfied. For 𝑝 ≪ 𝑝*, I guess power law dependence κp = κ(𝐴𝑝*/𝑝)𝜂.

Πq = 𝐴2𝜂 𝑑𝑐𝑇

κ2𝑝2𝜂*
Π(𝜂, 𝜂)𝑞2𝜂−2, Π(𝜂, 𝜂′) =

ˆ
[k× q̂]4(𝑑k)

𝑘4−𝜂|k− q̂|4−𝜂′
.

Σp =
2𝐴𝜂Σ(𝜂, 𝜂)

𝑇𝑑𝑐Π(𝜂, 𝜂)
κ
(︂
𝑝*
𝑝

)︂𝜂

𝑝4, Σ(𝜂, 𝜂′) =

ˆ ′ [p̂× q̂]4𝑞2−2𝜂

(p̂− q)4−𝜂′
(𝑑q).

Functions Σ(𝜂, 𝜂) and Π(𝜂, 𝜂) are calculated, for example, in [13, 5]. Self–consistency demands

2Σ(𝜂, 𝜂)

𝑑𝑐Π(𝜂, 𝜂)
= 1 ⇒ 𝜂 =

4

𝑑𝑐 +
√︀

16 − 2𝑑𝑐 + 𝑑2𝑐

⃒⃒⃒⃒
⃒
𝑑𝑐=1

≃ 0.82 𝜂 ∼ 2

𝑑𝑐
, 𝑑𝑐 → ∞.

Number 𝐴 may not be determined from that consideration.

The problem with that result, however, is that it is not done under any controllable approx-

imation. That’s why I am not satisfied with it and develop perturbation theory in 1/𝑑𝑐.
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3.3 Critical exponent expansion

In order to find how critical exponent 𝜂 as a function of complementary dimensionality 𝑑𝑐, I

calculate small argument asymptotics of self–energy (without external stress 𝜎 = 0) perturba-

tively in 1/𝑑𝑐. Scaling ansatz (SA) tells me that at small momenta, bending rigidity behaves

as

κp

κ
= 1 − 𝑇Σp

κ𝑝4
∼
[︂
𝐴
𝑝*
𝑝

]︂𝜂
, 𝑝 ≪ 𝑝*, (3.4)

where exponent 𝜂 = 𝜂(𝑑𝑐) is the number I seek to calculate up to the second order in 1/𝑑𝑐.

Averaging rules Throughout the calculations I am going to frequently use following identities⟨
[p× q]4

(p− q)4

⟩
q̂

=
3

8
min{𝑝4, 𝑞4}, (3.5)⟨

[p× q]4

(p− q)2

⟩
q̂

= min{𝑝4, 𝑞4}
(︂

max{𝑝2, 𝑞2} − 1

3
min{𝑝2, 𝑞2}

)︂
, (3.6)⟨

[p× q]2

(p− q)4

⟩
q̂

=
1

2 max{𝑝2, 𝑞2}|𝑝2 − 𝑞2|
, (3.7)

3.3.1 First–order self–energy

Expansion of self–energy in 1/𝑑𝑐 starts from the trivial term (Figure 11–11𝑎)

𝑇Σ(1)
p = −𝑌0𝑇

κ

ˆ
[p× q̂]4(𝑑q)

(p− q)4(1 + 𝑌0

2
Πq)

= −κ𝑝4*
2𝑑𝑐

𝒮
(︂√

2
𝑝

𝑝*

)︂
.

In the absence of stress 𝜎 = 0 polarization operator is simply

𝑌0Πq =
𝑞2*
𝑞2
, 𝑞2* =

3

16𝜋

𝑑𝑐𝑌0𝑇

κ2
,

and dimensionless self–energy is given by function

𝒮 (p) =
16𝜋

3

ˆ
[p× q̂]4(𝑑q)

(p− q)4 + (p− q)2
=

16𝜋

3

ˆ
[p× q]4(𝑑q)

(p− q)4(𝑞4 + 𝑞2)
= (3.5) =

=
1

2

ˆ ∞

0

𝑑𝑞

𝑞2 + 𝑞
min{𝑝4, 𝑞2} =

1

2

{︀
(𝑝4 − 1) ln

(︀
1 + 𝑝2

)︀
− 𝑝4 ln 𝑝2 + 𝑝2

}︀
.

29



Therefore the first–oder term has the following asymptotics

𝑇Σ(1)
p ∼ 2

𝑑𝑐
κ𝑝4 ln

[︃√
2

𝑒1/4
𝑝

𝑝*

]︃
, 𝑝 ≪ 𝑝*

That allows me to find

𝐴(𝑑𝑐) =
𝑒1/4√

2
+

𝐴1

𝑑𝑐
+ . . . , 𝜂(𝑑𝑐) =

2

𝑑𝑐
+

𝜂2
𝑑2𝑐

+ . . . (3.8)

3.3.2 Second order. SCSA–like contributions

Second–order consists of two trivial SCSA–like contributions and four non–SCSA corrections.

Together these two give the result that may be found from

𝜂scsa(𝑑𝑐) =
4

𝑑𝑐 +
√︀

16 − 2𝑑𝑐 + 𝑑2𝑐
=

2

𝑑𝑐
+

1

𝑑2𝑐
+ 𝒪

(︂
1

𝑑3𝑐

)︂
.

Plugging (3.8) into (3.4) with 𝜂2 = 1 + 𝛿𝜂2 and expanding in 1/𝑑𝑐 I come to

𝑑2𝑐
𝑇Σ

(2)
p

κ𝑝4
= −2 ln2

[︂√
2
𝑝

𝑝*

]︂
+ (2 + 𝛿𝜂2) ln

[︂√
2
𝑝

𝑝*

]︂
− 3

8
− 𝛿𝜂2

4
− 2𝐴1. (3.9)

I see that with logarithmic accuracy SCSA–like contributions to self–energy should produce at

small momenta −2 ln2[
√

2𝑝/𝑝*] + 2 ln[𝑝/𝑝*]. Let me check that.

(11𝑎) Fan diagram. (12𝑎) Rainbow diagram (12𝑏) Upset diagram

Figure 11: SCSA–like self–energy corrections up to the second order.

Rainbow diagram Explicit expression for diagram on Figure 11–11𝑎 is

𝑇Σ(2𝑎)
p =

κ𝑝4*
𝑑2𝑐

𝒮(2𝑎)

(︂√
2
𝑝

𝑝*

)︂
, 𝒮(2𝑎)(𝑝) =

(︂
16𝜋

3

)︂ ˆ
(𝑑q)[p× q]4𝑞−8𝒮(𝑞)

(p− q)4 + (p− q)2
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Since I only need asymptotic at small 𝑝, I calculate

𝒮(2𝑎)(𝑝) =

(︂
16𝜋

3

)︂ˆ
(𝑑q)

[p× q]4𝒮(𝑞)

(p− q)2𝑞8
= (3.6) =

=
1

2

ˆ ∞

0

𝑑𝑞

𝑞4
𝒮 (

√
𝑞) min{𝑝4, 𝑞2}

(︂
max{𝑝2, 𝑞} − 1

3
min{𝑝2, 𝑞}

)︂
∼ 1

2

(︂
ln2 𝑝− ln 𝑝 +

21 + 2𝜋2

24

)︂
𝑝4.

since it is convergent, it is enough to find leading asymptotic, however, it happens to be not

enough to find number under the logarithm. What was left is the following integral

𝒮(2𝑎)(𝑝) − 𝒮(2𝑎)(𝑝) = −
(︂

16𝜋

3

)︂ ˆ
(𝑑q)[p× q]4𝒮(𝑞)

((p− q)2 + 1) 𝑞8
∼ −1

2
𝑝4
ˆ ∞

0

𝑑𝑞

𝑞2
𝒮
(︀√

𝑞
)︀

1 + 𝑞
=
(︀
3 − 𝜋2

)︀ 𝑝4
12

.

As a result,

𝑇Σ
(2𝑎)
p

κ𝑝4
∼ 2

𝑑2𝑐

(︂
ln2

[︂√
2
𝑝

𝑝*

]︂
− ln

[︂√
2
𝑝

𝑝*

]︂
+

33 − 2𝜋2

24

)︂
.

