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Abstract

The present theoretical research addresses the problem of the subgap excitations detected
in the electromagnetic response of superconductors with strong microscopical disorder. Such
materials have recently attracted much attention as promising materials with a wide variety
of practical applications [1], ranging from single-photon detectors to qubits. The conditions
for absence of the aforementioned low-energy modes is a particularly important qualitative
question for all such applications and has not yet received a proper theoretical description.
In the present work we use the Anderson pseudospin model on a random regular graph
proposed in [1] to suggest a candidate for a physical mechanism behind the low-energy
excitations. The developed theoretical approach provides full access to statistics and spatial
structure of the order parameter in a strongly disordered superconductor away from the
superconducting transition as well as a comprehensive theoretical model for the structure
of phase fluctuations of the order parameter on top of the saddle-point configuration. The
results of our analysis are backed by numerical experiments and suggest within a certain
range of parameters that the phase fluctuations of the order parameter can indeed be found
at arbitrarily low frequencies with the global superconducting order still present in the
system.
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Part I

Introduction
1 Motivation: experimental data on low energy excitations in dirty

superconductors

1.1 From conventional superconductors...
Conventional superconductors with small concentration of non-magnetic impurities represent
a well-studied object [2], both theoretically and experimentally. Among a wide set of known
properties of such materials, there is a particularly interesting qualitative set that determines
the great importance of conventional superconductors:

• The presence of a transition temperature Tc, characterizing the disappearance of static
electrical resistance at T < Tc. The corresponding state of the material is called supercon-
ducting based on this feature.

• At temperatures well below the transition temperature T < Tc no absorption of electro-
magnetic radiation is observed at frequencies below a certain threshold frequency

ωthr =
2∆

~
∼ 4Tc

~
, (1)

where ∆ is a characteristic superconducting energy scale. This observation is an experi-
mental manifestation of a hard gap in the excitation spectrum of a superconductor.

• The energy scale ∆ also determines the gap in the local density of states and thus can also
be measured as a gap ∆run in a tunneling spectroscopy experiment, which is in perfect
agreement with what can be inferred from the electrodynamics response measurements.

Both theoretically [3] and experimentally [4] it was established that small concentrations of
non-magnetic impurities do not influence the above properties. While the parameter kF l remains
large—with kF being the Fermi momentum of a given material and l being the electron mean
free path for a given impurity concentration—the presence of impurities merely renormalizes
kinetic quantities and some response functions, preserving all thermodynamical properties, such
as the structure of the excitations spectrum described above. The previous statement is usually
referred to as the Anderson’s theorem.

1.2 ...to superconductors close to SIT
However, as evidenced by numerous experimental data [4, 5, 6], upon further increase of level of
disorder in the system, the qualitative picture mentioned above suffers noticeable changes:

• Despite being an explicitly thermodynamical quantity, the temperature of superconducting
transition acquires an excessively pronounced dependence on the concentration of impurities.
1 presents a snippet of experimental data demonstrating such a behavior.
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Figure 1: Experimental dependence of the temperature of the superconducting transition in
NbN films on non-magnetic disorder, characterized by dimensionless parameter kF l. The value
of kF l was inferred from the room temperate resistance. The data is quoted from [4].

• The materials demonstrate considerable absorption of electromagnetic radiation at frequen-
cies well below the superconducting scale of 2∆/~ as determined by tunneling spectroscopy,
i.e, ~ωthr � 2∆. Figure 2 showcases this phenomenon.

It is significant that the effects in question occur in macroscopically homogeneous samples,
with the characteristic scales of inhomogeneities being essentially microscopic:

• The work [4] describes disordered NbN films, where inhomogeneity arises from to Nb
vacancies in the crystal lattice.

• [6] presents observation of similar phenomena in films made of Aluminum nanogranules.
The microscopic inhomogeneities in such a material are explicitly determined by the
structure of aluminum granules with dimensions with typical sizes of order 4 nm separated
by an oxide film. In this case, the microscopic nature of the inhomogeneities is manifested
in the fact that a single granule, due to its small size, has too large level spacing to arrange
superconducting order.

The effect of changing the transition temperature Tc in macroscopically homogeneous contami-
nated samples has already received its theoretical description [7], and is qualitatively explained by
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Figure 2: Dependence of the real part of the conductivity on the frequency of external electro-
magnetic radiation in NbN films. The values of the conductivity are normalized to their values
in normal state. Relevant experimental data are presented by red dots, and the vertical green
line indicates the position of the superconducting gap ∆tun found by tunneling spectroscopy.
Left plot: relatively clean sample with kF l ≈ 8.37; right plot: dirty sample with kF l ≈ 1.74. In
both cases, the value of kF l was inferred from the room temperature resistance. Data quoted
from [4].

the influence of Anderson localization effects and phenomenon of Cooper pair preformation—we
will discuss these effects in more detail below. However, the same cannot be said about the
presence of low-energy excitations: there only exist some empirical theories that fail to explain
the microscopical nature of the observed phenomenon [4, 5].

1.3 Our aims
The ultimate goal of this research is to develop a quantitative theory of superconducting state in
strongly disordered superconductors. This comprises 2 main objectives:

• Describe the nontrivial spatial structure of the superconducting order parameter that
results from strong microscopical disorder.

• Suggest and demonstrate theoretically a physics mechanism capable of producing low
energy excitations in superconducting state.

The theoretical description will be based on the ideas developed in [7], and will also rely on the
ideas presented in [1] on the potential origin of the low energy excitations.

2 Structure of the Thesis
The paper is organized as follows:

• In Part II we discuss the general theoretical and empirical grounding of the present research.
Section 3 reviews important aspects of phenomenology available from experimental data
and previous theoretical findings on the topic and presents the main theoretical model
of Anderson pseudospins on a random regular graph to be used throughout the paper.
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Section 4 presents a concise review of main equations containing the relevant physics.
Finally, Section 5 describes some important mathematical properties of random regular
graphs that are going to be extensively used later.

• Part III contains an extensive study of the saddle-point equation, that describes the
superconducting order parameter. Section 6 introduces the saddle-point equation and
formulates the associated theoretical problem to be solved, discusses some classical limiting
cases and previous studies on the topic, and also it describes the numerical approach to
the problem of the saddle-point equation. Section 7 reviews some important approximate
solutions to the target problem, thus providing the reader with some valuable insights
on the structure of the solution. Finally, Section 8 introduces a framework for complete
description of the saddle-point problem and provides comparison with numerical study,
with excellent agreement in place.

• Part IV is devoted to the immediate topic of this research, as it studies the low-energy
fluctuations of the order parameter on top of the saddle-point solution studied in Part III.
Within Sections 9-10 the reader can find the formulation of the associated problem and
the description of the numerical approach to the problem. Section 11 conducts a study of
the simplified version of the problem that was previously investigated in most literature on
the topic. In Section 12 the approximate approach of Section 11 is developed into a full
theory, that is then compared with numerical experiments.

• Finally, Part V briefly concludes the main achievements and physical insights of the pre-
sented research and suggests some key investigative directions for the developed theoretical
approach.

Part II

Theoretical model: Anderson pseudospins on a
random regular graph
Our main aim in the current part will be to clarify a great deal of simplification separating a
truly microscopic model of a superconductor close to superconductor-insulator transition (SIT)
and a relatively naive model eventually used in the present study. At the end of the day, there
exists only a fairly qualitative set of arguments leading to an analytically tractable instance
of the theory. Therefore, below we focus on interpreting the available phenomenological data
(both experimental and theoretical) in favor of the proposed simplifications. Nonetheless, to a
great extent, the resulting model can only claim qualitative agreement with any experimental
verification, and a first-principles model is yet to be developed based on our findings.

In Section 3 the reader can find relevant empirical considerations leading to a simple model
of Anderson pseudospins on a random regular graph. The model is, in turn, formulated in
Section 4. Within the same section presented there are expressions for standard functional
techniques applied to our model. Finally, Section 5 reviews some specific properties of random
regular graphs that are of high importance for further analytical consideration.
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3 Relevant phenomenology of superconductors close to SIT
The microscopic description of an s-type superconducting state typically involves BCS-like
Hamiltonian of the form:

HBCS =
∑
jσ

ξja
†
jσajσ −

λ

ν0

∑
ijkl

Vijkla
†
i↑a
†
j↓ak↓al↑, (2)

where indices enumerate eigenstates of a single-particle electron Hamiltonian with energy ξj
(a generalization of momentum operator eigenstates with energy p2/2m− µ in the traditional
theory of clean superconductors); a†jσ and ajσ are creation and annihilation operators for a
fermion in state j and spin σ; ν0 is the single-particle density of states at the Fermi level; λ is a
dimensionless Cooper constant that characterizes the attraction in the Cooper channel; and Vijkl
are the matrix elements of the attraction in the eigenbasis of the single-particle Hamiltonian,
also typically characterized by a certain high energy cutoff ε0 modeled as:

Vijkl ∼ θ (ε0 − |ξi − ξk|) θ (ε0 − |ξj − ξl|) + θ (ε0 − |ξj − ξk|) θ (ε0 − |ξi − ξl|) , (3)

where θ is the Heaviside θ-function (or any other reasonable cutoff function, for that matter).
The scale ε0 plays a role of a generalized Debye frequency that limits the maximum energy
exchange. Optionally, one can also take into account Hartree-type terms.

One is then interested in the case when the single-particle Hamiltonian features Anderson
localization phenomena, such as localized wave-functions with complex structure and nontrivial
level statistics. Although the general understanding of the model (2) for this situations is, to say
the least, far from complete, a lot of qualitative and, in some cases, quantitative knowledge is
obtained in [7]. In what follows we will rely on some qualitative findings of that paper.

Now we are going to discuss some phenomenological facts that allow us to qualitatively justify
a simplified version of the BCS Hamiltonian (2). Unfortunately, there is no rigorous derivation
in place, but rather a set of compelling arguments that might later be checked by successive
relaxation of the suggested approximations. To a great extent, we rely on a purely qualitative
picture extracted from various experimental data on the topic.

3.1 Preformation of Cooper pairs
In a number of studies [8, 9, 10] for the most of the materials of our interest it was observed
that prior to an establishment of a global superconducting order one observes formation of local
superconducting structures. These structures are not capable of creating global superconducting
phase coherence, while, nevertheless, they cause an opening of a hard gap in single-particle
spectrum. A snippet of experimental results demonstrating this behavior is illustrated and
commented on Figure 3.
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Figure 3: Color map of the second derivative of conductance −d2G/dV 2 (arbitrary units) versus
bias voltage V and reduced temperature T/Tc, as obtained by means of Andreev spectroscopy
in superconducting films of amorphous indium oxide InO, with Tc extracted from resistance
measurements. The plot is quoted from [8]. One can observe two coherence peaks corresponding
to two pairs of vertical bright lines. The narrow set of lines merges at T = Tc, indicating the
superconducting transition, while the broad one persists even at higher temperatures, albeit
experiencing smearing.

The phenomenon is now referred to as “Cooper pair preformation” and has already obtained
theoretical explanation [7, sec. 2.3 ]. For the current research it is only important that even at
temperatures well above the temperature of the true superconducting transition Tc electrons
are already paired, and the typical energy ∆p required to break these pairs greatly exceeds any
typical superconducting scales.

Specifically for our model it is also safe to say [7, sec. 4.3] that each single-particle state is
either populated with two electrons with opposite spins or contains no electrons at all. This can
be expressed as simplifications to the structure of the matrix elements of the Cooper interaction,
where we can now keep only the terms diagonal in both pairs of indices:

Vijkl = Viikk · δijδkl (4)

12



3.2 Single-particle localization of electron states
For most of the samples that demonstrate the presence of low-energy excitations we are interested
in, it is also true that at temperatures above the superconducting transition threshold there
exists insulating activation behavior of the resistance R (T ) ∝ exp {T/T0}, which only restores
to conventional variable-range hopping behavior at higher temperatures [7, sec. 1.2 and ref.
therein]. Together with other experimental facts, such as negative magnetoresistance, this serves
as compelling evidence for well developed Anderson localization in those materials. Out of all
the effects known to take place in Anderson insulators we will exploit only several qualitative
aspects that allow us to simplify the model.

3.2.1 Large localization volume

Anderson localization implies that at the relevant energy band close to Fermi level every
eigenfunction of the single-particle Hamiltonian is substantially present only within a finite
localization volume Vloc concentrated around a particular point in space, as opposed to the regime
of diffusive transport when eigenfunctions are extended over the whole system. Conversely, the
very presence of superconductivity for a given material implies that the level spacing δL induced
by a finite localization volume is much smaller than the typical scale ε0 of the Cooper attraction.
Because δL ∼ V −Dloc ,where D is the dimensionality of the problem, this consideration bounds
the localization volume from below [7, sec. 1.1.3]. Therefore one might expect a finite range of
parameters where the localization volume is ample to provide substantial overlap with a large
number of other localized eigenfunctions, i.e., nVloc � 1, where n is the electron concentration
close to the Fermi level. We underline, nevertheless, that such a condition is mostly a compelling
assumption.

3.2.2 Crude model for matrix elements of Cooper interaction

As a yet another manifestation of the complex physics of Anderson localization, single-particle
eigenfunctions are known to demonstrate a nontrivial distribution of amplitudes in real space.
In this work we are not going to dive into this rather complicated topic and instead employ a
fairly crude approximation for the matrix elements of a local interaction (which conventional
Cooper attraction surely is). We will assume that such a perturbation arranges a constant
matrix element from a given eigenstate to a finite fraction k ∈ [0, 1] of all other ∼ nVloc. � 1
eigenstates substantially present within the localization volume Vloc. To simplify things even
further, we will assume that the total number of eigenstates to which a given eigenstate can
transit is identical for all eigenstates and equal to some large number K = knVloc � 1.

An attentive reader can immediately notice that such an approach is completely ignorant
of the high energy cutoff ε0 of the Cooper channel attraction. Additionally, the introduced
number K fluctuates across eigenvalues and its statistics and correlations are a subject for a
separate study with abundant phenomenology, as it was shown in [7]. Unfortunately these
are the approximations that we have to adopt in order to make the resulting model tractable
analytically. One qualitative argument that suggests qualitative validity of our approach is the
following: the choice of a particular structure of the Cooper channel attraction governs the
magnitude of superconducting scales, and once they are set, all higher energy scales are expected
to become completely irrelevant. As a result, altering the approximation of the matrix elements
in (2) leads only to a different value of the overall superconducting scale, while preserving all
conclusions for smaller energy scales. Within our analysis we observe that this is indeed the
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case: the mathematical framework appears to be completely insensitive to all such details once
the superconducting scale is set.

The full situation is sketched on Figure 4.

Localization volume

Chosen site

Energy interval 

with efficient 

Cooper interaction

Energy 

Coordinate

Inefficient Cooper 

interaction

Efficient Cooper 

interaction

Small matrix elements 

for a local interaction

Large matrix elements 

for a local interaction

Figure 4: A chart for simplified matrix elements of the Cooper attractive interaction, illustrated
in a 1D setting for clarity. Sites are arranged in a chain and are denoted by bars illustrating the
onsite energy level ξj for each site. Let us consider a particular site highlighted in orange. The
wave function of the eigenstate corresponding to this site occupies a large number of neighboring
sites enclosed in the localization volume (orange rectangle). However, due to a fractal structure
of the single-particle eigenfunction within the localization volume, a local interaction can only
arrange hops to a random subset of all neighbors, that are denoted by opaque filling, while
interaction with other sites (transparent filling) is weak. Finally, Cooper interaction itself is only
efficient within a finite interval of width 2ε0 of energies relative to the onsite energy. Strictly
speaking, only the green bars that fall within the corresponding energy band (denoted by dashed
lines) can interact with the chosen orange site. The total neighbors that interact with the given
site are opaque green. Yet in our model we neglect the presence of a finite Cooper interaction
cutoff, so that in our model the orange site interacts with all neighbors with opaque filling,
regardless of color.