Upset diagram Expression for such diagram is

𝑇Σ(2𝑏)
p = 𝑑𝑐

ˆ
(𝑑q𝑑k)

(︂
𝑌q

𝑇

)︂2

𝐺p−q𝐺k−q𝐺
2
k𝑇Σ

(1)
k [p× q̂]4[k× q̂]4

= − 2

𝑑2𝑐
κ𝑝4*𝒮(2𝑏)

(︂√
2
𝑝

𝑝*

)︂
,

𝒮(2𝑏)(𝑝) =

(︂
16𝜋

3

)︂2 ˆ
(𝑑q)[p× q]4

(𝑞4 + 𝑞2)(p− q)4

ˆ
(𝑑k)

𝑘8

[k× q]4

(k− q)4
𝒮(𝑘) = (3.5) =

=
1

4

ˆ ∞

0

min{𝑞2, 𝑝4}
(𝑞2 + 𝑞)2

ˆ ∞

0

𝑑𝑘

𝑘4
min{𝑘2, 𝑞2}𝒮

(︁√
𝑘
)︁

∼ 𝑝4

2

(︂
ln2 𝑝− ln 𝑝 +

3

8
− 𝜋2

12

)︂
.

As a result,

𝑇Σ
(2𝑏)
p

κ𝑝4
∼ 4

𝑑2𝑐

(︂
− ln2

[︂√
2
𝑝

𝑝*

]︂
+ ln

[︂√
2
𝑝

𝑝*

]︂
− 3

8
+

𝜋2

12

)︂
.

Sum of SCSA–like diagrams Two SCSA–like second order corrections together give

𝑑2𝑐
𝑇Σ

(2𝑎𝑏)
p

κ𝑝4
= −2 ln2

[︂√
2
𝑝

𝑝*

]︂
+ 2 ln

[︂√
2
𝑝

𝑝*

]︂
+

15 + 2𝜋2

12
.

So good so far. Next, I’m interested in Non–SCSA corrections.
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3.3.3 Second order. Non–SCSA contributions

In order find 𝛿𝜂2 I need to calculate following four diagrams.

(12𝑐) Crossed diagram
(12𝑑) Pill diagram

(12𝑒) Omnidroid diagram (12𝑓) Double–pill diagram

Figure 12: Non–SCSA contributions

Here I provide the summary of the results and details of calculation are presented in the

next paragraphs. Asymptotics of the diagrams on Figure 12 at 𝑝 ≪ 𝑝* are as follows.

𝑑2𝑐
𝑇Σ

(2𝑐)
p

κ𝑝4
= −7

3
ln

[︂
𝑝

𝑝*

]︂
+ const, (3.10)

𝑑2𝑐
𝑇Σ

(2𝑑)
p

κ𝑝4
= +2 ln

[︂
𝑝

𝑝*

]︂
+ const, (3.11)

𝑑2𝑐
𝑇Σ

(2𝑒)
p

κ𝑝4
= +

58

27
ln

[︂
𝑝

𝑝*

]︂
+ const, (3.12)

𝑑2𝑐
𝑇Σ

(2𝑓)
p

κ𝑝4
= −3 + 68𝜁(3)

27
ln

[︂
𝑝

𝑝*

]︂
+ const. (3.13)

Thus, according to (3.9), difference between SCSA and true value of critical exponent is seen

in 1/𝑑2𝑐–order and equals to

𝛿𝜂2 = lim
𝑑𝑐→∞

𝜂 − 𝜂scsa
𝑑−2
𝑐

= −7

3
+ 2 +

58

27
− 3 + 68𝜁(3)

27
=

46 − 68𝜁(3)

27
≃ −1.32.

Critical exponent from Hooke’s law then 𝛼 = 𝛼scsa + 𝛿𝛼2/𝑑
2
𝑐 with 𝛿𝛼2 = 2(𝛼scsa/𝜂scsa)2𝛿𝜂2.

1

1 + 2𝛼
=

1

1 + 2𝛼scsa

(︃
1 − 33 − 2

√
15

21

𝛿𝜂2
𝑑2𝑐

+ . . .

)︃
≃ 1

1 + 2𝛼scsa

(︂
1 +

1.6

𝑑2𝑐
+ . . .

)︂
.
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3.4 Absolute Poisson ratio

I would like to find absolute Poisson ratio in the regime 𝜎 ≪ 𝜎* of small stress.

𝜈 =
𝜈0 − 𝑌0𝛿𝐾2/𝜎

1 + 𝑌0𝛿𝐾1/𝜎
≈ −𝛿𝐾2

𝛿𝐾1

.

I would like to construct expansion in 1/𝑑𝑐 using perturbation theory in screened interaction

developed in the previous section. However, I notice that zeroth order phonon correlator diverges

at small momenta

𝛿𝐾
(0)
𝛽 = 𝐾

(0)
𝛽 (0) −𝐾

(0)
𝛽 (𝜎) = 𝑑𝑐𝑇

ˆ
(𝑑p)𝑝2(𝛽)𝜎𝑝

2
1

κ𝑝4(κ𝑝4 + 𝜎𝑝21)
.

To see that explicitly I rewrite integrals as follows.

𝛿𝐾
(0)
1 − 𝛿𝐾

(0)
2 =

ln 2

4𝜋

𝑑𝑐𝑇

κ
,

𝛿𝐾
(0)
1 + 𝛿𝐾

(0)
2 = 2

[︂ˆ 𝜎
κ (𝑑p)

𝑝2(𝑝2 + 𝜎
κ )

− ln 2

4𝜋

]︂
𝑑𝑐𝑇

κ
.

Exact correlator does not have such problem since self–energy removes the divergence.

𝛿𝐾𝛽 = 𝑑𝑐𝑇

ˆ [︂
1

κ𝑝4 − 𝑇Σ𝜎=0
𝑝

− 1

κ𝑝4 + 𝜎𝑝21 − 𝑇Σp

]︂
𝑝2𝛽(𝑑p)

Scaling Ansatz (SA) tells me that in the absence of stress 𝜎 = 0 renormalized bending rigidity

behaves as

κp = κ − 𝑝−4𝑇Σ𝜎=0
𝑝 ∼ κ

(︂
𝐴
𝑝*
𝑝

)︂𝜂

, 𝑝2 ≪ 𝑝2* =
3

16𝜋

𝑑𝑐𝑌0𝑇

κ2
,

where critical exponent 𝜂 is believed to be close to 0.8 and number 𝐴 is of order unity, which

will be hidden in the redefinition of 𝑝* till the end of that section.

It is clear that in the case of finite stress such behavior is only valid when characteristic

momenta are larger enough to disregard 𝜎𝑝2 term, i.e. for 𝑝 ≫ 𝑝𝜎 = 𝑝0𝑝
−𝛼
* , 𝛼 = 𝜂/(2−𝜂). There

are some assumptions about how rigidity renormalizes at finite strain [16], however knowing

asymptotic behavior of κp at 𝑝 ≪ 𝑝𝜎 is not enough to calculate Poisson ratio since integral for

correlation function 𝛿𝐾 comes from all momenta 𝑝 ≪ 𝑝* as it may be seen from the following

model.
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3.4.1 Oversimplified model

Here I calculate correctional function in the framework of the model

κ𝜎
p = κ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑝𝜎 < 𝑝* < 𝑝

(𝑝*/𝑝)𝜂 , 𝑝𝜎 < 𝑝 < 𝑝*

(𝑝*/𝑝𝜎)𝜂 , 𝑝 < 𝑝𝜎 < 𝑝*

𝑝𝜎 = 𝑥𝑝0

(︂
𝑝0
𝑝*

)︂𝛼

= 𝑥𝑝*

(︂
𝑝0
𝑝*

)︂1+𝛼

≪ 𝑝*

I keep number 𝑥 ∼ 1 in order to see what part of the answer is going to be cut-off-dependent.

In what follows 𝑝* may be considered ultraviolet cut-off since contributions coming from higher

momenta have weaker scaling with stress. For 𝜎 ≪ 𝜎*

κ
𝑑𝑐𝑇

𝛿𝐾𝛽 ∼
ˆ κ𝜎𝑝2𝛽𝑝21(𝑑p)

κ𝑝𝑝4(κ𝑝𝑝4 + 𝜎𝑝21)
+

ˆ
𝑝<𝑝𝜎

(𝑑p)

[︂ κ𝑝2𝛽
κ𝜎

p𝑝
4 + 𝜎𝑝21

−
κ𝑝2𝛽

κp𝑝4 + 𝜎𝑝21

]︂
=

1 + 𝛼

4 sin𝜋𝛼

⟨︀
𝑝2𝛼1 𝑝2𝛽

⟩︀
p̂

𝐴
[−1]
𝛽 ∼𝑑𝑐

(︂
𝜎

𝜎*

)︂𝛼

+

ˆ
𝑝<𝑥

(𝑑p)

[︂
𝑝2𝛽

𝑝4 + 𝑝21
−

𝑝2𝛽
𝑝4−𝜂 + 𝑝21

]︂
𝐴

[1]
𝛽 ∼𝑑−1

𝑐

(︂
𝜎

𝜎*

)︂𝛼

In the limit 𝑑𝑐 → ∞ first term behaves as 𝛼−1 ∼ 𝑑𝑐 and second turns into zero together

with 𝜂 ∝ 𝑑−1
𝑐 . One could also see that dependence on cut-off 𝑥 is only present in the second

contribution. In that model expansion of PR in inverse powers of 𝑑𝑐 looks like

𝜈 = −𝐴
[−1]
2 + 𝐴

[1]
2 + . . .