3.3 Irrelevance of Coulomb repulsion
The last bit of phenomenology to be discussed is the role of Coulomb repulsion in the formation
of superconducting behavior in our problem. Essentially, our further consideration completely ig-
nores Coulomb repulsion occurring between electrons in the system. There are several qualitative
arguments in favor of such an approximation:

• Most of the materials in question possess a relatively large dielectric constant [7], which
suggests strong screening of Coulomb repulsion by electrons deep under the Fermi surface.
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• In addition to a large dielectric constant, the very existence of SC in materials with
such a large resistance is indicative of some intrinsic mechanism that suppresses Coulomb
repulsion. Indeed, for a thick film of a regular disordered metal, large sheet resistance
would imply such a strong disorder that the resulting effect of Coulomb repulsion would
inevitably have driven the temperature of the superconducting transition down to zero.
Yet, the experimentally detected superconductivity in disordered thick films suggests
that the Coulomb repulsion is somehow suppressed at short scales, thus allowing the
superconducting order to be established1.

• Finally, strong inhomogeneity of the order parameter induced by the fractal structure of
localized electron wavefunctions is expected to weaken the Coulomb interaction at large
scales. Although no rigorous arguments can be presented to support this claim, such a
simplification seems to be a reasonable initial approximation.

As a result, we will henceforth ignore the existence of Coulomb interaction between electrons.

4 Hamiltonian of Anderson pseudospins on a random regular graph
Based on a more comprehensive consideration of the phenomenology presented above, in [12]
it was proposed to model the low-energy physics of highly disordered superconductors with a
simple Hamiltonian that is assumed to capture main qualitative physics at low energies.

4.1 Hamiltonian
Guided by the phenomenology of the previous section, we adopt the following qualitative
simplifications to the model:

• At low temperatures of interest, electrons are all paired in Cooper pairs with zero total spin,
so that the dynamics of the system consist of Cooper pair hops, while the process of Cooper
pair breaking is assumed to require energies much larger than typical superconducting
energy scales, and thus it is neglected.

• Cooper attraction between electrons is described by the interaction between the eigenstates
of the single-particle Hamiltonian and characterized by a binary distribution of matrix
elements: between two selected eigenstates the attraction either does not occur at all
or has a constant matrix element that we denote by g. In what follows we traditionally
assume the Cooper attraction to be a weak process, i.e., g � 1. Additionally, we note that
the energy cutoff in Cooper channels is downright ignored. We assume that taking into
account energy dependence of Cooper attraction will only alter the overall energy scale
of superconducting correlations, while preserving major qualitative results. Our further
analysis is supportive of that claim.

1For instance, [10] uses disordered InO films with the thickness of 30 nanometers, which is equivalent to
approximately 102 atomic layers. For all intents and purposes this can be considered to be a fully 3D system. On
the other hand, the sheet resistance of these films is measured to be in the range of several kΩ per square, which
evaluates to 3D resistivity of order ρ ∼ 101mΩ · cm, being well beyond the range of ∼ 100mΩ · cm where the
superconductivity is still observed for typical disordered metals [11, see Fig. 1].
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• Energies ξj of free Cooper pairs are independent random variables with a broad distribution
of typical width W which is assumed to be larger than all superconducting scales in the
problem. The scale W sets the typical value of the density of states in normal state at the
Fermi level, so that it is quite natural to take it as a default energy unit.

• Each Cooper pair is able to hop to a fixed large number of states Z = K + 1� 1, all of
which are chosen independently at random. In other words, the hopping matrix represents
an instance of random K+1-regular graph with N vertices, with each vertex having exactly
K + 1 neighbors. Strictly speaking, such a design choice is fairly artificial and is applied
only to render the resulting model solvable. In particular, our analytical solution relies
on the absence of short loops in random regular graphs, as discussed later in Section 5,
while the real system is not by any means protected from presence of short loops. However,
the analysis we will present as the main part of this work suggests that upon fixing the
typical superconducting energy scales the exact structure of the matrix elements is mostly
irrelevant, so that the proposed simple approximation is likely to reproduce the actual
physics.

• Finally, Coulomb repulsion is completely neglected. As already discussed before, the
validity of such an approximation is an open question, yet it seems to be an appropriate
design choice to start with.

As a result, the Hamiltonian reads:

Hmodel =
∑
j

ξj ·
∑
σ

a†jσajσ −
2g

K

∑
〈i,j〉

(
a†i↑a

†
i↓aj↓aj↑ + h.c.

)
, (5)

where i enumerates vertices of a random K + 1-regular graph with a thermodynamically large
total number of vertices N ; ξj are random energies of the Cooper pair states, distributed
independently with a some distribution of characteristic width W ∼ 1; g plays a role of the
dimensionless Cooper constant; and the summation in the second term is performed over all
pairs 〈i, j〉 that are assumed to be connected by interaction, i.e., in the given realization of a
random regular graph.

It is also convenient to rewrite the Hamiltonian in terms of Anderson pseudospins [13]:

2szj =
∑
σ

a†jaj − 1, s+
j = sx + isy := a†j↑a

†
j↓, s−j = sx − isy = aj↓aj↑, (6)

which then appear to form a proper spin 1/2 algebra:[
sαi , s

β
j

]
= δij · εαβγsγj , sαi s

α
i = 3/4, (7)

where α, β, γ ∈ {x, y, z} with Einstein summation convention for Greek indices implied, and
εαβγ is the fully antisymmetric tensor. In these terms, the Hamiltonian (5) can be rewritten as
the so called pseudospin Hamiltonian [13]:

HPS =
∑
j

2ξj · szj −
2g

K

∑
〈i,j〉

(
s+
i s
−
j + h.c.

)
(8)

At this point it is worth mentioning some prior works within the model (5) or its equivalent
(8). The work [12] presents a comprehensive study of the mean-field approximation as well
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as its refined version. Moving closer to the topic of this research, [14] uses the model (8) to
describe paraconductivity contributions to the insulating phase of the model (i.e. above the
superconducting transition), and [15] discusses ultrasound attenuation caused by order parameter
fluctuations. Finally, the paper [1] draws some predictions on the spectrum of transverse
fluctuations of the order parameter, which is the topic of this research. The aforementioned
predictions are discussed in the corresponding Part IV.

4.2 Representation in terms of a functional integral
The field theory approach is typically used to establish connections to the conventional phe-
nomenology of superconductors [16, ch. 1]. However, our case presents a complication in a form
of preformed Cooper pairs, thus requiring a deviation from the standard approach in terms of a
fermionic functional integral [17]. Namely, we are going to use the semionic functional integral
[18] as a way to deal with nontrivial pseudospin algebra (7). A concise introduction to this
approach applied to the pseudospin Hamiltonian (8) is presented below, while a more detailed
review is done in the previous iteration of this research [19].

4.2.1 Semionic functional integral

The semionic approach effectively establishes correspondence between thermal equilibrium
partition functions and generating functionals for the pseudospin Hamiltonian (8) and the
following fermionic Hamiltonian with imaginary chemical potential:

Hsem =
∑
j

2ξj · c†jαszαβcjβ −
2g

K

∑
〈i,j〉

(
s+
αβs
−
ρσ · c

†
iαciβc

†
jρcjσ + h.c.

)
(9)

βµ = −iπ
2

(10)

where c†, c are fermionic creation and annihilation operators that operate on a set of single-
particle states of true electrons, but endowed with an additional spinor structure with two
components enumerated by Greek indices α ∈ {1, 2}, and spin 1/2 matrices sµ now operate on
this auxiliary vector space. For convenience we will further denote

Jij :=
2g

K
Aij, (11)

where Aij is the adjacency matrix of the base random regular graph. This also allows us to
rewrite the sums of symmetric functions over edges as:

2g

K

∑
〈i,j〉

[f (i, j) + f (j, i)] =
∑
i,j

Jij · f (i, j) (12)

The aforementioned imaginary chemical potential is understood as a formal weight in the
grand partition function:

Z = Tr {exp {−β (Hsem + µNsem)}} , (13)

Nsem =
∑
jα

c†iαcjα, (14)
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where the trace is now taken over all states of usual spinless fermions. The key statement is
that all thermodynamical averages with the original pseudospin Hamiltonian (8) are obtained by
formal replacement of each spin operator with its semionic representation:

sµi → c†iαs
µ
αβciβ (15)

and then evaluating the resulting partition functions as those for usual spinless fermions with
Hamiltonian (9) and chemical potential (10). In particular, the latter will reveal itself in the
behavior of the Matsubara frequencies should one employ the corresponding representation [18]:

ωn = πT

(
2n+ 1− 1

2

)
(16)

As a result, one can use the standard fermionic functional integral and employ the whole variety
of field theory methods. A self-contained discussion of fermionic functional integration technique
can be found in [17, ch. 4], while here we will only present the results for the partition function
in terms of an imaginary time functional integral:

S
[
ψ, ψ

]
=

βˆ

0

dτ ·
∑
i

ψ
α

i (∂τ − µ)ψαi −Hsem
(
ψ, ψ

)
, (17)

Hsem
(
ψ, ψ

)
=
∑
j

2ξj · ψ
α

j s
z
αβψ

β
j −

1

4

∑
ij

Jij
(
sxαβs

x
ρσ + syαβs

y
ρσ

)
ψ
α

i ψ
β
i ψ

ρ

jψ
σ
j , (18)

Z =

ˆ
D
[
ψ, ψ

]
ψ (0) = −ψ (β)

ψ (0) = −ψ (β)

exp
{
−S

[
ψ, ψ

]}
, (19)

where τ ∈ [0, β] is the imaginary time; S is the action of the functional integration, and the
integration is done over standard fermionic fields, i.e., over all τ -dependent Grassman anti-
commuting fields ψ, ψ with odd boundary conditions. Each field has two components with upper
indices α ∈ {1, 2} on each site i of the graph, with spin matrices sα, α ∈ {x, y, z} acting in
the space of these components. All sorts of observables are then obtained either by explicitly
plugging the corresponding function of ψ fields in the pre-exponent of (19), or by method of
generating functionals, i.e., by adding external source terms to the action (17) and the subsequent
differentiating w.r.t source fields. For further details, one can consult [17, ch. 5] or [19, sec. 2.2].

4.2.2 Functional integral for the order parameter field

Moving further with the functional integral formalism, one can decouple the interaction term
in (19) by means of Hubbard-Stratanovich integral and then switch to the functional integral
of the order parameter field. Without going into further detail, otherwise presented in [19, sec.
2.2], the result then reads

S [∆] =

βˆ

0

dτ ·
∑
ij

J−1
ij ∆α

i (τ) ∆β
j (τ) + Ssem [∆] , (20)
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exp {−Ssem [∆]}

=

ˆ
D
[
ψ, ψ

]
ψ (0) = −ψ (β)

ψ (0) = −ψ (β)

exp

−
βˆ

0

dτ ·

[∑
i

ψ
α

i (∂τ − µ)ψαi −
∑
j

ψ
α

j

(
2ξjs

z
αβ − 2∆γ

j (τ) sγαβ
)
ψβj

]

≡ Tr

[
Tτ exp

{
−β
∑
j

(
2ξjs

z − 2∆γ
j (τ) · sγ

)}]
, (21)

Z =

ˆ
D∆

∆(0)=∆(β)

exp {−S [∆]} , (22)

where the field ∆ is now a bosonic field with symmetric boundary conditions and two components
indexed by γ ∈ {x, y}, so that the summation over γ in (21) is done only over γ = x, y. Note
that this time the indices γ are contracted with the upper indices of spin operators, i.e., ∆ is
not acted upon by spin operators, but rather serves as a conjugated field. The term Ssem in the
bosonic action (20) results from integrating out the semionic degrees of freedom, as expressed
in the second line of (21). It can also be written as the time-ordered exponent Tτ exp for the
original spin variables interacting now only with the dynamic order parameter field, as done in
the last line of (21). There is also a technical issue with the inverse of J which we will discuss in
Section 5.

Starting from this functional representation, one can derive all classical results for supercon-
ductivity and draw corresponding connections to textbook physics [16, ch. 1]. For instance, the
vector field ∆ is nothing but the order parameter field with components representing real and
imaginary part, respectively. The saddle-point of the functional integral (22) corresponds to the
self-consistency equation. The value of the semionic Green function is given by a counterpart of
Gor’kov’s equations. By expanding quadratic fluctuations of the order parameter field around its
saddle-point value one can analyze fluctuations corrections. Adding quadratic terms in expansion
of action to the analysis, one can derive the Ginzburg-Landau functional for the problem.

4.2.3 Manifestations of spin algebra in the symmetries of the model

The functional integral (22) carries all information about the original spin algebra (7) in the
form of a gauge transformation. Alternatively, one can think of the gauge transformation of the
integration fields ∆ that can be compensated either by the integration measure or by redefinition
of various objects in the theory. Below we briefly review the structure of these transformations
and discuss their physical meaning. A derivation of these transformations is a more of a technical
task and will be presented elsewhere.

• Commutation relations [s±, sz] = ∓s± lead to phase gauge transformations of the J matrix:

J−1
ij 7→ exp {+2iσyαi} J−1

ij exp {−2iσyαj} ⇐⇒ Jij 7→ exp {+2iσyαi} Jij exp {−2iσyαj} ,
(23)

where α is the scalar gauge field parameterizing the transformation. The presence of σy
matrix in the definition of the transformation means that the resulting matrix starts to
act nontrivially in the space of the order parameter.
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• Adding imaginary time dependence to the generating field α allows one to carry out gauge
transforms of ξ fields as well:

ξi 7→ ξi − 2iα′i (τ) (24)

• Because we are dealing with spin 1/2 operators, each of the 3 identities [sα]2 = 1/4, α ∈
{x, y, z} reflect themselves as a yet another gauge transformation of the J matrix:

Jij 7→ Jij + (φi · 1 + ηiσ
z + iθiσ

y) δij, (25)

where θ, φ, η are the 3 scalar fields generating the transformation, and matrices 1, σz, σy

act in the subspace of order parameter components. This transformation leads to a change
in action

δS =
1

2

ˆ
dτ ·

∑
i

φi, (26)

which does not contain dynamics fields being integrated over and thus is absent in any
physical answers.

There exist nontrivial commutation relations between these symmetries, that are intimately
connected with the structure of the original spin algebra (7), but this is a topic for a separate
discussion. The discussed symmetries pave the way for deriving physical observables, such as
current.

4.3 Description of the current-current response function
We are now in position to discuss how our somewhat artificial model maps to the physical world.

4.3.1 Lost information about the real space structure

One immediate consequence of our simplification is that the base random regular graph that
governs all topology of the model bears no information about structure or mutual disposition of
the electron states in real space. Therefore, any result calculated within the simple Hamiltonian
8 should be supplied with some information about the structure in real space. This presents a
qualitative complication to the interpretation of the analytical results of this model, and we are
yet to come up with a proper scheme for calculating real space quantities.

4.3.2 Nontrivial physical observables: current operators

As it always happens in field theory, purely from phase gauge symmetry one can infer the full
form of the current and charge operators, that are perfectly consistent with what one would
intuitively expect from the model. The complete derivation of the current and charge operators
will be presented elsewhere, while here we present a physics way of understanding the key
properties of the current operator.