𝐴
[−1]
1 + 𝐴

[1]
1 + . . .

∼ −
⟨𝑝2𝛼1 𝑝22⟩p̂⟨︀
𝑝2𝛼+2
1

⟩︀
p̂

(︃
1 +

𝐴
[1]
2

𝐴
[−1]
2

− 𝐴
[1]
1

𝐴
[−1]
1

)︃
𝜂→0

=
−1

1 + 2𝛼

(︀
1 − 𝜂2𝑐𝑥

)︀
+ 𝒪

(︀
𝜂3
)︀

Integrals 𝐴
[1]
𝛽 strongly depend on cut-off 𝑥.

𝑐𝑥 =
4𝜋

𝜂

(︁
𝐴

[1]
1 − 𝐴

[1]
2

)︁
𝜂→0

∼ 4𝜋

ˆ
𝑝<𝑥

𝑝22 − 𝑝21
(𝑝2 + 𝑝21)

2
𝑝2 ln 𝑝 (𝑑p) = −

ˆ 𝑥

0

ln 𝑝 𝑑𝑝

(1 + 𝑝2)3/2

= arcsh𝑥− 𝑥 ln𝑥√
1 + 𝑥2

Number 𝑐𝑥 varies between 0 and 𝑐1 = arcsh 1 ≃ 0.88, as 𝑥 → +∞ it tends to ln 2 ≃ .69.

Of course, such oversimplified model could not produce correct numbers since integrals are

determined by full crossover area 𝑝 ∼ 𝑝𝜎 and exact κ𝜎
p becomes strongly anisotropic at 𝑝 ≪ 𝑝𝜎.

Yet that model happens to correctly predict shown below fact that naive answer (1 + 2𝛼)−1 is

valid up to the first two orders in 1/𝑑𝑐.
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3.4.2 Regular perturbation theory

In order to cope with divergence, yet be able to develop perturbation theory in 1/𝑑𝑐, I propose

to expand 𝛿𝐾𝛽 in 𝛿Σp = Σ𝜎=0
p − Σp.

𝛿𝐾𝛽 = 𝑑𝑐𝑇

ˆ [︂
1

κ𝑝4 − 𝑇Σ𝜎=0
𝑝

− 1

κ𝑝4 + 𝜎𝑝21 − 𝑇Σ𝜎=0
𝑝

+
𝛿Σp

(κ𝑝4 + 𝜎𝑝21 − 𝑇Σ𝜎=0
𝑝 )2

+ . . .

]︂
𝑝2𝛽(𝑑p)

= 𝑑𝑐𝑇

ˆ
𝜎𝑝2𝛽𝑝

2
1(𝑑p)

κ𝑝𝑝4(κ𝑝𝑝4 + 𝜎𝑝21)

𝛿𝐾
[0]
𝛽 ∼𝑑2𝑐

+ 𝑑𝑐𝑇

ˆ
𝑝2𝛽(𝑑p)

(κ𝑝𝑝4 + 𝜎𝑝21)
2
𝑇𝛿Σ(1)

p

𝛿𝐾
[1]
𝛽 ∼𝑑0𝑐

+ 𝑑𝑐𝑇

ˆ
(𝑑p)𝑝2𝛽 . . .

𝛿𝐾
[2]
𝛽 ∼𝑑−1

𝑐

(3.14)

Here I note that in the last line I defined 𝛿𝐾
[1]
𝛽 with 𝛿Σp = 𝛿Σ

(1)
p . Hence 𝛿𝐾

[2]
𝛽 contains

contributions both like [𝛿Σ
(1)
p ]2 and like 𝛿Σ

(2)
p .

Since Σp has clear expansion in 1/𝑑𝑐, expression (3.14) allows me to find 𝛿𝐾𝛽 up to desired

order in 1/𝑑𝑐. Problem is that I actually have two small parameters now and strictly speaking I

need to take limit 𝜎/𝜎* → 0 first, i.e. I have to sum up logarithms ln𝜎/𝜎* in all orders in 1/𝑑𝑐.

Let me forget about that for a moment and take a closer look at 𝛿𝐾
[0]
𝛽 .

Leading term is convergent and may be found in the limit 𝜎 ≪ 𝜎* in terms of 𝜂.

𝛿𝐾
[0]
𝛽 ∼ 𝑑𝑐𝑇

2𝜋

ˆ 𝑝*

0

𝑑𝑝

𝑝

⟨
𝜎𝑝2𝛽𝑝

2
1

κ(𝑝*/𝑝)𝜂(κ𝑝𝜂*𝑝2−𝜂 + 𝜎𝑝21)

⟩
p̂

∼ 𝑑𝑐𝑇

2𝜋

ˆ ∞

0

𝑑𝑝
⟨︀
𝑝2𝛼1 𝑝2𝛽

⟩︀
p̂

𝑝1−𝜂(𝑝2−𝜂 + 1)

𝜎𝛼

(κ𝑝𝜂*)𝛼+1
, 𝛼 =

𝜂

2 − 𝜂
, 𝜂 =

2𝛼

1 + 𝛼
,

=
𝑑𝑐𝑇

κ

(︂
𝜎

𝜎*

)︂𝛼

𝐼𝛼
⟨︀
𝑝2𝛼1 𝑝2𝛽

⟩︀
p̂
, 𝐼𝛼 =

ˆ ∞

0

𝑝𝜂−1𝑑𝑝/2𝜋

(𝑝2−𝜂 + 1)
=

1 + 𝛼

4 sin𝜋𝛼
.

Thrown away part of integral is of order 𝜎/𝜎* ≪ (𝜎/𝜎*)
𝛼.

𝑌0𝛿𝐾
[0]
𝛽

𝜎
∼ 16𝜋

3
𝐼𝛼
⟨︀
𝑝2𝛼1 𝑝2𝛽

⟩︀
p̂

(︂
𝜎

𝜎*

)︂𝛼−1

, 𝜎 ≪ 𝜎*.

Angle averages may be expressed via Euler Γ–function, but for the PR only their ratio is

important.

𝜈 [0] = −𝛿𝐾
[0]
2

𝛿𝐾
[0]
1

= −
⟨𝑝2𝛼1 𝑝22⟩p̂⟨︀
𝑝2𝛼+2
1

⟩︀
p̂

= − 1

1 + 2𝛼
= −1 +

2

𝑑𝑐
+ 𝒪

(︂
1

𝑑2𝑐

)︂
.

Since (3.14) is expansion in 1/𝑑𝑐, it only makes sense to keep 𝛼 up to the desired order in 1/𝑑𝑐.
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Hypothesis I see that both logarithmic series next to 𝑑2𝑐 and 𝑑𝑐 summed up to the same

function of 𝜎. I make a hypothesis that in the limit 𝜎 ≪ 𝜎* dependence of 𝛿𝐾𝛽 on 𝜎 is same as

for 𝛿𝐾
[0]
𝛽 and only number in front is renormalized.

κ
𝑇
𝛿𝐾𝛽 = 𝐶𝛽(𝑑𝑐)

(︂
𝜎

𝜎*

)︂𝛼

, 𝐶𝛽(𝑑𝑐) = 𝑑𝑐𝐼𝛼
⟨︀
𝑝2𝛼1 𝑝2𝛽

⟩︀
p̂

(︃
1 +

#
(0,0)
𝛽

𝑑2𝑐
+ 𝒪

(︂
1

𝑑3𝑐

)︂)︃
.

That assumption may be checked in every order of perturbation theory, where I can neglect

difference between Σp and Σ𝜎=0
p in every Green’s function since I already have 𝛿Σp in front. Let

me show how it is done for 𝛿𝐾 [1].

Π(𝜂)
q =

𝑑𝑐
𝑇

ˆ
𝑇 2[k× q̂]4(𝑑k)

(κ𝑝𝜂*𝑘4−𝜂 + 𝜎𝑘2
1)(κ𝑝𝜂*(q− k)4−𝜂 + 𝜎(𝑞1 − 𝑘1)2)

=
𝑑𝑐𝑇

κ2𝑝2𝜎

(︂
𝑝𝜎
𝑝*

)︂2𝜂

𝑃𝜂

(︂
q

𝑝𝜎

)︂
,

𝑇Σ(𝜂)
p =

ˆ [︂
2𝑇

Πq

[p× q̂]4(𝑑q)

κ𝑝𝜂*(p− q)4−𝜂 + 𝜎(𝑝1 − 𝑞1)2
− 2𝑇

Π𝜎=0
q

[p× q̂]4(𝑑q)

κ𝑝𝜂*(p− q)4−𝜂

]︂
=

κ
𝑑𝑐
𝑝4𝜎

(︂
𝑝*
𝑝𝜎

)︂𝜂

𝑆𝜂

(︂
p

𝑝𝜎

)︂
,

where Π𝜂 and 𝑆𝜂 are some dimensionless functions.

𝛿𝐾
[1]
𝛽 =

𝑑𝑐𝑇

κ

(︂
𝑝𝜎
𝑝*

)︂2𝜂 ˆ (𝑑p)𝑝2𝛽𝑆𝜂(p)

(𝑝4−𝜂 + 𝑝21)
2

= #𝛽(𝛼)
𝑑𝑐𝑇

κ

(︂
𝜎

𝜎*

)︂𝛼

.

where characteristic scale is

𝑝𝜎 = 𝑝0

(︂
𝑝0
𝑝*

)︂𝛼

= 𝑝*

(︂
𝑝0
𝑝*

)︂1+𝛼

≪ 𝑝0 ≪ 𝑝*

It follows from that hypothesis is that information about Poisson ratio is encoded in numbers

#
(𝑛,0)
𝛽 , in particular, number #(0,0) may be found from 𝛿𝐾 [1] with κp = κ.

Correction to leading order value 𝜈 [0] of Poisson ratio comes from 𝛿𝐾
[1]
𝛽 . In the limit 𝑑𝑐 → ∞

correlator 𝛿𝐾
[1]
𝛽 is simply a number

𝛿𝐾
[1]
𝛽 =

𝑑𝑐→∞
𝑑𝑐𝑇

ˆ
𝑝2𝛽(𝑑p)

(κ𝑝4 + 𝜎𝑝21)
2

ˆ [︂
2𝑇

Πq

[p× q̂]4

κ(p− q)4 + 𝜎(𝑝1 − 𝑞1)2
− 2𝑇

Π𝜎=0
q

[p× q̂]4

κ(p− q)4

]︂
(𝑑q)

=
2𝑇

κ

ˆ
𝑝2𝛽(𝑑p)

(𝑝4 + 𝑝21)
2

ˆ [︂
1

𝑃 (q)

[p× q̂]4

(p− q)4 + (𝑝1 − 𝑞1)2
− 1

𝑃0(q)

[p× q̂]4

(p− q)4

]︂
(𝑑q)
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where dimensionless polarization operators are defined according to

Π𝜎=0
q =

𝑑𝑐𝑇

κ2

ˆ
[k× q̂]4(𝑑k)

𝑘4(q− k)4
=

𝑑𝑐𝑇

κ𝜎
𝑃0

(︂√︂
κ
𝜎
q

)︂
=

3

16𝜋

𝑑𝑐𝑇

κ2

1

𝑞2
,

Πq =
𝑑𝑐
𝑇

ˆ
𝑇 2[k× q̂]4(𝑑k)

(κ𝑘4 + 𝜎𝑘2
1)(κ(q− k)4 + 𝜎(𝑞1 − 𝑘1)2)

=
𝑑𝑐𝑇

κ𝜎
𝑃1

(︂√︂
κ
𝜎
q

)︂
.

Dimensionless polarization operator for uniaxial stress 𝑃1(q) is calculated in the appendix.

Answer Since 𝛿𝐾
[0]
𝛽 ∼ 𝑑2𝑐

8𝜋
, 𝑑𝑐 → ∞, Poisson ration in the first non–trivial order may be

written as

𝜈 = −𝛿𝐾
[0]
2 + 𝛿𝐾

[1]
2 + . . .

𝛿𝐾
[0]
2 + 𝛿𝐾

[1]
2 + . . .

= −𝛿𝐾
[0]
2

𝛿𝐾
[0]
1

[︃
1 +

𝛿𝐾
[1]
2

𝛿𝐾
[0]
2

− 𝛿𝐾
[1]
1

𝛿𝐾
[0]
1

+ . . .

]︃

= −𝛿𝐾
[0]
2

𝛿𝐾
[0]
1

[︂
1 +

8𝜋

𝑑2𝑐

κ
𝑇

(︁
𝛿𝐾

[1]
2 − 𝛿𝐾

[1]
1

)︁
+ . . .

]︂
= − 1

1 + 2𝛼

[︂
1 +

𝑐

𝑑2𝑐
+ 𝒪

(︂
1

𝑑3𝑐

)︂]︂

where number 𝑐 = 8𝜋(#
(0,0)
2 − #

(0,0)
1 ) is of interest.

𝑐

16𝜋
=

ˆ
q,k

[︂
(𝑘2

2 − 𝑘2
1)[k× q̂]4

𝑃1(q)(𝑘4 + 𝑘2
1)2((k− q)4 + (𝑘1 − 𝑞1)2)

− (𝑘2
2 − 𝑘2

1)[k× q̂]4

𝑃0(q)(𝑘4 + 𝑘2
1)2(k− q)4

]︂
Such integral may be computed numerically with 𝑃0(q) = 3

16𝜋
𝑞−2 and expression for 𝑃1(q)

is provided in the appendix. The answer is 𝑐 = −0.56 ± 0.01, which allows me conclude that

true expression for absolute Poisson ratio in non–linear regime 𝜎 ≪ 𝜎* is not given by simple

expression as 1/(1 + 2𝛼), but a more complex function.

In the next section I relate critical exponent 𝛼 to its approximate (self–consistent) value 𝛼sc

in order to find Poisson ratio up to 1/𝑑2𝑐 .
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Chapter 4

Numerical simulations

4.1 Overview

In this section I sum up and give brief comments on recent published numerical studies of

universal regime of the model (2.2). Papers from previous century are added selectively, for

more compete list reader is directed to recent review [5, Fig. 1]. Some notions in this table

Year Author Method 𝑝8 Size, 𝐿2 𝜂 𝜈𝜎=0

1996 [17] Bowick
Hausdorf dim ≈ .4

1282 .72 ± .12
Space correlator ≈ .4 ≈ .6

1997 [18] Falcioni et al Space correlator ≈ .4 1282 ≈ .62 −.3 ± 0.06
2001 [4] Bowick et al Self–avoiding 952 −.37 ± 0.6
2009 [19] Los et al Molecular dynamics − 1902 ≈ .85

2012 [20] Troster
Fourier correlator

.44 6402(402)
.795 ± .01

Fourier Green ≈ .761
2016 [21] Los et al Space correlator .4 1952 ≈ 0.84 +.275
2019 [#] Saykin Fourier Green .3 3602 .78 ± .02 −.76 ± .05

Table 4.1: Selected reports on numerical values of critical indices.

require additional clarification. Most of the papers use Monte Carlo simulations of action (2.2),

some work in r–space, some in Fourier k–space, some papers study behavior of Green function

itself, some study correlator

𝐾𝛼𝛽 =

ˆ
𝑑x(𝜕𝛼r · 𝜕𝛽r)

instead. Column 𝑝8 contains information about interaction force. It is useful to measure it in

dimensionless number

𝑝8 = 𝑝*𝑎 = 𝑎

√︂
3

16𝜋

𝑌0𝑇

κ2
,

where I use 𝑎 = 2.46 Å for graphene lattice constant, 𝑌0 ≃ 22 eV·Å−2 and κ ≃ 1.1 eV. For

𝑇 = 300 K it gives 𝑝8 = .41.

One can see that there are many discrepancies between reported data which calls for expla-

nation. Below I reproduce method used in [20] and calculate 𝜂 and Poisson ratio 𝜈𝜎=0.
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4.2 Simulation description

I use Metropolis–Hastings algorithm and run Monte–Carlo simulations with weight function

𝑒−𝐹/𝑇 and I use (3.1) expression with 𝜎 = 0, which in dimensionless form looks as follows.