Within our model, the process of charge transfer is realized by hops of Cooper pairs from a
given site to one of its nearest neighbors. One can then easily restore the charge operator

Qi = −e ·
∑
σ

a†iσaiσ 7→ −e · (1 + 2szi ) (27)

where the second expression represents the corresponding operator in pseudospin representation.
The current flow is characterized by the direction of hopping and the rate at which such processes
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occur along each oriented edge of the base graph. The orientation is required, as one obviously
expects the current Ii→j from site i to a neighboring site j to be equal to the opposite of current
Ij→i from j to i, i.e.,

Ii→j = −Ij→i (28)

Therefore, the current in the system is described by a function of the oriented edges of the graph,
i.e., it assigns a value to each oriented edge of the graph and has the antisymmetry property
(28). Alternatively, current can be regarded as an antisymmetric matrix in the site space that
has nonzero entries only when the sites i and j are connected by an edge, i.e.,

Ii→j ∝ ±Aij (29)

where A is the adjacency matrix of the graph.
This answer hints at the analogy of traditional vector fields: what was a geometrical 1-form in

standard 3D electrodynamics becomes an antisymmetric matrix in a discrete setup. In particular,
this is true about the vector potential A in the system, which in our problem also takes the form
of an antisymmetric matrix. It can be shown in a more rigorous manner, that the electrodynamic
potentials A and Φ (scalar electrostatic potential, which is now represented by a scalar function
on the graph vertices) can be introduced to the problem in a standard way, safe for the imaginary
time formulation:

δS [δA, δΦ] =

ˆ
dτ · 1

2

∑
i

∑
j∈∂i

δAi→j · Ii→j −
ˆ
dτ ·

∑
i

δΦiQi (30)

Moving further, one can show that the gauge transformations are intimately related to the
current flow and allow one to restore the form of the current operator:

Ii→j = (−2e) · 2mα
i · (iσy)αβ Jij ·m

β
j , m

α =
∑
n

(
J−1
)
in

∆α
n (31)

written here for the case without external vector potential. Note that it reproduces both the
antisymmetry and locality properties mentioned before, in return for being heavily non-local
w.r.t the order parameter, as the latter enter the expression via a field m involving nonlocal
transformation J−1. A special case of this equation when J is assumed to retain some residual
structure of the real space is discussed in [14].

Going from here, one can derive all standard physical objects, such as the current-current
response function describing the conductivity tensor, which is now going to represent a matrix in
the space of all edges of the graph, thus once again demonstrating the enormous complications
arising from our ignorance of real space structure. The resulting expressions are quite cumbersome,
while here we only discuss the qualitative structure that is important for understanding the
results of our research from the physical point of view.

Note also that one still has to restore real space geometry in an independent way, as already
discussed before. For instance, out of K � 1 components of current Iij on each site there are
only D ∼ 1 independent ones (D is the dimensionality of the initial problem).

The expression for the current allows one to calculate physically observable current-current
response function χ, which in this system described the dynamic response of current along a
directed edge i→ j to application of vector-potential along a directed edge m→ n:

χ (i→ j, τ |m→ n, τ ′) := 〈Tτ {Ii→j (τ) · Im→n (τ ′)}〉

= (−2e)2 · [2iσyJ ]αβij [2iσyJ ]µνmn ·
〈
Tτ

{
mα
i (τ)mβ

j (τ + 0)mµ
m (τ ′)mν

n (τ ′ + 0)
}〉

, (32)
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where Tτ stands for imaginary time ordering, and m fields are the fields introduced in (31).
Outside the region of strong dynamical fluctuations of the order parameter, one can expand

the four-point correlator using the Wick’s theorem and obtain that the time-dependence of the
response function is expressed via that of the 2-point correlator of fluctuations of the order
parameter:

Gαβ
ij (τ, τ ′) :=

〈〈
∆α
i (τ) ·∆β

j (τ ′)
〉〉

(33)

The full expression for χ after applying the Wick’s theorem contains two types of contributions:

• product of two correlators (33), that take the form of a convolution over Matsubara
frequencies in Fourier space:

χ1 (iωn) ∝ [σy]αβ [iσy]µν · T
∑
εm

[
Gαµ (iωn + iεm)Gβν (iεm)

]
, (34)

where we omit space indices and the corresponding nonlocal prefactor for brevity. This
contribution is showed to produce paraconductivity in normal state [14] above the super-
conducting transition temperature.

• a term linear in the correlators of the fluctuations and the average (time-independent)
value of the order parameter field:

χ2 (iωn) ∝ [iσy]αβ [iσy]µν · 〈∆α〉 〈∆µ〉Gβν (iωn) , (35)

where we have again dropped the spatial indices (reflecting them inflates to 4 terms of the
form above). The most important observation is that only the fluctuations perpendicular
to the direction of the order parameter contribute to the current response, which is secured
by the iσy term.

From this result we can infer that the frequency dependence of the response function is completely
governed by the fluctuations of the order parameter. In particular, real part of physical
conductivity at a given frequency ω, responsible for dissipation, is nonzero when the imaginary
part of the corresponding matrix element of G is nonzero, which, in turn is only possible when the
correlator G has eigenmodes on the given frequency. This understanding is the main qualitative
motivation to analyze the structure of transverse fluctuations of the order parameter.

Although we are not even anywhere near a position to claim this as a quantitative corre-
spondence between physical quantities, our analysis indicates that the correlator of transverse
fluctuations does indeed contain excitations with energy significantly lower than the super-
conducting gap, which then might find their way to show up in the electromagnetic response
measurements.

5 Properties of Random Regular Graphs
In this section we will review some of the most important properties of random regular graphs.
Later we will find these properties to be of great use on our way to analytical results.
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5.1 Local tree-like structure and translational invariance
The first property to discuss is the celebrated local tree-like structure of the graph. Informally,
it can be stated as following:

Physical Principle. Any quantity characterized as containing a finite spatial scale d
cannot discriminate between a random K + 1-regular graph of size N � Kd+1 and
an infinite Bethe lattice, i.e., a tree graph with constant number of descendants equal
to K + 1 for the root vertex and K for all other sites.

The phrase “containing a finite spatial scale” describes properties that due to some physical
mechanisms are only sensitive to a finite local subset of the graph, i.e., are characterized by
effects that decay with distance fast enough. To this class one can attribute the order parameter
field itself, as it will be demonstrated later, as well as practically any dynamic quantities probed
at a finite frequency that sets the decay scale [20].

Speaking formally, the following theorem holds [21]:

Theorem. Let R (N,K) be the equiprobable ensemble of all random K + 1-regular
graphs on N vertices and let nl (G) be the number of cycles of length l ∈ N, l ≥ 2
in a given graph G. Then nl (G) has a well defined average over ensemble R (N,K)
with the following behavior in the thermodynamical limit:

〈nl (G)〉G∈R(N,K) :=
1

|R (N,K)|
∑

G∈R(N,K)

nl (G) =
K l

2l
(1 + o (1)) , N →∞ (36)

The Physical Principle stated above then follows from this statement by noting that the total
number of sites containing all cycles of length l is at most l · nl and thus approaches a finite
value as N approaches infinity. As a result, the probability of a given site—or a finite subset
of sites, for that matter—to be present in a cycle of any given length eventually vanishes in
the thermodynamical limit. Thus any quantity that does not track information beyond a finite
distance on a graph will eventually observe only a loopless fragment of Bethe lattice.

Regardless of the formulation one prefers, the idea of local tree-like structure also provides a
natural scale of finite size effects in the system resting on presence of large cycles. Namely, one
expects the size of the graph to influence the physical observables when it becomes comparable
to Nf ∼ K2d , where d is the typical range of correlations of the quantity in question. This
result can be demonstrated by the following qualitative argument. Assuming the local tree-like
structure to take place, one conducts breadth-first search2 on a graph starting from a given site
i0. As long as search depth remains shallow, the total number of discovered sites is negligible
compared to the system size, so that the probability to hit an already discovered site is negligible,
because neighbors are chosen almost at random at each step. Therefore, each new level d of
depth will initially reveal a new set of sites of total count (K + 1) ·Kd−1 per level. However, the
total number of discovered sites grows exponentially with depth d, so that at a depth of order
dN ∼ lnN/ lnK one will inevitably cover all sites of the graph, meaning that there is a path
from the starting site to any other site with length ∼ dN . Repeating the breadth-first search
from any of the sites discovered at the latest stages is likely to provide a yet another path to
the original site i0 of the same length ∼ dN . Therefore, after this procedure one is left with a

2Breadth-first search is a process of traversing vertices of a graph. It starts from a chosen node and explores
all neighbors in the “closest first” order.
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cycle of total length ∼ 2dN with probability close to 1. Albeit being nowhere near rigorous, this
consideration is still quite useful to understand the results that are about to be presented below.

Another important property that should be mentioned as a consequence of tree-like structure
is the translational invariance. This property manifests itself in the independence of local physical
properties from the absolute position in a large random regular graph. The existence of this
property on an RRG follows directly from the fact that it is trivially present on an infinite Bethe
lattice, while any local quantity cannot differentiate between the 2 structures.

5.2 Spectral expansion of operators on a graph
There is a good portion of prior knowledge about the spectral properties of random regular
graphs. The basic intuition behind all of the results above is intimately related to the local
tree-like structure of RRGs, yet we will omit the corresponding discussion for now and go on
with merely postulating some important theoretical results.

In what follows, we will use a concept of functions of matrices, although we will not dive
deep into the corresponding branch of measure theory. For an analytical function f , one can
define the value of a function f on a matrix A as a convergent series

f (A) =
∞∑
k=0

f (k) (0)

k!
Ak (37)

extending the definition as necessary for other types of functions.

5.2.1 General structure of the spectrum

The spectrum of adjacency matrix A of an RRG consists of a continuous spectrum in the interval
λ ∈

[
−2
√
K, 2
√
K
]
and a solitary eigenvalue + (K + 1). Interestingly enough, the situation is

slightly different on an infinite Bethe lattice, where there also exists another solitary eigenvalue
− (K + 1). Qualitatively this can be understood as a consequence of an inevitable existence of
large loops in any finite random regular graph, as opposed to a purely loopless structure of a
Bethe lattice.

5.2.2 Density of states

The reader might also be familiar with the result by McKay [21] that describes the density of
eigenvalues of the adjacency matrix in the thermodynamical limit:

ρ0 (E) =

〈
1

N

∑
λ

δ (E − λ)

〉
R(N,K)

= θ
(

2
√
K − |E|

)
· K + 1

2π
·
√
E2 − 4K

(K + 1)2 − E2
, (38)

where the summation is done over all eigenvalues of a random regular graph, and the average
is taken over the ensemble of all RRGs of a given size. Upon a proper normalization of the
form E = ε

√
2K, one recognizes the large K limit of this expression to be the celebrated

Wigner-Dyson semicircle. Additionally, knowledge of the density of states allows one to calculate
traces of arbitrary matrix functions of the adjacency matrix, including powers of A. The latter
are known to deliver the number of closed walks on a graph, so that one can reproduce the result
(36) about the number of cycles.
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At this point it becomes clear why one should exercise carefulness while using the inverse
of A. Indeed, nonzero density of states at zero eigenvalue suggests that a large graph might
have zero eigenvalue rendering its adjacency matrix degenerate. However, the existence of zero
eigenvalue is not protected by any kind of symmetry and thus can occur in any finite RRG only
by accident, with the majority of RRGs of the given size having eigenvalues close to but no equal
to zero (as physicists, we simply checked this claim numerically, being unaware of any rigorous
arguments on the topic). In other words, in the thermodynamical limit the set of all RRGs with
degenerate adjacency matrix has measure zero, if it is not empty at all. Because we expect any
physical answers to be completely insensitive to configurations of probability zero, it is safe to
assume that despite having nonzero density of states at zero eigenvalue, the adjacency matrix of
an RRG is still invertible. Mathematically speaking, it means that one expects no divergences
to occur near zero eigenvalue for any spectral integrals expressing physical quantities.

5.2.3 Green function

Let us consider the Green function of the graph defined as

G (z) := (z − A)−1 , z ∈ C, (39)

where A is the adjacency matrix of the graph. By definition, a solution to all sorts of diffusion
problems on a graph are expressed via the Fourier image of the Green function over its spectral
variable z. Therefore, in the limit of infinite system size one expects the matrix elements Gij (z)
of the Green function between the two sites i and j to be dependent only on the distance
d = |i− j| between the sites. As it is shown in [22], the matrix elements Gij for a random regular
graph demonstrate a well-defined limit as the total number of sites N approaches infinity:

Gd (z) =
2

πKd/2−1

πˆ

0

dθ

z − 2
√
K cos θ

· sin θ · [K sin (d+ 1) θ − sin (d− 1) θ]

(K + 1)2 − 4K cos2 θ
(40)

From this result one can immediately restore McKay’s result (38) by standard means:

ρ0 = − 1

Nπ
Im {TrG (E + i0)} (41)

5.2.4 Fourier analysis on a random regular graph

Nevertheless, we can extract much more information out of the expression for the Green function.
Based on expression (40), we can build a complete analog of Fourier analysis on finite-dimensional
lattices, which proves to be an extremely useful tool for all practical calculations.

The key motivation for this part is the following observation: similarly to problems on
finite-dimensional lattices, the translational invariance is restored upon averaging over disorder
fields ξ. For our problem it means that any matrix necessarily expands in powers of adjacency
matrix, because this is the only transitionally invariant matrix left in the problem. This also
implies, that all matrices of the problem are diagonal in the same eigenbasis, again, in full
alignment with the idea of plain waves for usual lattices. Our task is just to restore this expansion
in powers of J .

Being a real symmetric matrix, any adjacency matrix can be expanded in projectors:

A =
∑
λ

λ · P (λ),
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where P (λ) is the projector to subspace of eigenvectors corresponding to eigenvalue λ. Same
holds for any function of A:

f (A) =
∑
λ

f (λ) · P (λ) (42)

The Green function (39) is itself a yet another function of adjacency matrix and is thus no
exception to this expansion. In particular, so is the difference between retarded and advanced
functions of real spectral argument:

G (E − i0)−G (E + i0)

2πi
=

ˆ
dλ· 1

2πi

{
P (λ)

E + i0− λ
− P (λ)

E − i0− λ

}
=

ˆ
dλ·P (λ)·δ (E − λ) ≡ P (λ),

(43)
where we have replaced summation over eigenvalues with integration applicable in the thermo-
dynamical limit. Therefore, availability of the explicit expression (40) for G allows us to restore
the form of PE, which now reads:

P
(E)
d = ρ0 (E) ·

KUd

(
E

2
√
K

)
− Ud−2

(
E

2
√
K

)
K + 1

· 1

Kd/2
, (44)

where ρ0 (E) is McKay’s density of states (38), and

Un (cosx) =
sin (n+ 1)x

sinx

are Chebyshev polynomials of the second kind. This result is already quite useful as it allows
one to restore all matrix elements of arbitrary functions of adjacency matrix via the spectral
decomposition (42):

[f (A)]d =

2
√
Kˆ

2
√
K

f (E) · Pd (E) · dE (45)

It is convenient to get back from spectral parameterization E to angle parameterization θ:

[f (A)]d =

πˆ

0

f
(

2
√
K cos θ

)
· Pd (θ) · dθ

π
, (46)

where the projector Pd (θ) takes the following form after the substitution:

Pd (θ) =
K sin (d+ 1) θ − sin (d− 1) θ

(K + 1)2 − 4K cos2 θ
· 2

Kd/2

=
(−i)K

(K + 1)2 − 4K cos2 θ
·
[
eiθ√
K

]d (
Keiθ − e−iθ

)
sin θ + (θ 7→ −θ) , (47)

where the second line is yielded after some algebraic transformation, and the second term is
equal to the first one with an inverted value of θ. Because the function f

(
2
√
K cos θ

)
is an

even one under θ inversion, we can rewrite the angle integral (46) as

[f (A)]d =

πˆ

−π

f
(

2
√
K cos θ

)
· Π (θ) ·

[
eiθ√
K

]d
· dθ

2π
(48)
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Π (θ) =
−2iK sin θ

Ke−iθ − eiθ
(49)

In this form the expansion resembles the traditional diverging and converging waves expansion for
usual lattices, with θ playing a role of the momentum. Contrary to power law decay of waves in a
usual lattice setting, we can observe exponential decay ∝ K−d/2 that reflects exponential growth
of a sphere on a random regular graph with the radius of that sphere. This also demonstrates
that all proper functions of adjacency matrix of RRG have matrix elements that naturally decay
with distance at least as K−d/2.