ℱ =
∑︁
q ̸=0

{︃
1

2

(︂
2𝜋𝑞

𝐿

)︂4 ⃒⃒
ℎ[q]

⃒⃒2
+

2𝜋

3

𝑝28
𝐿2

⃒⃒
𝑆[q]

⃒⃒2}︃

with the following function

𝑆[q] =
∑︁
k ̸=0

[︂
2𝜋

𝐿
k× q̂

]︂2 (︀
ℎ[k] · ℎ[k+q]

)︀
and all momenta replaced by sin–value

2𝜋

𝐿
𝑘1 ↦→ sin

(︂
2𝜋

𝐿
𝑘1

)︂
, 𝑞2 ↦→ 4 sin2

(︁𝜋
𝐿
𝑞1

)︁
+ 4 sin2

(︁𝜋
𝐿
𝑞2

)︁
.

Vector product is defined by its value in first Brillouin zone and continued from there by peri-

odicity.

Running ∼ 105 Monte–Carlo steps I find Green function

𝒢p =
⟨⃒⃒
ℎ[p]

⃒⃒2⟩
MC

=
1

κ𝑝

(︂
2𝜋𝑝

𝐿

)︂−4

.

I choose phase space exploration step so that acceptance rate varies between 35% and 55%. As

it is mentioned in [20] step must be momenta–dependent and could be heuristically choose from

relation 𝑑[k] ∼ ℎ[k].

From 𝒢k dependence I extract value of critical exponent 𝜂. I present results on Figure 13

and Figure 14. As it could be seen the smallest wave vectors behave themselves inconsistently,

which my be called finite–size effect [20]. That’s why I only use third and higher momenta for

fit. I report value

𝜂 = 0.78 ± 0.02.

That value is in good agreement with numerical paper [20] and «second–order» self–consistent

approximation [6].
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Figure 13: Log–log plot of 𝒢−1
q for different lattice sizes 𝐿 = 200, 240, 280, 320, 360.
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Figure 14: Close–up view. Fit region is marked. Presented lattice sizes 𝐿 = 200, 220, 240, 260,
280, 300, 320, 340, 360.
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Poisson ratio I also calculate value of Poisson ratio in non–linear regime as

𝜈𝜎=0 = −

∑︀
|q|<𝑞8

⟨
𝐾𝑥

[q]𝐾
𝑦
[q]

⟩
−
⟨
𝐾𝑥

[q]

⟩⟨
𝐾𝑦

[q]

⟩
∑︀

|q|<𝑞8

⟨
𝐾𝑥

[q]𝐾
𝑥
[q]

⟩
−
⟨
𝐾𝑥

[q]

⟩2 , 𝐾𝛼
[q] = sin2

(︂
2𝜋

𝐿
𝑘𝛼

)︂ ⃒⃒
ℎ[q]

⃒⃒2
and report the value

𝜈𝜎=0 = −0.76 ± 0.05.

4.2.1 Algorithm

The idea of effective calculation is expounded in [22]. Key idea is to keep 𝑆[q] and 𝑑𝑆[q] arrays

and evaluate only 𝑑𝑆[q] each Monte–Carlo step. Here is the listing of the code that does such

evaluation.

f o r ( q1 = 0 ; q1 < L ; q1++)

f o r ( q2 = 0 ; q2 < L ; q2++) {

i f ( ! q1 && ! q2 ) cont inue ;

double p = s i n [ k1 ]* s i n [ q2]− s i n [ k2 ]* s i n [ q1 ] ; p *= p ;

double kq = s i n [ k2+q2 ]* s i n [ q1]− s i n [ k1+q1 ]* s i n [ q2 ] ; kq *= kq ;

double qk = s i n [ k1−q1 ]* s i n [ q2]− s i n [ k2−q2 ]* s i n [ q1 ] ; qk *= qk ;

complex s = p* conj (h [ k1+q1 ] [ k2+q2 ] ) * z ;
s += kq*h[−k1−q1 ][−k2−q2 ]* z ;
s += qk*h [ k1−q1 ] [ k2−q2 ]* conj ( z ) ;
s += p* conj (h [ q1−k1 ] [ q2−k2 ] ) * conj ( z ) ;
i f ( ! ( ( q1+2*k1)%L) && ! ( ( q2+2*k2)%L) )
s += p*z*z*d ;

i f ( ! ( ( q1−2*k1+2*L)%L) && ! ( ( q2−2*k2+2*L)%L) )
s += p* conj ( z )* conj ( z )*d ;

s *= d/Q[ q1 ] [ q2 ] ;

dS [ q1 ] [ q2 ] = s ;

w += c r e a l ( (2*S [ q1 ] [ q2]+ s )* conj ( s ) ) ;
}

Main body of simulate step function is printed on the next page. Here I note these listings

are not one–to–one exact to a working code. Reader may find source code github.com/saykind.
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#inc lude <complex . h>

#inc lude <omp . h>

in t s imulate ( complex **h , complex **S , complex **dS , double **g ) {

i n t L = 2*N+1;
i n t k1 = rand()%L−N, k2 = rand()%L−N, q1 , q2 ;

i f ( ! k1 && ! k2 ) { s imulate (h , S , dS , g ) ; r e turn 0 ;}

double w = 0 , A = Q[ k1 ] [ k2 ] , d = 2.6/A/pow(1+Y/A, . 1 3 ) ; A *= A;

complex z = (1 .* rand ( )/RAND_MAX− .5) + (1 .* rand ( )/RAND_MAX− .5)* I ;
#pragma omp p a r a l l e l f o r c o l l a p s e (2 ) r educt i on (+:w)

f o r ( q1 = 0 ; q1 < L ; q1++)

f o r ( q2 = 0 ; q2 < L ; q2++) {

i f ( ! q1 && ! q2 ) cont inue ;

/* Cal cu la t i on o f s=dS [ q1 ] [ q2 ] */
dS [ q1 ] [ q2 ] = s ;

w += c r e a l ( (2*S [ q1 ] [ q2]+ s )* conj ( s ) ) ;
}

w *= −Y/L/L ;
w −= A* c r e a l ( (2*h [ k1 ] [ k2 ] + d*z )* conj ( z ) )*d ;
i f (w > log ( 1 .* rand ( )/RAND_MAX)) {

h [ k1 ] [ k2 ] += d*z ;
h [ ( L−k1)%L ] [ ( L−k2)%L ] += d* conj ( z ) ;
#pragma omp p a r a l l e l f o r c o l l a p s e (2 )

f o r ( q1 = 0 ; q1 < L ; q1++)

f o r ( q2 = 0 ; q2 < L ; q2++)

S [ q1 ] [ q2 ] += dS [ q1 ] [ q2 ] ;

}

i f ( c && g ) {

double a = c r e a l (h [ k1 ] [ k2 ]* conj (h [ k1 ] [ k2 ] ) ) ;
g [ k1 ] [ k2 ] += a ;

g [ ( L−k1)%L ] [ ( L−k2)%L ] += a ;

}

re turn 0 ;

}
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Chapter 5

Summary

5.1 Results

5.1.1 Critical exponents

I have found critical exponent 𝜂 and its derivative 𝛼 = 𝜂
2−𝜂

that characterize universal regime

(system forgets about material–dependent characteristics 𝜇, 𝜆, κ) of large enough two–dimensional
crystal under not strong stress (𝜎𝐿 ≪ 𝜎 ≪ 𝜎*) perturbatively in 1/𝑑𝑐 up to the first non–trivial

1

order.

𝜂 =
2

𝑑𝑐
+

73 − 68𝜁(3)

27

1

𝑑2𝑐
+ 𝒪

(︀
𝑑−3
𝑐

)︀
,

=
2

𝑑𝑐
− .324

𝑑2𝑐
+ 𝒪

(︀
𝑑−3
𝑐

)︀
.

𝛼 =
1

𝑑𝑐
+

127 − 68𝜁(3)

54

1

𝑑2𝑐
+ 𝒪

(︀
𝑑−3
𝑐

)︀
,

=
1

𝑑𝑐
+

.838

𝑑2𝑐
+ 𝒪

(︀
𝑑−3
𝑐

)︀
.

In particular, my calculations hint that true value of 𝜂 and 𝛼 may be considerably different

from the values given by self–consistent screening approximation 𝜂scsa = 4
1+

√
15

≈ 0.821 and

𝛼scsa = 1
7
(1 +

√
15) ≈ 0.696.

𝜂 = 𝜂scsa −
68𝜁(3) − 46

108
𝜂2
scsa

+ 𝒪
(︀
𝜂3
scsa

)︀
,

= 𝜂scsa − .331𝜂2
scsa

+ 𝒪
(︀
𝜂3
scsa

)︀
.