We can compete our analysis by providing an analog of inverse Fourier transform. This is
achieved in a standard way by exploiting the orthogonality of projectors P (E):

P (E)P (E′) = δ (E − E ′) · P (E) (50)

However, to make the basis complete, one has to supply the set of projectors P (K) with a
projector on the solitary eigenvalue K + 1, which is known to be always present in the spectrum
of an RRG. Luckily, the eigenfunction for this eigenvalue is just a uniform vector, so that the
projector reads [

P (K+1)
]
ij

=
1

N
(51)

The full set of projectors can be shown to be from the complete decomposition of identity:

1 =
∑

λ∈[−2
√
K,2
√
K]

P (λ) + P (K+1)

Omitting some algebra, one then arrives to the following result: given an operator X that
is translationally invariant on an RRG, one can restore its spectral decomposition with the
following set of formulae:

X(K) :=
1

N
Tr
{
X · P (K)

}
=

1

N2
·
∑
ij

Xij, (52)

x (θ) =
1

N
Tr
{[
X −X(K) · P (K+1)

]
· [θ]ij

}
, (53)

X (θ) =
Π (θ)x (θ) + Π (−θ)x (−θ)

Π (−θ) + Π (θ)
, (54)

where Π (θ) is the angle weight function (49), and [θ] is a shorthand for the spherical wave:

[θ]ij =

[
eiθ√
K

]|i−j|
(55)

Finally, because we expect the expansion (42) to be applied to translationally invariant operators
in the first place, it is worth rewriting the trace of a translationally invariant operator (which
the traced expression in (53) is) as a sum over distances:

1

N
Tr {X} = X0 +

∞∑
d=1

(K + 1)Kd−1 ·Xd, (56)

where the coefficient (K + 1)Kd−1 reflects the area of a sphere of radius d on a K-regular tree.
Strictly speaking, one can either apply the expression (56) for an infinite Bethe lattice or assume
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that the terms of the series decay at sufficient rate as d grows, so that the whole series gains
its value on a finite set of terms and thus is ignorant about the difference between the Bethe
lattice and a large RRG. The expression (48), however, suggests that exponential decay of matrix
elements with distance is always the case for all functions of adjacency matrix. For physics level
of rigorousness this is surely enough.

In this way we are able to build a counterpart of Fourier analysis on an RRG, with (48) and
(52-54) playing the role of direct and inverse expansion over spherical waves, respectively. It is
hard to underestimate the usefulness of this result for further calculations, so we will freely turn
to these results in what follows without further explanations.

Part III

Saddle point equation
6 Main features of the saddle-point equation

6.1 Derivation and free energy
One typically expects mean-field analysis to be perfectly applicable for a well developed su-
perconductivity outside the fluctuation region [16]. In the language of functional integration
this corresponds to a saddle-point approximation for the value of the functional integral. The
corresponding saddle-point is sought among τ -independent field configurations. In this case, the
action (20) reads:

S [∆] =
β

2
·∆α

i

(
J

2

)−1

ij

∆β
j −

∑
i

ln

cosh

{
β
2

√
ξ2
i + |∆i|2

}
cosh

{
β
2
|ξi|
}

 (57)

The explicit evaluation of the functional determinant (21) is possible for configurations with
constant in time ∆ because the associated dynamical problem for the semion subsystem (or spin
subsystem, for that matter) is easily solvable. The denominator cosh {β |ξi| /2} represents the
contribution from the normal phase, so that the resulting action can be regarded as the free
energy difference between normal and superconducting phases.

By direct variation of the free energy (57) w.r.t the order parameter field ∆α
i we arrive at

the following saddle-point equation:

∆α
i =

∑
j

Jij ·
∆α
j√

ξ2
j + |∆j|2

tanh

{
β
√
ξ2
j + |∆j|2

}
2

(58)

Given a particular RRG and a realization of fields ξi, one has to solve the set of equations
(58) for the values of order parameter ∆i on each site. One is then interested in the statistics of
various functions of ∆i and ξi with respect to the ensemble of ξ’s.

Provided that current and/or magnetic field is absent in the system, the (complex) order
parameter can naturally be chosen to be real across the whole system, which corresponds to
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the choice ∆α
i = ∆i · δα,1 in vector notation, so that one arrives to the equation on the absolute

value of the order parameter:

∆i =
∑
j

Jij ·
∆j√
ξ2
j + ∆2

j

tanh
{
β
√
ξ2
j + ∆2

j

}
2

(59)

The equation has a well-defined zero-temperature limit:

β →∞ : ∆i =
∑
j

Jij
2
· ∆j√

ξ2
j + ∆2

j

(60)

Below we investigate various statistical properties of the solution to this equation in different
disorder realizations, starting with some crude approximation revealing the key qualitative
features of the equation. Our study is focused on zero temperature limit T = 0, although we
will refer to some previous studies carried out for the system at finite temperature.

6.2 Infinite K approximation and connections with the conventional theory of
superconductivity

The physical sense of the self-consistency equation becomes clear if one formally considers the
case of arbitrarily large K. In this case, the r.h.s of the equation represents a sum of large
number of terms and thus can be replaced by its mean value w.r.t the sought distribution:

∆i = g ·

〈
∆√

ξ2 + ∆2
tanh

{
β
√
ξ2 + ∆2

}〉
ξ,∆

(61)

where the average should be done over the joint distribution of ξ and ∆ on the given site. One
can now observe that the r.h.s becomes site-independent, thus suggesting a constant value of the
order parameter across the whole system. The equation then takes a well-recognized form of the
self-consistency equation on the homogeneous super-conducting order parameter [REF_HERE]:

∆0 = g ·

〈
∆0√
ξ2 + ∆2

0

tanh

{
β
√
ξ2 + ∆2

0

}〉
ξ

= g ·
ˆ
P (ξ) dξ · ∆0√

ξ2 + ∆2
0

tanh

{
β
√
ξ2 + ∆2

0

}
(62)

thus also confirming the role of the disorder distribution P (ξ) as the single-particle density of
states. There are 2 particularly instructive special cases:

• upon setting ∆0 = 0, one obtains a standard equation for the transition temperature Tc:

1 = g ·
ˆ
P (ξ) dξ · tanh {|ξ| /Tc}

|ξ|
(63)

• whenever g � 1, the solution to the self-consistency equation (62) is exponentially small
w.r.t g. Let us consider T = 0 and a box-shaped disorder distribution P (ξ) = 1

2
θ (1− |ξ|)

for simplicity. Assuming ∆0 to be small, one can evaluate the integral approximately and
solve for the value of ∆0, obtaining:

g � 1, P (ξ) =
1

2
θ (1− |ξ|) : ∆0 ≈ 2 exp

{
−1

g

}
� 1 (64)
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Because the integral of ξ is logarithmic, the exact form of the disorder distribution will
only alter the numerical coefficients in front of 1/g exponential dependence and in the
prefactor, whereas the exponential dependence itself is quite a robust feature of the model3.

In what follows, ∆0 � 1 is assumed to be among the smallest energy scales of the problem,
owing to its exponential smallness.

6.3 Previous studies: vicinity of the transition point T = Tc

At large but finite values of K, one expects the transition temperature to fluctuate from one
realization to another with both mean value and characteristic scale of fluctuations determined
by the relation between the parameters of the model. The equation (59) has been studied in great
detail in the vicinity of the transition point where the saddle-point equation can be linearized
w.r.t small value of the order parameter [12]. Assuming g � 1 and P (0) = 1, the key findings
relevant to our problem can be summarized in the following fashion:

• The linearized counterpart of the saddle point equation (59) is rendered inapplicable in
the region K > K1, where K1 is given by:

K1 = g exp

{
1

2g

}
� 1 (65)

Note that this scale is still a large quantity. Yet, when K is as small as K1, slow fluctuations
are known to destroy the saddle-point approximation. The associated distribution of the
true order parameter (which is not given by (58) anymore) demonstrates fat tails and lack
of any kind of self-averaging.

• When the parameter K is greater than some scale K∗, one expects the equation to exhibit
self-averaging behavior similar to the one described by the mean field approximation in
the previous section. The theory predicts K∗ to be given by:

K∗ =
π

4
e−γ · g exp

{
1

g

}
, (66)

where γ ≈ 0.577 is the Euler–Mascheroni constant. Above K = K∗ the fluctuations are
suppressed by virtue of the central limit theorem as previously discussed. Note that K∗ �
K1, thus leaving an exponentially large range K1 � K � K∗ with nontrivial behavior of
the saddle-point equation (59), where one expects the order parameter distribution to be
nontrivial.

Although the analysis of [12] is only valid near T = Tc (K, g), one expects the implications to
be qualitatively correct at any T . In other words, the fluctuations and self-interaction play
important role only at lnK > lnK1 ∼ 1/2g. In this work, we are going to study the regime
K � K1, when the order parameter is well described by its saddle-point value found by solving
(59). Note that because g � 1, this also implies that K are themselves exponentially large.
And even when K is a large quantity, there is still a room for nontrivial behavior in the region
K > K∗ because of strong fluctuations of the r.h.s of the saddle point equation (59).

3For instance, a Gaussian model of disorder gives

g � 1, P (ξ) =
1√
2π

exp

{
−ξ

2

2

}
: ∆0 ≈ 2

√
2e−γ/2 · exp

{
−
√
π

2

1

g

}
≈ 2.12 exp

{
−1.25

g

}
with γ ≈ 0.577 being the Euler–Mascheroni constant.
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6.4 Numerical solution
The analytical study presented below is backed by numerical investigation of the problem. The
corresponding numerical routine consists of the following steps:

• Generate a random regular graph with a total of N sites and K+1 neighbors each. Systems
with up to N = 222 ≈ 4.2 · 106 sites were produced.

• Generate M realizations of disorder field ξi. The number of realization is generally chosen
based on the system size, as larger systems require more computational time for their
solution in return for better statistical self-averaging within a single sample.

• For each of M disorder realizations, numerically solve the saddle-point equation (60) for
the values of ∆i.

• Average the required function of fields ∆, ξ over the obtained solutions \ calculate the
required distribution functions.

For each instance of numerical results, the values of the parameters g, K, as well as the used
system size N and the number of disorder realizations M are specified, so that one is able to
estimate the effects of the finite size of the system as well as the quality of statistical averaging
over different disorder realizations. The main qualitative aspects of the latter deserve a separate
consideration:

• The key effect of a finite system size N is the distortion introduced to the local tree-like
structure of a large RRG due to the existence of short cycles in the system. Indeed, given
an RRG of degree K + 1 and size N , the local tree-like structure for a given site can only
develop up to a distance

dc ∼
lnN

lnK
, (67)

at which point it already includes a finite fraction of sites of the full system. Therefore,
one expects that those physical properties resting on correlations at distances d ? dc will
be significantly distorted. One, however, expects that the physical behavior is completely
determined by local effects with bounded correlation length, so that one would observe
saturation of all physical quantities as system size N grows.

• Secondly, the system size itself contributes to the quality of averaging of local quantities.
Indeed, if a given effect rests on correlations at distances up to r, one can effectively split
the whole system into a set of uncorrelated regions of size Vr ∼ Kr, and the resulting
number of regions plays a role similar to that of M .

One technical obstacle is that for very large values of K ≥ 200 the procedure of sampling random
regular graphs becomes computationally expensive, as the average time to generate a sample
grows at least as NK3 [23]. To circumvent this problem, we used the approximate routine that
generates nearly regular graphs by randomly partitioning K copies of N vertices into pairs
corresponding to graph edges and then removing loops and double edges. Such an approximation
leads to a finite variance of vertex degrees in the system. This approximate algorithm was used
only for sufficiently large K, when any correlations are well suppressed and the Gaussian regime
dominates, so that the exact structure of the graph is rendered irrelevant. In what follows, we
explicitly indicate the usage of this approximation in the numerical calculations.
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7 Intuitive approximations
Before diving into the full analysis of the self-consistency equation, let us first review some
approximate yet instructive schemes of analysis that provide important intuition and technical
aspects for the full solution. In particular, they serve as a good semi-quantitative introduction
to the role of the key control parameters of the theory.

7.1 Large K approximation and structure of correlations
Let us start with the case when K is large enough to suppress the fluctuations on the r.h.s of the
saddle point equation (60). In this case one expects the solution ∆i to exhibit small fluctuations
around its mean value. One can then expand the r.h.s of (60) w.r.t weak fluctuations around
the mean value:

δi = ∆i − 〈∆〉 � 〈∆〉 (68)

〈∆〉+ δi =
∑
j

Jij
2
·

 〈∆〉√
ξ2
j + 〈∆〉2

+
ξ2
j(

ξ2
j + 〈∆〉2

)3/2
· δj

 (69)

One can explicitly express the value of δi:

δ = X−1v, (70)

Xij = δij −
Jij
2
·

ξ2
j(

ξ2
j + 〈∆〉2

)3/2
(71)

vi =

∑
j

Jij
2
· 〈∆〉√

ξ2
j + 〈∆〉2

− 〈∆〉 (72)

As we can see, matrix X has δij as a leading term with a small correction of order g/K. Therefore,
the behavior of δ is qualitatively determined by the fluctuations of vector v. The latter represents
a sum of a large number of independent fluctuating variables, thus suggesting applicability of
the central limit theorem. Assuming Gaussian statistics for δ, one then arrives to the following
correlator of the fluctuations: 〈

δδT
〉

=
〈
X−1 · vvT ·

(
X−1

)T〉
ξ
, (73)

which should also be supplied with the equation on 〈∆〉 derived from its definition:

0 ≡ 〈∆− 〈∆〉〉 ≡ 〈δ〉 =
〈
X−1v

〉
ξ

(74)

Because both X and v contain the disorder field ξ, calculating both the correlator
〈
δδT
〉
and

the mean value 〈∆〉 requires employing a diagrammatic technique to deal with the inversion of a
random matrix X. The associated theoretical analysis involves a simple self-consistent Born
approximation and will be discussed elsewhere, while here only the most relevant results are
presented, as the derivation technique is not of great importance on its own.

32



7.1.1 Simple approximation for onsite fluctuation

It is instructive to review the naive approximation that manages to correctly reproduce the
leading terms for the mean value and the variance of the order parameter distribution. Let us
approximate the value of the X matrix with only the leading term:

X−1 = 1 +O

(
g√
K

)
, (75)

where the K-dependence of the correction is obtained from the typical spectrum of a random
regular graph:

J ∼ gλ/K, λ ∼
√
K ⇒ J ∼ g/

√
K (76)

Upon ignoring this correction, the averaging is trivial and leads to

〈∆〉 = ∆0 +O

(
1

K

)
, (77)

〈
δδT
〉
≈
(
J

2

)2

·

〈 〈∆〉√
ξ2 + 〈∆〉2

−

〈
〈∆〉√

ξ2 + 〈∆〉2

〉2〉
ξ

≈
(
J

2

)2

· 2P (0) · π∆0

2
, (78)

where ∆0 is the previously introduced mean field value of the order parameter (62). The second
line is obtained as the leading term in the expansion of the exact average over ξ in powers of ∆0.
According to these predictions, one expects ∆ to be distributed as a Gaussian random variable
with the mean value of each component given by (77) and covariance matrix given by (78). The
obtained results appear to be a correct answer up to the leading order in formal expansion in
power of K.