𝛼 = 𝛼scsa −
34𝜁(3) − 23

27
𝛼2
scsa

+ 𝒪
(︀
𝛼3
scsa

)︀
,

= 𝛼scsa − .662𝛼2
scsa

+ 𝒪
(︀
𝛼3
scsa

)︀
.

In order to make even very bold estimate of actual values of 𝜂 an 𝛼 from these expressions one

has to know whether he deals with sign–alternating series or not. I make a wild guess that next

term goes with a positive sign, and estimate 𝜂 ≈ .7 and 𝛼 ≈ .5.

1Before only the leading term 𝜂 ∼ 2/𝑑𝑐 and SCSA approximation were known.

45



5.1.2 Absolute Poisson ratio

In the fore-mentioned universal regime, Poisson ratio also becomes universal number.

−𝜈 = 1 − 2

𝑑𝑐
+

1.76

𝑑2𝑐
+ 𝒪

(︀
𝑑−3
𝑐

)︀
,

= 1 − 𝜂 + .36𝜂2 + 𝒪
(︀
𝜂3
)︀
,

= 1 − 𝜂scsa + .69𝜂2
scsa

+ 𝒪
(︀
𝜂3
scsa

)︀
,

= 1 − 2𝛼 + 3.44𝛼2 + 𝒪
(︀
𝛼3
)︀
,

= 1 − 2𝛼scsa + 4.12𝛼2
scsa

+ 𝒪
(︀
𝛼3
scsa

)︀
.

I would also like to make a guess about actual value of 𝜈, so I take my chances and suppose

that series is alternating in sign, then I would say 𝜈 ≈ −.4 might be a good guess.

5.1.3 Numerical results

Here I report result of Monte–Carlo simulations.

𝜂 = 0.78 ± 0.02, 𝜈𝜎=0 = −0.76 ± 0.05.

Please note that value of Poisson ratio at zero stress does not has much in common with value

𝜈, 𝜎𝐿 ≪ 𝜎 ≪ 𝜎* discussed in the main paper as it was pointed out in [10].

5.2 Conclusion

Here I give answers to the questions stated at the beginning of the paper.

1. Critical exponent 𝛼 from anomalous Hooke’s law could differ drastically (10%) from SCSA

value [9]. There is no theoretical reason to believe it is close to 𝛼scsa ≈ .7. Numerical

simulations suggest that value is somewhere in the range 𝛼 = .64 ± .2.

2. The value of Poisson ratio 𝜈 in universal regime is an independent critical index. Similarly,

there is no reason to believe that either differential or absolute Poisson ratio values are

close to their SCSA approximations.
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Appendix A

Calculation details

A.1 Second order non–SCSA contributions

Here I give the details of calculation of second–order contributions to the self energy that are

present in (3.10, 3.11, 3.12, 3.13).

Second–order. Crossed diagram Here goes diagram depicted at Figure 12–12𝑐.

𝑇Σ(2𝑐)
p =

ˆ
𝑌 2
0 𝑇

2(𝑑q𝑑k)[p− q× k]2[p− k× q]2[p× k]2[p× q]2

κ3(𝑞4 + 𝑝2*
2
𝑞2)(𝑘4 + 𝑝2*

2
𝑘2)(p− q)4(p− q− k)4(p− k)4

=
κ𝑝4*
𝑑2𝑐

𝒮(2𝑐)

(︃√
2𝑝

𝑝*

)︃
,

𝒮(2𝑐) (𝑝) =

(︂
16𝜋

3

)︂2 ˆ
(𝑑q)[p× q]2

(𝑞4 + 𝑞2)(p− q)4

ˆ
[p× k]2[p− q× k]2[p− k× q]2

(𝑘4 + 𝑘2)(p− q− k)4(p− k)4
(𝑑k)

∼
(︂

16𝜋

3

)︂2

𝑝4
ˆ

(𝑑q)𝑞2[p̂× q̂]2

(1 + 𝑞−2)(p− q)4

ˆ
[p̂× k̂]2[k̂× q̂]4

(k− q)4
(𝑑k), 𝑝 ≪ 1.

I use identity (3.7) and two more expressions⟨
[p̂× k̂]2[k̂× q̂]4

(k− q)4

⟩
k̂

=
3/16

max{𝑘4, 𝑞4}
+

[︂
4

max{𝑘4, 𝑞4}
− 5 min{𝑘2, 𝑞2}

max{𝑘6, 𝑞6}

]︂
cos [2̂︁pq]

32
,⟨

[p̂× q̂]2

(p− q)4
cos [2̂︁pq]

⟩
k̂

=
3 min{𝑝2, 𝑞2} − max{𝑝2, 𝑞2}

4 max{𝑝4, 𝑞4}|𝑝2 − 𝑞2|
.

q

k

p− q

p− q− k

p− k

Figure 15: Crossed diagram
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Changing the variables 𝑞2 ↦→ 𝑞, 𝑘2 ↦→ 𝑘, I come to

𝒮(2𝑐) (𝑝) =
1

12

𝑝4

4

ˆ ∞

0

𝑞𝑑𝑞𝑑𝑘

1 + 𝑞−1

(︂
6

max{𝑘2, 𝑞2}
· 4

3

1

max{𝑝2, 𝑞}|𝑝2 − 𝑞|
+

+

[︂
4

max{𝑘2, 𝑞2}
− 5

min{𝑘, 𝑞}
max{𝑘3, 𝑞3}

]︂
· 2

3

3 min{𝑝2, 𝑞} − max{𝑝2, 𝑞}
max{𝑝4, 𝑞2}|𝑝2 − 𝑞|

)︂
=

𝑝4

4

ˆ ∞

0

𝑑𝑞

1 + 𝑞−1

(︂
4/3

max{𝑝2, 𝑞}|𝑝2 − 𝑞|
+

3 min{𝑝2, 𝑞} − max{𝑝2, 𝑞}
6 max{𝑝4, 𝑞2}|𝑝2 − 𝑞|

)︂
This integral is not hard to calculate exactly. Finally,

𝒮(2𝑐) (𝑝) ∼ −7

3

(︂
𝑝√
2

)︂4

ln 𝑝 + const.

That is the result (3.10).

Second–order. Pill diagram Here is another one.

𝑇Σ(2𝑑)
p = −𝑑𝑐

2

𝑌 3
0 𝑇

3

κ5

ˆ
(𝑑q𝑑r𝑑k)[p× q]4[k× q]2[k× r]2[k− r× q]2[k− q× r]2

(𝑞4 + 𝑝2*
2
𝑞2)2(𝑟4 + 𝑝2*

2
𝑟2)(p− q)4𝑘4(k− q)4(k− r)4(k− q− r)4

=
κ𝑝4*
𝑑2𝑐

𝒮(2𝑑)

(︂√
2
𝑝

𝑝*

)︂
,

𝒮(2𝑑) (𝑝) = −
(︂

16𝜋

3

)︂3 ˆ
[p× q]4𝑞2(𝑑q)

(𝑞4 + 𝑞2)2(p− q)4

ˆ
(𝑑r𝑑k)[k× q̂]2[k× r]2[k− r× q̂]2[k− q̂× r]2

(���𝑞2𝑟4 + 𝑟2)𝑘4(k− q̂)4(k− r)4(k− q̂− r)4

𝒮(2𝑑) (𝑝) ∼ −
(︂

16𝜋

3

)︂2
𝑓

2

ˆ ∞

0

𝑑𝑞𝑞

(𝑞2 + 𝑞)2
min{𝑝4, 𝑞2} ∼

(︂
16𝜋

3

)︂2

𝑓𝑝4 ln 𝑝.

So I am interested in calculating number 𝑓 .

𝑓 =

ˆ
[k̂× q̂]2[k̂× r̂]2[r̂× q̂]2

(k− q̂)4(k− r)2(r− q̂)4
[k− q̂× r− q̂]2(𝑑r𝑑k)

k− r

k

k− q

r

r− q
q q

p− q

Figure 16: The Eye of Sauron diagram
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In order to average over angles I change the variables to 𝑧 = exp
[︁
𝑖̂︁kq]︁, 𝑤 = exp [𝑖̂︁rq]. I find

several potential residues 𝑧 = 0, 𝑘, 1/𝑘, 𝑘𝑤/𝑟, 𝑟𝑤/𝑘. Depending on parameters 𝑘, 𝑟 they either

lie inside unit circle |𝑧| = 1 or not. After evaluating integrals over 𝑧 I come to expressions with

potential residue at 𝑤 = 0, 𝑟, 1/𝑟, 𝑘2/𝑟, 𝑟/𝑘2. All in all, I have six different cases depending on

relation between 𝑘 > 1, 𝑟 > 1, 𝑘 > 𝑟. It so happens that relation 𝑘2 > 𝑟 does not change the

answer. Altogether contributions give 𝑓 = (1/2)(3/16𝜋)2. Thus,

𝑑2𝑐
𝑇Σ

(2𝑑)
p

κ𝑝4
∼ 2 ln

[︂
𝑝

𝑝*

]︂
+ const.