In particular, the diagonal matrix element of the covariance matrix(78) represents the variance
of the order parameter. It is convenient to compare it with the mean value. The result reads:

〈δ2〉
〈∆〉2

=

(
J

2

)2

ii

· 2P (0) · π

2∆0

=
g2

K∆0

· 2P (0) · π
2

(79)

As it is expected within the Gaussian regime, the relative fluctuations decay as K−1. From this
result we can infer the criteria of applicability as a consequence of assumed smallness of the
relative fluctuations:

〈δ2〉
〈∆〉2

� 1⇒ g2

K∆0

� 1, (80)

where we have dropped numerical prefactors of the order unity. One particular conclusion is
that the described Gaussian regime only kicks in when K is as large as

K ? KGauss = g2 ·∆−1
0 ≈ 2g2 exp

{
−1

g

}
, (81)

which is consistent with a more thorough analysis of [12], since the obtained scale coincides up
to exponential precision with the value of K∗ given by (66), i.e.,

lnKGauss ≈ lnK∗ (82)
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The presented analysis, however, fails to recover the behavior of the cross-site correlations of
the order parameter, that are supposed to be given by the off-diagonal matrix elements of the
covariance matrix (78). Within the answer obtained so far, the only nonzero matrix element is
for distance d = 2 correlations and is given by

|i− j| = 2 : 〈δiδj〉 =
〈
δ2
〉
/K, (83)

while all other correlations are equal to zero:

|i− j| 6= 0, 2 : 〈δiδj〉 = 0 (84)

The result is obtained by using the fact that the matrix element of a power n of the adjacency
matrix of the graph gives the number of distinct paths of length n connecting the 2 given sites.
Given the local tree-like structure of the graph, one obtains:

(J/2)2
ij =

g2 (K + 1)

K2
· δij +

g2

K2
δ|i−j|,2 (85)

which leads to answers presented above. In reality, however, the correlations between 2 arbitrary
sites do exist, but these correlations are beyond the precision of the proposed simplistic approxi-
mation and represent subleading corrections in formal 1/K expansion. The results of taking into
account the subleading terms of the X matrix are presented below and are found to accurately
reproduce the entire structure of the correlations within the region of applicability given by (81).

7.1.2 Results of a more accurate approximation

Without going into much detail, we present here the answers of a more accurate computation of
the covariance matrix. The simplistic treatment described above is improved by accounting for
the influence of subleading corrections to the value of the average 〈X〉 of the X matrix. First of
all, one can compute the 1/K correction to the mean value 〈∆〉 of the order parameter:

〈∆〉 ≈ ∆0

(
1 +

4

3
· K1

K
· 1− g

g

)
(86)

with K1 being the native scale for the corrections:

K1 =
3π

16
· g

2

〈∆〉
≈ 3π

16
· g

2

∆0

∼ KGauss, K
∗ (87)

Secondly, one finds the following expression for the covariance matrix:

〈
δδT
〉

= 〈∆〉2 ·

 (J/2)

1−
(

1
g
− 1
)

(J/2)

2

(88)

One can calculate the matrix elements explicitly, obtaining:

|i− j| = d : 〈δiδj〉 =


g2

K〈∆〉

〈(
〈∆〉√
ξ2+〈∆〉2

−
〈

〈∆〉√
ξ2+〈∆〉2

〉)2
〉
ξ

, d = 0

〈δ2〉 · 4(1−g)
K

, d = 1

〈δ2〉 · (d− 1) (1−g)d−2

Kd−1 , d ≥ 2

(89)
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One can see that the simplistic approximation presented above does indeed correctly reproduce
the leading order in the formal 1/K expansion.

The results are showcased on Figures 5 through 7. One can observe that the presented theory
is in excellent agreement with the numerical data within the region of applicability K � K1

and in some cases even up to K ≈ K1, as seen on the plot of the mean value on Figure 6. There
is, however, a resolvable skewness of the true distribution seen in the discrepancy with the
Gaussian fit of the data on Figure 5. This effect is discussed in the next section as it is beyond
the Gaussian approximation.

Figure 5: The onsite distribution of the order parameter ∆. Parameters of the model: Pξ is
a box-shaped distribution in the domain [−1, 1], K = 58, and g = 0.25. The blue histogram
represents the statistics of the exact numerical solution of the self-consistency equation on a
random regular graph with N = 218 ≈ 2.6 · 105. The dashed line is a Gaussian distribution
with 〈∆〉 = 3.96 · 10−2, σ∆ = 6.52 · 10−3, with both parameters calculated directly from the
numerical data. The red solid line represents the Gaussian distribution with theoretically
predicted parameters 〈∆〉 = 3.92 · 10−2, σ∆ = 6.50 · 10−3, as given by (86) and (89).
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Figure 6: Dependencies of the mean value (left) and variance (right) of ∆ on K, normalized to
native units: the left plot shows the relative difference to the mean field value ∆0, while the right
plot represents the variance normalized to the squared mean value 〈∆〉 and native factor of K.
The parameters of the model, other than K, are identical to those on Figure 5. On both plots,
points represent the data extracted from exact numerical solution with the same parameters as
those of Figure 5, while solid lines demonstrate the theoretical predictions given by (86) - (89).
The vertical dashed line represents the value of K∗ where one expects the Gaussian model to
break down.

Figure 7: Dependence of the off-diagonal matrix elements of the covariance matrix
〈〈
δδT
〉〉

of
the order parameter on K for 2 distances d = |i− j| = 1 (data in blue) and d = |i− j| = 2
(data in orange). The parameters of the model are identical to those on Figure 5. The values of
the correllators are normalized to 〈δ2〉 /K. Parameters for both the data from exact numerical
solution (points) and theoretical predictions (solid lines) are the same as on Figure 6. The
vertical dashed line represents the value of K∗ where one expects the Gaussian model to break
down.
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The main qualitative conclusions to be drawn from these results about the large K-regime
are the following:

• the order parameter is distributed with a correlated Gaussian distribution with the mean
value given by (86) and covariance matrix given by (88). The characteristic scale for
both the average order parameter and its fluctuations is given by the mean field value ∆0,
determined from the solution to the mean-field self-consistency equation.

• Correlations in the system, characterized by off-diagonal matrix elements of the covariance
matrix, decay exponentially with distance and can be estimated as

〈δiδj〉 ∼
〈δ〉2

K |i−j|−1
, |i− j| ≥ 2 (90)

• The self-averaging regime of the zero-temperature saddle-point approximation is applicable
at

K ?
g

∆0

∼ g exp

{
1

g

}
, (91)

which is consistent with previous studies for T ≈ Tc case.

7.2 Approximation of uncorrelated sites and non-Gaussian regime
As we have seen in the previous section, the self-averaging behavior of the r.h.s of the saddle
point equation (59) is only guaranteed at sufficiently large K ? g · exp {1/g}. Below this limit
one can expect a nontrivial interplay between the tendency to the self-averaging due to a large
number of terms in the r.h.s. and the strong fluctuations of each term due to exponential
smallness of the typical value of the order parameter ∆0. As it appears, this interplay can be
qualitatively reproduced by a simple model that we are going to present below. Although this
model does not have an explicit control parameter that measures the similarity to the actual
saddle-point equation, this model reveals some technical aspects essential to the derivation of
the full theory.

The model rests on the fact that correlations in the order parameter decay exponentially
with distance, as it was observed in the previous section. Therefore, a qualitatively correct
approximation would be to neglect the correlations completely and treat the ∆ field as a set
of independent random variables on each site of the system. The problem is then reduced to
finding the corresponding onsite distribution of the order parameter P (∆).

Subsections 7.2.1 to 7.2.4 present a detailed derivation of the main equations, that are, in
turn, summarized in Subsection 7.2.5. Illustrations of the results as well as discussion of main
qualitative features can be found in Subsection 7.2.6. Although they reveal some uncontrolled
discrepancy with the true ∆ distribution originating from the ignored inter-site correlations, the
technical aspects of the solution to this model will be of crucial importance for the full theory.

7.2.1 Equation on the cumulant generating function

One starts by explicitly averaging the r.h.s of the saddle-point equation:

P (∆) := 〈δ (∆−∆i)〉∆i,ξ
=

〈
δ

∆−
∑
j

Jij
2
· ∆j√

ξ2
j + ∆2

j

〉
ξ,∆

, (92)
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where the average is performed over the onsite distributions of ξ and ∆. The next step is to
rewrite the δ-function as a Fourier integral:

... =

〈ˆ
R

dω

2π
· exp

−iω
∆−

∑
j

Jij
2
· ∆j√

ξ2
j + ∆2

j


〉
ξ,∆

=

ˆ

R

dω

2π
· e−iω∆ ·

〈∏
j

exp

iω · Jij2 · ∆j√
ξ2
j + ∆2

j


〉
ξ,∆

Then we make use of the independence assumption, so that average of a product of local variables
factorizes into a product of averages:

... = P (∆) =

ˆ

R

dω

2π
· e−iω∆ ·

∏
j

〈
exp

iω · Jij2 · ∆j√
ξ2
j + ∆2

j


〉
ξ,∆

=

ˆ

R

dω

2π
· e−iω∆ ·

〈
exp

{
iω · g

K
· ∆√

ξ2 + ∆2

}〉K

ξ,∆

=

ˆ

R

dω

2π
· e−iω∆ ·

ˆ
R

dξP (ξ)

ˆ

R

d∆P (∆) exp

{
iω · g

K
· ∆√

ξ2 + ∆2

}K , (93)

where we have plugged in the explicit expression for Jij. The resulting equation is an integral
equation on the distribution function P (∆).

Let us make some convenient variable substitutions:

• Rescaling the fluctuating fields to their native scale for this problem is convenient:

x =
ξ

∆0

, y =
∆i

∆0

, s = ∆0ω (94)

where ∆0 is the mean-field value of the order parameter. At this point, it serves purely
as a characteristic scale, the exact value of which will be manually fixed later. To keep it
simple, one can think of ∆0 as the value given by (62).

• We will make use of the cumulant generating function for ∆ fields:

R (s) := ln
(
〈exp {isy}〉y= ∆

∆0

)
≡ ln

 ∞̂

0

d∆P (∆) exp

{
is · ∆

∆0

} (95)

Let us highlight the following important properties of R:

– because ∆ > 0 (as it is reflected in the integration limits of the ∆ integral), exp {R (s)}
is an analytical function in the upper half-plane of the complex variable s.

– Because the value of ∆ is trivially bounded from above as ∆ ≤ g, the function
exp {R (s)} decays exponentially when Ims � 1. One can expect this property to
kick in at scales Ims ? g−1∆−1

0 � 1.
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– Because ∆ is a real quantity, complex conjugation can be factored out:

exp {R (s)} = exp {R (s)} (96)

– the normalization of probability density P∆ is translated in the exact identity
ˆ

R

d∆P∆ (∆) = 1⇒ R (0) = ln 1 = 0 (97)

– The value of the probability function P∆ is restored by inverse Fourier transform:

P∆ (∆) =
1

∆0

ˆ

R

ds

2π
exp

{
−is ∆

∆0

}
· exp {R (s)} (98)

The integral is convergent because the real part of R is negative and can be shown
to grow at least linearly with |s| at large real s (as we will see later). The reality
condition for R guarantees a real value of P .

• Let us also introduce a dimensionless parameter characterizing the relation between the
energy scale of the order parameter and the number of neighbors K:

v := K∆0 (99)

The equation can be then rewritten in terms of the R function:

R (s) = ln

ˆ
R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) exp

{
is · g

v

∆√
ξ2 + ∆2

}K (100)

7.2.2 Expansion in powers of small ∆0

In our case we are able to evaluate the r.h.s of the equation on R in the limit of large K, small
∆0 and constant v. First step is to use the fact that most integrals over both ∆ and ξ naturally
converge in a small region of size ∆, ξ ∼ ∆0 and thus contain an associated smallness of the
order ∆0. In particular, this is true for integrals of all functions that decay as ξ−2 or faster at
large ξ. One can then carry out the following calculation:

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) exp

{
is · g

v
· ∆√

ξ2 + ∆2

}

=

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) · 1

+
(
is · g

v

)
·
ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) · ∆√
ξ2 + ∆2

+

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆)

(
exp

{
is · g

v

∆√
ξ2 + ∆2

}
−

{
1 + is · g

v

∆√
ξ2 + ∆2

})
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Due to the normalization of probabilities Pξ, P∆, the first integral is equal to 1, and the integrand
in the 3rd term decays with ξ as ξ−2 and thus converges in a small region of ξ ∼ ∆0 � 1, so
that one can completely neglect the ξ-dependence of Pξ as it has a typical scale of ξ ∼ 1. One
then proceeds with

... = 1 +
(
is · g

v

)
·∆0 · C1+

+ Pξ (0)

ˆ

R

d∆P∆ (∆)

ˆ

R

dξ

(
exp

{
is · g

v

∆√
ξ2 + ∆2

}
−

{
1 + is · g

v

∆√
ξ2 + ∆2

})
+O

(
∆2

0

)
,

where the last correction term contains all sorts of corrections from actual dependence of P on
ξ, and by C1 we have denoted the following number:

C1 =
1

∆0

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) · ∆√
ξ2 + ∆2

, (101)

where the integrand decays only as ξ−1 with large ξ, so that one must take into account the
ξ-dependence of P (ξ) with logarithmic precision. However, the numerical value of C1 is of the
order 1/g, as it is for a similar integral for the mean field value ∆0, given by (62).

The final step is to exploit the special homogeneous form of the saddle-point equation:

∆√
ξ2 + ∆2

=
1√

1 + (x/y)2
, (102)

so that the only remaining integral can be evaluated by a simple change of variables z = ξ/∆:

... = 1 +
(
is · g

v

)
·∆0 · C1 + 2Pξ (0) ·∆0C2 · F

(g
v
s
)

+O
(
∆2

0

)
C2 =

1

∆0

ˆ

R

d∆ · P∆ (∆) ·∆ (103)

F (u) =

∞̂

0

dz

(
exp

{
iu

1√
1 + z2

}
−
{

1 + iu
1√

1 + z2

})
(104)

Note that the function F (u) is an entire function of complex variable s, as the integral is
convergent as written for any u ∈ C. Additionally, the numerical value of the constant C2 is
of the order unity, because it represents nothing but the mean value of the order parameter ∆
under the given distribution P∆. Because we expect it to be still of the order of the mean field
value ∆0, one concludes that C2 ∼ 1.

By substituting ∆0 = v/K, we can finally take the limit of large K in the expression for R:

R (s)

= ln

([
1 +

(
is · g

v

)
·∆0 · C1 + 2Pξ (0) ·∆0C2 · F

(g
v
s
)

+O
(
∆2

0

)]K)
= ln

(
exp

{
v ·
[(
is · g

v

)
· C1 + 2Pξ (0) · C2 · F

(g
v
s
)]

+O (∆0)
})

= v ·
[(
is · g

v

)
· C1 + 2Pξ (0) · C2 · F

(g
v
s
)]

+O (∆0) (105)
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so that we obtain the leading term of formal expansion of R in powers of ∆0. Because ∆0

is exponentially small and thus represents an excellent small parameter, we will henceforth
disregard the correction as by no means can it deliver an important contribution to the behavior
of R.

7.2.3 Analytical properties of the cumulant generating function and the probability function

First of all, let us examine the emerging expression for the probability P∆. The inverse Fourier
transform of the result reads:

P∆ (∆)

=
1

∆0

ˆ

R

ds

2π
exp

{
−is ∆

∆0

}
· exp {R (s)}

=
1

∆0

ˆ

R

ds

2π
exp

{
−is ∆

∆0

+ v ·
[(
is · g

v

)
· C1 + 2Pξ (0) · C2 · F

(g
v
s
)]}

(106)

The convergence of the integral is ensured by the asymptotic behavior of F at large real
arguments:

F (±u� 1) = −π
2
|u| − iu · {ln 2 |u| − 1 + γ} (107)

As we can see, the real part is always negative and decreases linearly, so that the integral
converges at g · s ∼ 1. Moreover, it can be shown that the real part becomes negative at
sufficiently large values of |Reu| for any positive Imu (see Figure 8):

u′′ = Imu > 0, u′ = ±Reu� 1⇒ Re {F (±u′ + iu′′)} → −∞ (108)

Therefore, one is free to shift the integration contour within this region. For future calculations
it will be convenient to shift it to the lower half-plane:

P∆ (∆) =
1

∆0

ˆ

R−i0

ds

2π
exp

{
−is ∆

∆0

}
· exp {R (s)} (109)
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Figure 8: Visualization of the region with negative real part of F (u). As long as the integration
contour for an integral containing exp {F (u)} is in this green region, the integral is convergent
in a finite neighborhood of u = 0.