That is the result (3.11). Results (3.12), (3.13) are obtained in similar manner.
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A.2 Polarization operator

Here I calculate the polarization operator for the case of uniaxial stress 𝜎1 = 𝜎, 𝜎2 = 0.

Πq =
𝑑𝑐𝑇

κ𝜎

ˆ
[k× q̂]2

k4 + 𝑘2
1

[(q− k) × q̂]2

(q− k)4 + (𝑞1 − 𝑘1)2
(𝑑k) =

𝑑𝑐𝑇

κ𝜎
𝑃

(︂√︂
κ
𝜎
q

)︂
,

𝑃 (q) =

ˆ
(𝑑k)𝑓k𝑓q−k =

ˆ
𝑑2x 𝑒−𝑖qx𝑓 2(x), 𝑓(x) =

ˆ
[k× q̂]2

𝑘4 + 𝑘2
1

𝑒𝑖kx(𝑑k).

Function 𝑓(x) may be calculated in coordinates. Let me define

𝑓 (𝑎,𝑏)(x) =

ˆ
𝑘𝑎
1𝑘

𝑏
2

𝑘4 + 𝑘2
1

𝑒𝑖kx(𝑑k), 𝑎, 𝑏 ∈ N0, 𝑎 + 𝑏 ̸= 0,

𝑓 (0,0)(x) =

ˆ
𝑒𝑖kx − 1

𝑘4 + 𝑘2
1

(𝑑k),

then the function I’m interested in is given by 𝑓(x) = −[q̂×∇]2𝑓 (0,0)(x). Unfortunately, I don’t

know how to calculate 𝑓 (0,0). Fortunately, 𝑓 (1,0) and 𝑓 (2,0) + 𝑓 (0,2) are possible to calculate.

𝑓 (1,0)(x) =
∑︁
±

∓
2𝑖

ˆ
𝑒𝑖kx(𝑑k)

𝑘2 ± 𝑖𝑘1
=
∑︁
±

∓
2𝑖

ˆ
𝑘𝑑𝑘

2𝜋

𝐽0(𝑘𝑥)

𝑘2 + 1
4

𝑒±𝑥1/2 =
𝑖

2𝜋
sh

𝑥1

2
𝐾0

𝑥

2
.

𝑓 (2,0)(x) + 𝑓 (0,2)(x) =
∑︁
±

1

2

ˆ
𝑒𝑖kx(𝑑k)

𝑘2 ± 𝑖𝑘1
=
∑︁
±

1

2

ˆ
𝑘𝑑𝑘

2𝜋

𝐽0(𝑘𝑥)

𝑘2 + 1
4

𝑒±𝑥1/2 =
1

2𝜋
ch

𝑥1

2
𝐾0

𝑥

2
.

From these expressions, with the help of the property 𝑓 (𝑎+𝑛,𝑏+𝑚) = (−𝑖𝜕1)
𝑛(−𝑖𝜕2)

𝑚𝑓 (𝑎,𝑏) I am

able to find following functions.

𝑓 (2,0) =
1

4𝜋

[︁
ch

𝑥1

2
𝐾0

𝑥

2
− 𝑥1

𝑥
sh

𝑥1

2
𝐾1

𝑥

2

]︁
,

𝑓 (1,1) = − 1

4𝜋

𝑥2

𝑥
sh

𝑥1

2
𝐾1

𝑥

2
,

𝑓 (0,2) =
1

4𝜋

[︁
ch

𝑥1

2
𝐾0

𝑥

2
+

𝑥1

𝑥
sh

𝑥1

2
𝐾1

𝑥

2

]︁
.

Now I need to multiple different function in x–space and perform inverse Fourier transform.

Let me define 𝐹 (𝑎,𝑏;𝑐,𝑑)(x) = 𝑓 (𝑎,𝑏)(x)𝑓 (𝑐,𝑑)(x) and 𝐹 (𝑎,𝑏)(x) = 𝑓 (𝑎,𝑏)(x)𝑓 (𝑎,𝑏)(x), then polarization

operator is given by

𝑃 (q) = 𝑞41𝐹
(0,2)
q + 4𝑞21𝑞

2
2𝐹

(1,1)
q + 𝑞42𝐹

(0,2)
q + 2𝑞21𝑞

2
2𝐹

(0,2,2,0)
q − 4𝑞31𝑞2𝐹

(0,2,1,1)
q − 4𝑞1𝑞

3
2𝐹

(2,0,1,1)
q . (A.1)
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To evaluate these integrals I use the following identities.

ˆ ∞

0

𝑥𝐾2
0

(︁𝑥
2

)︁
𝐽0(𝑞𝑥)𝑑𝑥 =

2 arcsh 𝑞

𝑞
√︀

1 + 𝑞2
≡ 2𝐴(𝑞),

ˆ ∞

0

𝑥𝐾0

(︁𝑥
2

)︁
𝐾1

(︁𝑥
2

)︁
𝐽1(𝑞𝑥)𝑑𝑥 =

2 arcsh 𝑞√︀
1 + 𝑞2

≡ 2𝑞𝐴(𝑞),

ˆ ∞

0

𝐾2
1

(︁𝑥
2

)︁ [︁
𝐽1(𝑞𝑥) − 𝑞𝑥

2

]︁
= 2

[︁
𝑞 −

√︀
1 + 𝑞2 arcsh 𝑞

]︁
≡ −2𝑞(1 + 𝑞2)𝐴(𝑞) + 2𝑞.

Let me show how to calculate these integrals one by one. Let me begin with

𝐹 (1,1)
q =

ˆ
𝑑2x

(4𝜋)2
𝑒−𝑖qx

(︁𝑥2

𝑥
sh

𝑥1

2
𝐾1

𝑥

2

)︁2
=
∑︁
±

ˆ
𝑑2x

(8𝜋)2
𝑒−𝑖qx

(︁𝑥2

𝑥

)︁2
(𝑒±𝑥1 − 1)𝐾2

1

𝑥

2

= Re

ˆ ∞

0

𝑥𝑑𝑥

16𝜋

𝜕𝑞2
𝑥

[𝑝2𝐽1(𝑝𝑥) − 𝑞2𝐽1(𝑞𝑥)]𝐾2
1

𝑥

2

=
1

8𝜋
Re 𝜕2

[︀
𝑞2(1 + 𝑞2)𝐴(𝑞) − 𝑝2(1 + 𝑝2)𝐴(𝑝)

]︀
=

1

8𝜋

(︀[︀
𝑞21(1 + 𝑞2) + 𝑞22

]︀
𝐴(𝑞) + 𝑞22 − Re

{︀[︀
𝑝21(1 + 𝑝2) + 𝑝22

]︀
𝐴(𝑝) + 𝑝22

}︀)︀
.

where I have introduced vector p = (𝑞1 + 𝑖, 𝑞2). The following two are similar.

𝐹 (0,2)
q =

ˆ
𝑑2x

(4𝜋)2
𝑒−𝑖qx

(︁
ch

𝑥1

2
𝐾0

𝑥

2
+

𝑥1

𝑥
sh

𝑥1

2
𝐾1

𝑥

2

)︁2
=
∑︁
±

ˆ
𝑑2x

(8𝜋)2
𝑒−𝑖qx

(︂
(𝑒±𝑥1 + 1)𝐾2

0

𝑥

2
± 2

𝑥1

𝑥
𝑒±𝑥1𝐾0

𝑥

2
𝐾1

𝑥

2
+
(︁𝑥1

𝑥

)︁2
(𝑒±𝑥1 − 1)𝐾2

1

𝑥

2

)︂
= Re

ˆ ∞

0

𝑥𝑑𝑥

16𝜋

(︂
[𝐽0(𝑝𝑥) + 𝐽0(𝑞𝑥)]𝐾2

0

𝑥

2
+ 2𝑖

𝜕𝑞1
𝑥
𝐽0(𝑝𝑥)𝐾0

𝑥

2
𝐾1

𝑥

2
+

𝜕𝑞1
𝑥

[𝑝1𝐽1(𝑝𝑥) − 𝑞1𝐽1(𝑞𝑥)]𝐾2
1

𝑥

2

)︂

=
1

8𝜋
Re
{︀
𝐴(𝑝) + 𝐴(𝑞) − 2𝑖𝑝1𝐴(𝑝) + 𝜕1

[︀
𝑞1(1 + 𝑞2)𝐴(𝑞) − 𝑝1(1 + 𝑝2)𝐴(𝑝)

]︀}︀
=

1

8𝜋

(︀[︀
𝑞22(1 + 𝑞2) + 1 + 𝑞21

]︀
𝐴(𝑞) + 𝑞21 − Re

{︀[︀
𝑝22(1 + 𝑝2) − 1 + 2𝑖𝑝1 + 𝑝21

]︀
𝐴(𝑝) + 𝑝21

}︀)︀
.