At this point, we should yet try and restore the discussed analytical properties of exp {R}, as
they are going to be essential for further calculations. While the obtained expression represents
an entire function in the complex plain of s, as it is expected from a Fourier image of a bounded
probability distribution, one should consider the announced exponential decay of exp {R} for large
s with positive imaginary part. Indeed, one can observe that the function F (u) demonstrates a
faster-than-linear growth for Imu� 1:

F (u = ir, r � 1) ≈ +r (ln r + γ + ln 2− 1) +O

(
1

r

)
, (110)

so that the exponential decay of exp {R} provided by the C1 term in (105) is overwhelmed, and
exp {R} seems to be a growing function of Ims� 1. The contradiction is resolved by the fact
that the obtained results formally represent the limiting form of R for the case of infinitely small
∆0. Because R is defined as the cumulant generating function for the quantity y = ∆/∆0, the
distribution of y becomes unbounded in the considered limit. In reality, however, the value of
∆0 is finite, and the discussed exponential decay is indeed observed at Ims ? s0 = ∆−1

0 g−1 � 1,
but the associated scale s0 is exponentially large. The matching of our result to this asymptotic
behavior occurs via the fact that at |s| ? s0 our calculation is rendered inapplicable because
for such large s the exact integrals over ξ converge at scale (ln s)−1 which now becomes of the
order of unity, thus forbidding us to neglect the exact form of the Pξ function. Therefore, we
conclude that the obtained expression is valid for |s| > s0, while at larger values of s it decays
exponentially in the upper half-plane.

The most essential consequence of this result is that whenever one deals with integrals over s
that do not involve functions which grow in the upper half-plane, one is allowed to close the
integrating contour in the upper half-plane and thus evaluate the integral by means of the residue
technique. This corresponds to the fact that such integrals converge at s ∼ 1 and thus receive
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no information about the region of large s. As an immediate demonstration of this idea, let us
calculate the normalization of the probability distribution:

∞̂

0

d∆ · P∆ (∆) =

∞̂

0

d∆ · 1

∆0

ˆ

R−i0

ds

2π
exp

{
−is ∆

∆0

}
· exp {R (s)}

Because Ims < 0 by our choice of the contour, the integral over ∆ is trivially evaluated:

... =

ˆ

R−i0

ds

2π
· 1

is
· exp {R (s)}

And because of the discussed property of the R function, we can close the integration in the upper
half-plane, because the integrand 1/s decays at infinity. The result is then trivially evaluated as
a residue at the only singularity of the integral:

... =

ˆ

C

ds

2π
· 1

is
· exp {R (s)} = res

s=0

exp {R (s)}
s

= exp {R (0)} = 1,

where the last equality follows from the normalization of R

7.2.4 Physical sense and self-consistent equations on the constants C1 and C2

Having the described properties of R in mind, we can calculate the value of C2 explicitly from
its definition.

C2 =
1

∆0

·
∞̂

0

d∆ · P (∆) ·∆

=
1

∆2
0

·
∞̂

0

d∆ ·

 ˆ
R−i0

ds

2π
· exp

{
−is · ∆

∆0

}
· exp {R (s)}

 ·∆
=
ds

2π
· exp {R (s)}

(is)2 = i · res
s=0

{
exp {R (s)}

(is)2

}
=

{
dR (s)

ids

}
s=0

, (111)

where we used the analytical properties of R to close the contour and normalization of R to
calculate the residue. The final step is to note that the expansion of F (u) in powers of u starts
with O (u2) by construction, so that the derivative is given solely by the C1 term of R:

C2 = g · C1 (112)

The result is of no surprise, as the constants C1,2 represent the mean values of the corre-
sponding sides of the saddle-point equation (up to obvious multipliers):

g · C1 =
1

∆0

· g ·

〈
∆√

∆2 + ξ2

〉
=
〈∆〉
∆0

= C2 (113)

Yet the results represents a decent demonstration of the technique that is later going to be
extensively used to evaluate similar integrals.

43



It remains to determine C1, which is to be found self-consistently from its definition:

C1 =
1

∆0

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) · ∆√
ξ2 + ∆2

As we already know, the integral over ξ is logarithmic. To extract this logarithmic behavior, one
adds and subtracts the value of the integrand for ∆ = ∆0:

... =
1

∆0

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) · ∆√
ξ2 + ∆2

0

+
1

∆0

ˆ

R

dξPξ (ξ)

ˆ

R

d∆P∆ (∆) ·

[
∆√

ξ2 + ∆2
− ∆√

ξ2 + ∆2
0

]

Now the first integral can be recognized to contain the zero-temperature version of mean-field
integral 62, and the second one gains at the small region of ξ ∼ ∆, so that the dependence of Pξ
can again be neglected:

... = C2 ·
ˆ

R

dξPξ (ξ)
1√

ξ2 + ∆2
0

+ 2Pξ (0) · 1

∆0

ˆ

R

d∆P∆ (∆) ·∆ · ln ∆0

∆

= /C2 = g · C1/ = gC1

ˆ

R

dξPξ (ξ)
1√

ξ2 + ∆2
0

+ 2Pξ (0) · 1

∆0

ˆ

R

d∆P∆ (∆) ·∆ · ln ∆0

∆
(114)

The resulting equation represents an equation on C1 that enters the equation both explicitly
and via the expression for P∆. One should treat this equation as a self-consistency condition to
find the value of C1. This can be done by means of numerical evaluation of the integral for P∆

and subsequent numerical solution of the equation for C1.
At this point it is convenient to make our choice of ∆0, whereas up to now we were concerned

only with the numerical of smallness of ∆0 rather than its specific value. A natural choice is to
use the mean field definition itself, i. e.ˆ

R

dξPξ (ξ)
1√

ξ2 + ∆2
0

:=
1

g
(115)

Substitution of the value of C2 then leads to reduction of the first term, finally yielding the
following self-consistency equation:

0 =

ˆ

R

d∆P∆ (∆) · ∆

∆0

· ln ∆0

∆
(116)

or, plugging in the expression (106) for P∆ via R,

0 =

ˆ

R−i0

ds

2π
· ln {is}+ γ − 1

(is)2 · exp {R (s)}

=

ˆ

R−i0

ds

2π
· ln {is}+ γ − 1

(is)2 · exp
{
gC1 ·

[
is+ 2Pξ (0) v · F

(g
v
s
)]}

(117)

Because C1 enters the definition of P∆, one can use the equations above to find the value of C1

numerically.
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7.2.5 Revision of results and main technical features

Let us revise the results and the main ingredients that led to a possibility of an explicit solution.
One obtains the following expression for the probability function:

P∆ (∆) =
1

∆0

ˆ

R−i0

ds

2π
exp

{
−is ∆

∆0

+ gC1 ·
[
is+ 2Pξ (0) · v · F

(g
v
s
)]}

, (118)

where ∆0 is the mean field zero-temperature order parameter defined as a solution to the following
equation: ˆ

R

dξPξ (ξ)
1√

ξ2 + ∆2
0

:=
1

g
, (119)

whereas the constant v and the function F are given by

v = K∆0

F (u ∈ C) =

∞̂

0

dz

(
exp

{
iu

1√
1 + z2

}
−
{

1 + iu
1√

1 + z2

})
The integral (118) is convergent for any contour parallel to the real axis in the lower half-plane,
which is ensured by asymptotic properties of F . The value of the constant C1 should be
determined as a solution to the following self-consistency equation:

0 =

ˆ

R

d∆P∆ (∆) · ∆

∆0

· ln ∆0

∆
(120)

The solution presented rests on 3 main ideas:

1. The r.h.s. of the saddle-point equation (60) decays as ξ−1 at large ξ, so that its mean value
w.r.t ξ is logarithmic in ∆0. The resulting value of the mean field order parameter ∆0 is
exponentially small.

2. All higher powers of the r.h.s of saddle-point equation decay with ξ faster than ξ−1, so that
integrals of such quantities gain their value in a small region of ξ ∼ ∆0. This allows the
existence of the universal limit where the particular structure of the disorder distribution
is rendered irrelevant.

3. The r.h.s. of the zero-temperature saddle-point equation (60) represents a homogeneous
function of a single parameter z = ξ/∆. This provides an opportunity to decouple the
connection between ξ and ∆ in the equation and evaluate the probability distribution
explicitly.

As a result of our consideration, we can observe that there exists a well defined field theory
limit ∆0 → 0, K →∞ while v = K∆0 = const. Below we summarize the main features of this
limiting regime:

1. In the regime of small ∆0 and large K all physics is completely determined by 4 parameters:

• Mean field value of the order parameter ∆0
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• Zero energy density of states of the disorder ν0 = 2Pξ (0)

• Cooper coupling constant g

• Effective number of neighbors for a given site v = K∆0

2. There’s a natural rescaling of the physical quantities in the problem:

x =
ξ

∆0

, y =
∆i

∆0

, (121)

so that there exist a well defined limiting distribution function P (y).

3. The form of the distribution function P (y) is governed by the behavior of the generating
function F of higher moments of the r.h.s of the saddle-point equation as well as the
constant C1 which is found self-consistently from the equation〈

y ln
1

y

〉
y

:=

∞̂

0

dy · P (y) · y ln
1

y
= 0 (122)

The physical sense of C1 is to represent the actual mean value of the order parameter

〈∆〉 = ∆0 · gC1 (123)

4. Averaging of various functions of ∆ is made considerably easier due to analytical properties
of the cumulant generating function

R (s) = ln

〈
exp

{
−is ∆

∆0

}〉
∆

, s ∈ C (124)

• It possesses universal limiting behavior in the region |s| > s0 = g−1∆−1
0 � 1, where

it is know to lack any singularities.

• Outside the universal region the function exp {R (s)} is known to be an exponentially
decaying function for Ims→ +∞.

• By means of Fourier transform, all integrals with weight P∆ can be transformed into
integrals over a suitable contour in the complex plane of s with the weight exp {R (s)}.
The latter is known to ensure exponential convergence of all integrals within the
region s ∼ g−1. The only limitation on the integration contour is to have its ends be
in the lower half-plane.

• Whenever the integrand of the aforementioned integrals over s decays at infinity, one
is allowed to close the integration contour in the upper half-plane, thus allowing for
explicit evaluation of all integrals via the residue technique.

7.2.6 Qualitative properties of the obtained distribution and comparison with the exact distri-
bution

On Figure 9 we present a comparison of the developed model with the exact numerical solution
of the saddle-point equation (60). One immediate observation is that both the model and the
exact solution demonstrate a nontrivial body of the distribution. This confirms that below v = 1
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statistics of the order parameter demonstrates nontrivial interplay between the tendency to
the self-averaging as a result of large K and broad distribution of the r.h.s of the saddle-point
equation due to the smallness of ∆.

Figure 9: Plot of the distribution function of the dimensionless order parameter ∆/∆0. Parame-
ters of the model: disorder has box-shaped distribution in the interval [−1, 1], g = 0.16, K = 50,
resulting in ν0 = 1, v = 0.193. The blue histogram represents statistics of the exact numerical
solution of the self-consistency equation on a random regular graph with N = 222 ≈ 4.2 · 106.
The solid red line plots the prediction given by (118) with C1 = 5.620 as found by solving (120).
The dashed line corresponds to uncorrelated approximation with C1 = 8.727 found directly from
the mean value of numerical data (see the main text for an extended explanation).

Next obvious comment is that the model only succeeds to reproduce the qualitative form of
the plot, while failing to deliver any quantitative convergence. However, on the same plot we also
present the improved version of the model where the value of C1 is replaced with the value that is
obtained by using the connection between C1 and the mean value (123). Indeed, instead of solving
the equation (120) we can directly calculate the mean value from the numerical data and then use
it to restore the value of C1. While, in theory, those two procedure should evaluate to the same
result, one observes a significant discrepancy between the two approaches. Using the “numerical”
value of C1 instead of the theoretical one then yields a much better quantitative agreement with
the numerical data (dashed line on Figure 9), although still containing a noticeable discrepancy.
As we will see later, both the discussed mismatch in the values of C1 and the residual discrepancy
after using the correct value of C1 are owing to the cross-site correlations and are, therefore,
beyond the scope of this model.

Let us also discuss the profile of the distribution at extreme (either large or small) values
which is qualitatively reproduced by the amended approximation (i.e., with the corrected value
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of C1) and allegedly represents a robust feature of the distribution. At this point, we employ
a simple saddle-point analysis for integral 118 to extract the large- and small-∆ tails of the
probability density function. One can show that the leading contribution is always given by a
saddle point at imaginary axis, where it can be seen that

F (u = ir) , (i · sgnr) · F ′ (u = ir) ,−F ′′ (u = ir) > 0,

so that exploring the saddle-point approximation of integral 118 amounts to solving a simple
equation:

gν0 · (−i)F ′ (u0) =
∆

∆0 · gC1

− 1 ≡ ∆

〈∆〉
− 1, iu0 ∈ R (125)

And the estimation to the probability is then expressed via u0 as

P∆

(
k =

∆

〈∆〉

)
=

1

∆0

· 1√
2πA ·

[
−
(
g
v

)2
F ′′ (u0)

] exp

{
A ·
[
F (u0)− iu0

k − 1

ν0g

]}
(126)

A = gC1 · ν0v (127)
Without going into further technical detail, we present the resulting asymptotic expressions for
P :

P (0 < k > 1) ≈ 1

∆0

· exp {−A · rsmall}√
2πA ·

(
g
v

)2 · r−1
small

(128)

rsmall ≈ exp

{
−
(
k − 1

β
+ ln 2 + γ

)}
(129)

P∆ (k ? 1) ≈ 1

∆0

·
exp

{
−A

(
{rlarge − 1}

[
k−1
β

+ (γ + ln 2rlarge)
]
− rlarge

)}
√

2πA ·
(
g
v

)2 ·
[
k−1
β

+ (γ + ln 2rlarge)
] (130)

rlarge = ln

[√
2

π

(
k − 1

β
+ ln 2 + γ

)]
+O

(
ln ln

{
k − 1

β

})
(131)

The results of this approximation are shown on Figure 10.
The final property to be mentioned is the interpolation of the considered model to the

Gaussian regime. While we can see that the model is only qualitatively correct in the regime of
intermediate v, it demonstrates a proper quantitative matching with the large K regime. Indeed,
the characteristic scale of integral 118 for the probability is in general case of the order unity
due to the first terms. Therefore we can expand F in a power series:

F
(g
v
s
)
≈ 1

2
F ′′ (0) ·

[g
v
s
]2

= −1

2
· π

2
·
[g
v
s
]2

,

which makes the integral easily computable:

P∆ (∆)

≈ 1

∆0

ˆ

R−i0

ds

2π
exp

{
−is ∆

∆0

+ gC1 ·
[
is− ν0v ·

1

2

π

2
·
[g
v
s
]2
]}

=
1

∆0gC1

· 1
√

2π
√

π
2
ν0g2

v·gC1

exp

{
−1

2

[ π
2
ν0g

2

v · gC1

]−1(
∆

∆0gC1

− 1

)2
}

(132)
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Figure 10: Comparison of the theoretical curve from 9 with experimental value of C1 = 8.727
with the saddle point approximation for the probability integral (118). The blue line is the result
of numerical integration. The dashed black line is the result of the saddle-point approximation
(125)-(127). In the region of large ∆ ? 〈∆〉 the result is described by factorial dependence of
the form exp {A · x lnx}, see (128)-(129). In the region of small ∆ < 〈∆〉 the result decays at
double-exponential rate exp {A exp {x0 − x}}, see (130)-(131).

Plugging this approximate expression into the equation (120) for C1 is also rather straightforward,
as in the limit of large v ∝ K the characteristic width of the function P∆ becomes small, so that
the resulting expression simply reads〈

y ln
1

y

〉
y

≈ gC1 · ln
1

gC1

= 0⇔ gC1 = 1 (133)

and we arrive at

P∆ (∆) =
1

∆0gC1

· 1
√

2π

√
π
2
ν0g2

v

exp

{
−1

2

[ π
2
ν0g

2

v

]−1(
∆

∆0

− 1

)2
}
, (134)

which is a Gaussian distribution with mean value ∆0 and variance

σ2 = ∆2
0 ·
π

2

ν0g
2

v
= ∆2

0 ·
π

2
· 2Pξ (0) · g2

K∆0

, (135)

which is precisely the leading term (79) for the variance in the large K approximation. In this
way we establish an explicit connection to the results of the previous section.

Let us summarize our key observations about the uncorrelated approximation that we
developed:
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• The approximation sheds some light on the origin and characteristic scales of the regime
of intermediate value of K. In particular, it manages to qualitatively reproduce the
nontrivial main body of the order parameter distribution. The observed distribution profile
results from a balance between tendency towards self-averaging due to large value of K
and strength of fluctuations of the r.h.s of the saddle-point equation stemming from the
smallness of ∆0.

• However, the developed approximation resembles the actual picture only when the mean
value of the order parameter is provided. The self-consistency equation following from
the theory itself describes the mean value inaccurately. Later we will see this to be the
consequence of neglected inter-site correlations.

• Yet when the value of C1 is provided, one can describe the tails of the distribution of the
order parameter. From this prediction one deduces that the value of ∆ significantly larger
than the mean value are suppressed with a factorial rate (130), while small values of ∆
are double-exponentially rare (128). Although the exact from of the tail demonstrates
some discrepancy with these predictions, this approach provides a good intuition on the
behavior of the true distribution.

• Finally, we can observe a clear transition of the described model to the large K regime,
both in the form of the distribution itself and in the self-consistent equation on C1.

8 Distribution of the order parameter
In this section we will present the theory describing the full statistics of the order parameter
as found by solving the zero temperature saddle-point equation 60. We start with a set of
leading examples and considerations that allow us to grasp the key intuition and the remaining
ideas necessary to derive the full theory. The second section presents two integral equations
on auxiliary functions r, r(0)

1 and a set of formulae to express the probability distribution of
the order parameter via these functions. As it can be shown, other physical quantities can also
be expressed via r. An approximate scheme for an analytical solution of the aforementioned
equations is then proposed. The results of these calculations are then compared to the numerical
solution of the saddle-point equation with excellent agreement in place.

8.1 Description of mutual correlations
8.1.1 Qualitative importance of mutual influence

The main simplification of the model discussed previously in Subsection 7.2 was to completely
neglect the mutual influence of both ξ and ∆ fields on neighboring sites. Below we will present
an instance of important effects omitted in this simplified model. In what follows, we will assume
v > g, which corresponds to the nontrivial regime well beyond a simple Gaussian approximation
discussed previously.

Suppose a given site i has its value of ξi abnormally small, within the range of several ∆0.
The naive approximation of uncorrelated sites predicts no effects in the onsite statistics of ∆
whatsoever, as fields ∆ and ξ are completely uncorrelated within that model. However, let us
consider the effect of this small value of ξ for the neighboring sites.
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Because appearance of ξ ∼ ∆0 is an exponentially rare event (characteristic width of ξ
distribution is of order unity), one can estimate a fraction of neighbors of site j that have this
kind of smallness in the value of ξ:

n ∼ 2Pξ (0) ·∆0,

which means that out of K + 1 neighbors there are only

Ns ∼ K ·∆0 · 2Pξ (0) = v · 2Pξ (0) (136)

sites that would have the value of ξ within the similar range. Given v ∼ 1, it is evident that
a given site typically neighbors only about a single other site with small enough values of ξ.
However, this appears to be sufficient to produce a significant effect.

For each of the neighbors of such a site i with a decreased value of ξ the saddle-point equation
reads:

j ∈ ∂i : ∆j =
g

K

∑
k∈∂j\i

∆k√
∆2
k + ξ2

k

+
g

K
· ∆i√

∆2
i + ξ2

i

(137)

Let us estimate the magnitude of each term in the r.h.s of this equation. Assuming that all
neighbors of j other than i have their value of ξ of the order unity, one estimates the first term
to be of the order given by the mean field approximation:

g

K

∑
k∈∂j\i

∆k√
∆2
k + ξ2

k

∼ ∆0

The second term, however, has ξ ∼ ∆0, so that for a typical value of the onsite order parameter
∆i, the characteristic value of the second term reads:

g

K
· ∆i√

∆2
i + ξ2

i

∼ g

K
· 1 ∼ g

K∆0

·∆0 ∼
g

v
·∆0 (138)

This result tells us that whenever v > g, the considered effect of small ξ will lead to a noticeable
enhancement in the value of ∆ on neighboring sites, i. e.

∆j ∼ k∆0, k ∼ 1 +
g

v
(139)

Provided that v described the typical fraction of the nearest neighbors of each site that have a
suppressed value of ξ, one arrives at the fact that for v ∼ g there exists a fraction of v ∼ g of
sites that do have such a neighbor and thus themselves experience an enhancement in the value
of ∆.

Now let us get back to the initial site i with a decreased value of ξ. As we have observed,
all neighbors of i will have their value of ∆ increased by a noticeable fraction k. One can then
examine the associated behavior of the saddle-point equation for site i:

∆i =
g

K

∑
j∈∂i

∆j√
∆2
j + ξ2

j

∼ g ·

〈
k∆0√

(k∆0)2 + ξ2

〉
ξ

∼ ∆0 · ln k ∼ ∆0 ln
(

1 +
g

v

)
, (140)

where we estimated the typical amplitude of the r.h.s via its average value, which is applicable as
long as neither of ξj is comparable to ∆0. The result implies that provided the small onsite value
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of ξ the value of ∆i will be larger by a factor of ln
(
1 + g

v

)
which can be a number significantly

different from unity.
Formulated mathematically, this means the joint distribution P (∆, ξ) of ∆ on the given site

will experience a noticeable deformation in the region ξ ∼ ∆0. And indeed, statistics of the exact
solution of the zero-temperature saddle-point equation (60) reveal that conditional distribution
P (∆|ξ) = P (∆, ξ) /Pξ (ξ) possesses a nontrivial dependence on ξ in the region ξ ∼ ∆, where it
demonstrates an enhanced value of ∆. This behavior is illustrated on Figure 11.

Figure 11: Density plot of the joint probability distribution P (∆, ξ). The values are multiplied
by P−1

ξ (ξ) · ∆−2
0 , to reflect the data in a small region ∆ ∼ ξ ∼ ∆0. The color shows the

magnitude of the resulting quantity, according to the legend on the right. Parameters of the
simulation: g = 0.16, K = 50, total system size N = 222 ≈ 4.2 · 106. The perceived ”noise“ in the
data is due to a finite sample size, as we are zooming in to a very small region of the ξ values, so
that there are only 2∆0 ·N ∼ 3 · 104 contributing to the areas showed on the plot.

For our consideration this conclusion is crucial for the following reason. As we have learned
from the uncorrelated approximation, it is the region of ξ,∆ ∼ ∆0 that defines the quantitative
behavior of the the whole distribution of ∆, as all integrals describing the probability distribution
P∆ gained their main contribution precisely in that region. And now we observe that a seemingly
weak effect of a decreased value of ξ back-propagates via second order correlations and significantly
deforms the joint distribution P (ξ,∆) precisely in that region, so that its weakness due to
central limit theorem is fully compensated by the smallness of the relevant region.

Of course, one can come up with a dozen of similar considerations, all of each will demonstrate
that exponentially rare (with probability ∼ ∆0 � 1) fluctuations play an essential role in the
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formation of the whole distribution and lead to a much less trivial description even in the limit
∆0 → 0, K →∞, v = K∆0 = const, that we are going to capture below.

8.1.2 Motivating example: a chain of sites

With the help of a simple example that follows, we will present the main idea that allows to
handle the full structure of mutual correlations, which is now evident to be essential for all
features of the order parameter distribution in the region v > g.

Consider a chain of adjacent sites i = 1, N , with N being the total length of the chain. Each
site hosts an independent fluctuating field xi and a slave real scalar field yi ∈ R defined by a set
of coupled equations:

yn = fn→n+1 (xn+1, yn+1) + fn→n−1 (xn−1, yn−1) , n ∈ 2, N − 1 (141)

When the site is at the edge of the chain, i. e. i = 1 or i = N , we will assume that the
corresponding value of r.h.s is manually specified:

y1 = f1→2 (x2, y2) + f0→1, yN = fN→N+1 + fN→N−1 (xN−1, yN−1) , (142)

where the numbers f0→1, fN→N+1 ∈ R are assumed to be known.
Let us also assume that there exists a unique stable solution to this system (e.g. it is given

by a local minimum of a functional). We will denote this solution as

yi = S
(N)
i

(
{xi}Ni=1 |f0→1, fN→N+1

)
(143)

Note that all N functions S(N)
i , i ∈ 1, N depend non-trivially on the values of all independent

fields xi as well as the boundary values of f .
We will now exploit the locality of the equations. Let us cut the system along the connection

i0 ↔ i0 + 1 for some i0 ∈ 1, N − 1 and formally treat the system as a set of 2 systems with
consistent boundary values of f described by a separate equation:{

fi0→i0+1 = fi0→i0+1 (xi0+1, yi0+1)

fi0+1→i0 = fi0+1→i (xi0 , yi0)
, (144)

whereas the values of yi are given byyi = S
(i0)
i

(
{xi}i0i=1 |f0→1, fi0→i0+1

)
, i ∈ 1, i0

yi = S
(N−i0)
i

(
{xi}Ni=i0 |fi0→i0+1, fN→N+1

)
, i ∈ i0 + 1, N

(145)

The key observation is that because the fields xi are independent (i.e., one does not need to
exchange any kind of information across the introduced cut to generate xi), this system of
equations is in all senses equivalent to the original system (141)-(142), i.e., they have the same
values of yi for each disorder realization as well as identical distribution of the original disorder
fields xi, so that all statistical properties of yi are also identical.

Let us now explore the statistical properties of the solution to the new problem. In order to
reflect the decoupling that occurs after we introduce the cut, let us consider the joint probability
distribution for the fields on the sites i0, i0 + 1 on the edge of the cut:

P
(N)
i0,i0+1 (Xi0 , Yi0 , Xi0+1, Yi0+1|f0→1, fN→N+1)

=
〈
δ
(
Yi0 − S

(N)
i0

)
δ
(
Yi0+1 − S(N)

i0+1

)
δ (Xi0 − xi0) δ (Xi0+1 − xi0+1)

〉
x
, (146)
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where the average is taken over all configurations of the independent fields xi. The arguments of
S(N) are omitted for brevity. Note that the joint probability also depends on externally specified
values of the r.h.s f0→1, fN→N+1 at the boundary.

Next step is to rewrite the δ-functions involving the full solution S(N) via the solutions S(i0),
S(N−i0) in the subsystems:

δ
(
Yi0 − S

(N)
i0

)
δ
(
Yi0+1 − S(N)

i0+1

)
= δ

(
Yi0 − S

(i0)
i0

)
δ
(
Yi0+1 − S(N−i0)

i0+1

)
·

∣∣∣∣∣∣∣det

 1 −∂S
(N−i0)
i0+1

∂Yi0

− ∂S
(i0)
i0

∂Yi0+1
1


∣∣∣∣∣∣∣ , (147)

where we have used a 2D generalization of the 1D expression for the δ-function with another
function as an argument (sometimes referred to as the Kac-Rice formula):{

1D : δ (φ (x)) = δ (x− x0) · |φ′ (x0)|
nD : δ (φ (x)) = δ (x− x0) ·

∣∣det
{
∂φ
∂x

(x0)
}∣∣ (148)

Here both φ and x are some n-dimensional vectors, and x0 is asserted to be a solution to the
equation φ (x) = 0. And again, we assume, that this solution is unique, as we otherwise would
need to take into account an additive contribution from each such solution. In our case, we
choose the function φ to reproduce the set of connecting equations (144)-(145):

Yi0,i0+1 = S
(N)
i0,i0+1 (...)

⇔ φ (Yi0 , Yi0+1) =

 Yi0 − S
(i0)
i0

(
{xi}i0i=1 |f0→1, fi0→i0+1 (Yi0+1, Xi0+1)

)
Yi0+1 − S(N−i0)

i0+1

(
{xi}Ni=i0 |fi0→i0+1 (Yi0 , Xi0) , fN→N+1

) = 0 (149)

At this point we will assume that the solution to the system is also stable in a sense that it is
given by a local minimum of some function of Yi, so that the determinant in (147) is positive for
all xi and for yi = S(N). In this case, we can drop the absolute value and continue the expression
(147) as:

δ
(
Yi0 − S

(N)
i0

)
δ
(
Yi0+1 − S(N)

i0+1

)
= δ

(
Yi0 − S

(i0)
i0

)
δ
(
Yi0+1 − S(N−i0)

i0+1

)
·

[
1−

∂S
(N−i0)
i0+1

∂Yi0

∂S
(i0)
i0

∂Yi0+1

]
(150)

Finally, we note, that the second term can be rewritten as:

... = δ
(
Yi0 − S

(i0)
i0

)
δ
(
Yi0+1 − S(N−i0)

i0+1

)
−
[

∂

∂Yi0+1

{
θ
(
Yi0 − S

(i0)
i0

)
+ C(i0)

}]
·
[
∂

∂Yi0

{
θ
(
Yi0+1 − S(N−i0)

i0+1

)
+ C(N−i0)

}]
, (151)

where θ is the Heaviside θ-function, and C(i0), C(N−i0) can be arbitrary functions of any combina-
tion of fields within the corresponding subsystem, while not contributing to the value of the final
expression. This freedom will be important for us later to secure convergence of some integrals.
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Note that the full expression now represents a product of quantities, each depending on the
values of x field only within one of the two subsystems (i0) or (N − i0). We can therefore average
them independently, thus obtaining the following expression for the initial joint probability (pay
attention to indices and arguments of the function in the r.h.s):

P
(N)
i0,i0+1 (Xi0 , Yi0 , Xi0+1, Yi0+1|f0→1, fN→N+1)

= P
(i0)
i0

(Xi0 , Yi0|f0→1, fi0→i0+1 (Yi0+1, Xi0+1))

× P (N−i0)
i0+1 (Xi0+1, Yi0+1|fi0→i0+1 (Yi0 , Xi0) , fN→N+1)

−
[

∂

∂Yi0+1

F
(i0)
i0

(...)

]
·
[
∂

∂Yi0
F

(N−i0)
i0+1 (...)

]
, (152)

where the functions P (i0), P (N−i0) represent statistics of x, y in the corresponding subsystem
only, and the functions F are expressed via P ’s as

F
(i0)
i0

(Xi0 , Yi0 |...) =

Yi0ˆ

−∞

dyi0 · P
(i0)
i0

(Xi0 , yi0|...) , (153)

i.e., they represent the cumulative distribution function. The main achievement of the equation
we have just derived is that it connects statistics of the slave field yi in the full system with that
in the 2 its subsystems connected by a single edge. For instance, one can now integrate out
fields of either of the 2 sites to obtain an explicit expression for the distribution of x, y in the
full system via that of the subsystem. Note, however, that the probabilities P (i0), P (N−i0) are by
no means conditional distributions, although they do share some common qualitative properties
and can be connected with each other.

We now summarize the main ideas that deliver the result:

• The 2 subsystems are only connected via the edge that is eliminated. Once it is removed,
the resulting parts are totally independent.