The same way but with another sign is done the next one.

𝐹 (2,0)
q =

ˆ
𝑑2x

(4𝜋)2
𝑒−𝑖qx

(︁
ch

𝑥1

2
𝐾0

𝑥

2
−𝑥1

𝑥
sh

𝑥1

2
𝐾1

𝑥

2

)︁2
=

1

8𝜋
Re
{︀
𝐴(𝑝) + 𝐴(𝑞)+2𝑖𝑝1𝐴(𝑝) + 𝜕1

[︀
𝑞1(1 + 𝑞2)𝐴(𝑞) − 𝑝1(1 + 𝑝2)𝐴(𝑝)

]︀}︀
=

1

8𝜋

(︀[︀
𝑞22(1 + 𝑞2) + 1 + 𝑞21

]︀
𝐴(𝑞) + 𝑞21 − Re

{︀[︀
𝑝22(1 + 𝑝2) − 1−2𝑖𝑝1 + 𝑝21

]︀
𝐴(𝑝) + 𝑝21

}︀)︀
.
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The next one is also very similar to 𝐹
(0,2)
q . Functions 𝐹

(0,2;1,1)
q and 𝐹

(2,0;1,1)
q done similarly.

𝐹 (0,2;2,0)
q =

ˆ
𝑑2x

(4𝜋)2
𝑒−𝑖qx ch2 𝑥1

2
𝐾2

0

𝑥

2
−
(︁𝑥1

𝑥

)︁2
sh2 𝑥1

2
𝐾2

1

𝑥

2

=
1

8𝜋
Re
{︀
𝐴(𝑝) + 𝐴(𝑞) − 𝜕1

[︀
𝑞1(1 + 𝑞2)𝐴(𝑞) − 𝑝1(1 + 𝑝2)𝐴(𝑝)

]︀}︀
=

1

8𝜋

(︀[︀
−𝑞22(1 + 𝑞2) + 1 − 𝑞21

]︀
𝐴(𝑞) − 𝑞21 − Re

{︀[︀
−𝑝22(1 + 𝑝2) − 1 − 𝑝21

]︀
𝐴(𝑝) − 𝑝21

}︀)︀
.

Altogether, required functions are

8𝜋𝐹 (0,2)
q =

[︀
𝑞22 + 𝑞2 + 1

]︀
𝐴(𝑞) + 𝑞21 −Re

{︀[︀
𝑝22 + 𝑝2 − 1 + 2𝑖𝑝1

]︀
𝐴(𝑝) + 𝑝21

}︀
,

8𝜋𝐹 (2,0)
q =

[︀
𝑞22 + 𝑞2 + 1

]︀
𝐴(𝑞) + 𝑞21 −Re

{︀[︀
𝑝22 + 𝑝2 − 1 − 2𝑖𝑝1

]︀
𝐴(𝑝) + 𝑝21

}︀
,

8𝜋𝐹 (1,1)
q =

[︀
𝑞21 + 𝑞2

]︀
𝐴(𝑞) + 𝑞22 −Re

{︀[︀
𝑝21 + 𝑝2

]︀
𝐴(𝑝) + 𝑝22

}︀
,

−8𝜋𝐹 (0,2;2,0)
q =

[︀
𝑞22 + 𝑞2 − 1

]︀
𝐴(𝑞) + 𝑞21 −Re

{︀[︀
𝑝22 + 𝑝2 + 1

]︀
𝐴(𝑝) + 𝑝21

}︀
,

−8𝜋𝐹 (0,2;1,1)
q = 𝑞1𝑞2(1 − 𝐴(𝑞)) −Re {[−𝑝1𝑝2 + 𝑖𝑝2]𝐴(𝑝) + 𝑝1𝑝2} ,

−8𝜋𝐹 (2,0;1,1)
q = 𝑞1𝑞2(𝐴(𝑞) − 1) −Re {[𝑝1𝑝2 + 𝑖𝑝2]𝐴(𝑝) − 𝑝1𝑝2} ,

with 𝐴(𝑞) = arcsh(𝑞)/𝑞
√︀

1 + 𝑞2 and p = (𝑞1 + 𝑖, 𝑞2). That together with (A.1) sums up the

answer for polarization operator.
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Asymptotics of Polarization operator I rewrite an expression separating different orders in

𝑞.

8𝜋𝑃 (q) = (1 − 4𝑞21)𝑞22
[︀
(𝐴(𝑞) − 1) − Re

{︀
𝑞2𝑝−2(𝐴(𝑝) − 1)

}︀]︀
−

− 4𝑞21𝑞
2
2(𝑞22 − 𝑞21) · 𝑞−1

1 Re
{︀
𝑖𝑞𝑝−2(𝐴(𝑝) − 1)

}︀
+

+
[︀
𝑞2𝐴(𝑞) − Re 𝑝2𝐴(𝑝)

]︀
+

+ [𝐴(𝑞) + Re𝐴(𝑝)] +

+ 4𝑞21𝑞
2
2 [𝐴(𝑞) − Re𝐴(𝑝)]−

− 2
(︀
𝑞21 − 𝑞22

)︀
Re 𝑖𝑝1𝐴(𝑝)−

− 4𝑞21𝑞
2
2 · (𝑞1𝑞2)

−1 Re 𝑖𝑝2𝐴(𝑝).

with 𝐴(𝑞) = arcsh(𝑞)/𝑞
√︀

1 + 𝑞2 and p = (𝑞1 + 𝑖, 𝑞2).

With the help of Mathematica software, I find

𝑃 (q) ∼ 3

16𝜋𝑞2
+

3

64𝜋𝑞4
− (3 − 2 cos 2𝜙)

ln 2𝑞

16𝜋𝑞4
+

cos 4𝜙− 32 cos 2𝜙

192𝜋𝑞4
+𝒪

(︂
1

𝑞4

)︂
, 𝑞 → ∞.

From here it follows that

𝐿1(q) =
1

4

(︂
2 + 𝑞

𝜕

𝜕𝑞

)︂
𝑃 (q) ∼ −1

4

9

32𝜋𝑞4
+ (3 − 2 cos 2𝜙)

ln 2𝑞

32𝜋𝑞4
+

44 cos 2𝜙− cos 4𝜙

4 × 96𝜋𝑞4
, 𝑞 → ∞

⟨𝐿1(q)⟩q̂ ∼ −9/4 + 3 ln 2𝑞

32𝜋𝑞4
.

Comment Earlier I’ve used the following expression for asymptotics of 𝐿𝛼.

⟨𝐿1(q)⟩q̂ ∼ 1

𝑞4

ˆ
𝑘2
1(𝑑k)

(𝑘4 + 𝑘2
1/𝑞

2)2

⟨
[k× q̂]4

(k− q̂)4

⟩
q̂

=

ˆ ∞

0

𝑑𝑘𝑓(𝑘)

2𝜋𝑘

⟨
𝑘2
1

(𝑘2 + 𝑘2
1/𝑞

2)2

⟩
k̂

=
1

𝑞4

ˆ ∞

0

𝑑𝑘

4𝜋𝑞2
𝑓(𝑘)

𝑘2(1/𝑞2 + 𝑘2)3/2
∼ −9/4 + 3 ln 2𝑞

32𝜋𝑞4
, 𝑞 → ∞.

Which somehow justifies validity of the used way to calculate asymptotics in the main text.

Small argument At 𝑞 ≪ 1 asymptotic of 𝑃 (q) is highly anisotropic.

𝑃 (q) ∼ 1

8

⎧⎨⎩ 1
𝜋
, 𝑞22 ≫ 𝑞1,

𝑞41|𝑞1|−1/2, 𝑞22 ≪ 𝑞1,

√︁
𝑞21 + 𝑞22 ≪ 1.
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