• The independent disorder field x is uncorrelated, allowing one to freely manipulate the
structure of the underlying chain without distorting the ensemble of the disorder in each
subsystem.

• The fields y are scalar, which allows one to make the final step (151)

• The solution to the equations (141)-(142) is assumed to be unique and locally stable.

Since these properties are sufficient to achieve the described decoupling, one can immediately
come up with plenty of generalizations.

8.1.3 Generalization to the case of RRG

Let us now consider the immediate generalization of a simple system (141)-(142):

yi =
∑
j∈∂i

fi→j (xj, yj) , (154)

where the summation in the r.h.s now is performed over all neighbors j ∈ ∂i of a given site i on
a given base graph (which is going to be a random regular graph in our case).
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The developed above idea can be extended to exclude any small subgraph G of the full
random regular graph, but for the sake of simplicity we will limit ourselves to a case of just
one site i being eliminated, while more general cases will be presented elsehwere. Following the
recipe of the previous section, one then considers the joint probability distribution of the the
fields on the eliminated site i itself as well as its nearest neighborhood j ∈ ∂i:

P full
(
Xi, Yi, {Xj, Yj}j∈∂i

)
:=〈

δ
(
Yi − Sfull

i

)
δ (Xi − xi) ·

∏
j∈∂i

δ
(
Yj − Sfull

j

)
δ (Xj − xj)

〉
x

,

where Sfull
i is a function of all values of xi that formally solves the full saddle-point equation

(60), and the average is done over the full ensemble of x configurations.
In a familiar fashion, finding the solution Sfull to the saddle-point equation can be seen as

solving the 2 interconnected problems, see also Figure 12:
• Finding a set of solutions S(j)

j for each of the K + 1 neighbors in the system where the
values of xi, yi at site i are fixed.

• Finding a solution S
(i)
i for the site i alone with the yj for all nearest neighbors j ∈ ∂i

externally specified. This step is trivial for our case:

S
(i)
i =

∑
j∈∂i

f (xj, yj) ,

but we will use the notation S(i) for brevity.

Figure 12: Illustration to the process of site decimation. The upper pane shows a neighborhood
of a site to be eliminated (red), containing its closest neighbors (yellow). Solving a full system of
equations (154) corresponds to first solving the equations for both subsystems on the lower figures,
with the values of f corresponding to cut connections (dashed edges) replaced by externally
specified values, and then synchronizing the values of f to satisfy the full system.
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In order to move forward, we need the system obtained after elimination to factor in a union
of independent subsystems, each of which interacts with the eliminated subsystem only via a
scalar field. Luckily, this is almost the case in our problem as written—we only need to examine
the independency assertion. Due to the locality of the equation (154), 2 given sites might only
be correlated if there exists a path connecting these 2 sites. A random regular graph possesses
a locally–tree-like structure, meaning that for any two close sites all but one paths connecting
them are long, and this length grows with system size. Therefore, if one removes any site lying
on that single short path, the two sites considered can only become correlated via a cycle with
length of order of the system diameter, which is infinite in the thermodynamical limit. Because
we know that all correlations in the order parameter decay exponentially with distance, and
the decay rate is weakly sensitive to the particular value of the parameters, the locally loopless
structure does lead to statistical independency of all j ∈ ∂i once the site i itself is removed from
the system. Identically, one can also say that the functions S(j) depend only on their private
subsets of all independent fields x living on the corresponding branch of the local tree, while the
dependence on values of x from different subsets is exponentially suppressed.

With this in mind we can now carry out the same type of decomposition of a product of
δ-functions as done previously:

δ
(
Yi − Sfull

i ({x})
)
·
∏
j∈∂i

δ
(
Yj − Sfull

j ({x})
)

= δ
(
Yi − S(i)

i

(
xi, {xj, Yj}j∈∂i

))
·
∏
j∈∂i

δ
(
Yj − S(j)

j

(
{xj}j 6=i | {xi, Yi}

))
·

∣∣∣∣∣∣det

 1 −∂S
(i)
i

∂Yj

−∂S
(j)
j

∂Yi
1

∣∣∣∣∣∣ ,
where we used yet another generalization of the Kac-Rice formula—this time of the product of
δ-functions with components of a vector-function as an argument:∏

j

δ (φj (x)) = δ (φ (x)) = δ (x− x0) ·
∣∣∣∣det

{
∂φ

∂x

}∣∣∣∣ , (155)

where both x and φ are multidimensional vectors, and x0 is the unique solution to the vector-
equation φ (x) = 0. Similarly to the previous case, the role of φ is played by the those components
of the full equation (154) that correspond to the neighboring sites.

Upon expanding the determinant of a block matrix, one arrives at:

... = δ
(
Yi − Si

(
xi, {xj, Yj}j∈∂i

))
·
∏
j∈∂i

δ
(
Yj − Sj

(
{xj}j 6=i | {xi, Yi}

))
·

[
1−

∑
j∈∂i

∂Si
∂Yj
· ∂Sj
∂Yi

]
,

where we have dropped the absolute value off the determinant because we still assert the solution
to be unique and locally stable. Each factor in the resulting expression can now be averaged
independently, each average performed only over the values of x in the corresponding branch of
the local tree, which leaves us with the answer:

P full
(
Xi, Yi, {Xj, Yj}j∈∂i

)
= Pi

(
Xi, Yi| {Xj, Yj}j∈∂i

)
×
∏
j∈∂i

P (j) (Xj, Yj|Xi, Yi)

−
∑
j∈∂i

∂Fi

(
Xi, Yi| {Xj, Yj}j∈∂i

)
∂Yj

· ∂F
(j) (Xj, Yj|Xi, Yi)

∂Yi

∏
k∈∂i\{j}

P (k) (Xk, Yk|Xi, Yi) , (156)
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F (X, Y |...) =

Ŷ

0

dy · P (X, y|...) , (157)

where the functions P (j), F (j), j ∈ ∂i in the r.h.s represent the probability density functions and
the cumulative distribution functions for the problem with site i dropped. Functions Pi, Fi
represent the trivial distribution of the fields on site i in a system consisting of just this site i
and all neighboring fields specified externally:

Pi

(
Xi, Yi| {Xj, Yj}j∈∂i

)
= P (Xi) δ

(
Yi − S(i) (Xi| {Xj, Yj})

)
(158)

Fi

(
Xi, Yi| {Xj, Yj}j∈∂i

)
= P (Xi) θ

(
Yi − S(i) (Xi| {Xj, Yj})

)
(159)

A final step is to integrate out the neighboring sites j ∈ ∂i and obtain the answer for P full in
terms of solutions P (j) of the same problem on a truncated system:

P full (Xi, Yi) =

ˆ ∏
j∈∂i

dxjdyjP
full
(
Xi, Yi, {xj, yj}j∈∂i

)
(160)

As it is already mentioned, we can approach a more general problem using the same sequence
of steps. Importantly for our case, in a similar fashion we can derive a closed integral equation
on the functions P (j) themselves by considering elimination of one more site neighboring to i,
and the result reads:

P (Xj, Yj|Xi, Yi) = P (Xj)

×
ˆ

R−i0

ds

2π
exp {isf (Xi, Yi)} ·

∂

∂Yj

[
exp {−isYj}
−is

·
[ˆ

dxdy · P (x, y|Xj, Yj) exp {isf (x, y)}
]K]

,

(161)

where we have substituted the integral representation of δ- and θ-functions in terms of their
Fourier transforms, which allowed us to simplify the expression.

As a result, we now have a general framework to investigate statistics of quantities described
by local equations with random independent noise.

8.2 Equations on the joint probabilities
In this section we will present a set of integral equations that fully describes the distribution
of the order parameter in the limit ∆0 → 0, K → ∞, v = ∆0K = const and study the regime
of “moderately small” v > g, that is already inaccessible by any kind of large K approximation
but is nevertheless interesting for further practical considerations. The full derivation of the
equations discussed below is now a purely technical task and is, therefore, left out, as at this
point the reader should already be familiar with all key ideas that lead to the results below.

8.2.1 A few notations

In what follows, we will use the following set of already introduced notations:
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• As we have been taught by the uncorrelated approximation, the most natural scale of the
problem is the value of the mean-field order parameter found as the solution to the following
self-consistency equation (62). Therefore, we will henceforth measure all quantities in units
of ∆0. In particular, we will use the already discussed dimensionless quantities

xi :=
ξi
∆0

, yi :=
∆i

∆0

(162)

• Following our previous experience, we also introduce dimensionless parameters of the
theory—characteristic number of neighbors v and normal density of states:

v := K∆0, ν0 := 2Pξ (0) (163)

It is important that these are the only objects that know about the true form of the
disorder distribution Pξ, while every other aspect of the theory cares only about these two
numbers.

• The r.h.s of the saddle-point equation is denoted as f and hence reads:

f (ξi,∆i) =
g

K∆0

· ∆i√
∆2
i + ξ2

i

=
g

v
· yi√

x2
i + y2

i

So that the saddle-point equation now simply reads

yi =
∑
j

Aij · f (xj, yj) =
∑
j∈∂i

f (xj, yj) , (164)

where A is just the adjacency matrix of the base graph.

• Just as in the case of the uncorrelated approximation, it is crucial for our results that f
represents a homogeneous function:

f (x, y) = f (z = x/y) , f (z) =
g

v
· 1√

1 + z2
(165)

Therefore we will use f (z) instead of f (x, y) whenever the discussed result relies heavily
on the homogeneity of f .

• Following the notation of the previous section, by F (a|b) we will denote functions that
depend on the values of fields a in a system obtained from the original one by explicitly
fixing the values of the fields b. Special care should be exercised as not to confuse this
notation with the one used for conditional probability. Despite being qualitatively similar,
our notation means a different thing.

• Finally, in order to increase the readability of the expressions below, we will write dummy
variables (such as integration variables) in lower case, while external arguments for a given
function are capitalized, for instance:

F (Y ) =

Ŷ

0

dy · P (y)

This will prove useful when dealing with expressions involving multiple integrations and
convolutions.
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8.2.2 Exact form of the equations

Consider a system, where the values of the fields xi, yi on a given site i are fixed. This uniquely
specifies the value of the r.h.s f of the saddle-point equation (164) for all nearest neighbors
j ∈ ∂i to be f (xi, yi). As we have learned from the previous section, this also leads to
statistical decoupling of all nearest neighbors j ∈ ∂i, and this decoupling becomes exact in the
thermodynamical limit. The central object of our consideration is the cumulant generating
function of the value f (xj, yj) on a selected neighbor j ∈ ∂i in the described system:

r (S|Fi) = ln 〈exp {iSf (xj, yj)}〉x|Fi ,

where the averaging is done over all configurations of the disorder field xi within the branch of
the local–tree-like structure rooting from site j. The term f (xi, yi) of the saddle-point equation
(164) corresponding to the excluded site i is replaced by Fi.

One can then obtain the set of integral equations on the function r (S|F ) as well as the
function r1 which represents the mean value of f (xj, yj), just as C1 represented the mean value
of the order parameter itself in the uncorrelated approximation:

r (S|F ) = iS ·r1 (F )+ν0 ·
∞̂

0

dz (exp {iSf (z)} − 1− iSf (z))

[
F + v · d

dz
{z · r1 (f (z))}

]
(166)

r1 (F ) = r1 (0) + ν0 · v ·
∞̂

0

dz · f (z) · d
dz
{z [r1 (f (z))− r1 (0)]}

+
F

v
+
g

v
· ν0 ·

∞̂

0

dy · y ln
1

y

ˆ

R−i0

dω

2π
exp {iωF} · exp {v · r (ω|0)} · exp {−iωy} (167)

The two equations above are a generalization of equations (105) and (117) from the uncorrelated
approximation. One immediate observation is that the function r1 now possesses a nontrivial
dependence on the value of the fixed quantity F , which quantitatively reproduces the enhancement
effect induced by neighboring sites, as discussed in the beginning of this section. Also, contrary
to the uncorrelated approximation from the previous section, the equation on r cannot be solved
explicitly, thus reflecting the nontrivial effect of mutual correlations, which, as we can see, goes
well beyond a mere shift in the mean value of a counterpart of C1.

Upon solving the two equations above, all physical quantities can be expressed as integrals
containing exp {v · r} as a weight function, as it becomes apparent form the previous section.
For example, one can use (161) to access the joint probability distribution P (Xi, Yi) of the onsite
values of the fields:

P (X, Y ) = /Z = X/Y /

= P (X) ·
ˆ

R−i0

ds

2π
· exp {−isY } exp {v · r (s|f (X, Y ))}

[
1 +

v

Y
· Z ∂

∂Z

{
r (s|f (Z))

is

}]
(168)

8.2.3 Small v approximation

In the general case, equations (166)-(167) cannot be further simplified and neither can they be
solved analytically, to the best of author’s knowledge, so that the general case requires to use

60



numerical techniques to solve this coupled system of integrals equations. Yet for the case of
moderately small v > g the whole system can be significantly simplified. We will now consider
the formal expansion in powers of v and retain only two leading orders, i.e., solve the equations
for r, r1 up to precision of o (v0). The resulting approximate system of equations appears to be
more tractable by analytical means and presents a much easier problem for numerical solution.

The simplified version of the equation, after some algebra, amounts to the following:

r (S|F ) ≈ iS ·
{
F + f (0)

v

}
+ ν0

[
F + f (0)

]
Φ0 (S) + ν0Φ1 (S) + iS ·

[
r

(0)
1 (F )− r(0)

1 (0)
]
, (169)

where Φ0,1 are familiar objects, similar to the F function (104) in the uncorrelated approximation:

Φ0 (S) =

∞̂

0

dz (exp {iSf (z)} − 1− iSf (z)) (170)

Φ1 (S) =

∞̂

0

dz (exp {iSf (z)} − 1− iSf (z))
d

dz
{zf (z)} (171)

The new function r(0)
1 (F ) has the following form:

r
(0)
1 (F )

=
gν0

v
·
∞̂

0

dy · y ln
1

y

ˆ

R−i0

ds

2π
exp {isF} · exp {v · r (s|0)} · exp {−isy}

=
gν0

v
·
ˆ

R−i0

ds

2π
exp {isF} · exp {v · r (s|0)} · γ − 1 + ln {is}

(is)2 (172)

Finally, the value of f (0) is defined via the solution to the following self-consistency condition:

0 = ν0

∞̂

0

dz · f (z) · d
dz
{zf (z)}+ r

(0)
1 (0) (173)

It plays a role similar to that of C1 in the uncorrelated approximation. While expressions
(169)-(172) still are coupled to each other, both of them can be now explicitly solved, so that one
simply has to deal with multiple numerical integrations to compute the value of both r(0)

1 and r.
Moving further, small values of v > 1 allow us to come up with an approximate analytical

expression for r(0)
1 . Namely, the integral over s in (172) is logarithmic and we can therefore drop

even O (v0) terms from the exponent, thus obtaining

r
(0)
1 (F ) ≈ gν0

v
·
(
F + f (0)

)
ln

1

F + f (0)
(174)

Because the argument of r1 only sweeps a finite range F ∈
[
0, g

v
∼ 1
]
, this expression appears to

be a good quantitative approximation for the true function r1 found by explicit integration of
the equation (172). This, in turn, also allows us to find the value of f (0):

f (0) =
c

W (c)
, c =

v

g

∞̂

0

dz · f (z) · d
dz
{zf (z)} =

g

v
· π

4
, (175)
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where W (c) is the Lambert W -function solving the equation yey = x, and the value of c is
obtained for the particular form of f in our problem.

As a result, we have explicitly solved the exact set of equations (166)-(167) for small v, which
allows us to analytically observe the complete set of features in statistics of the saddle-point
equation.

8.2.4 Comparison with the numerical solution

It is time to conduct a comparison of the developed theory with the exact numerical solution. To
keep things simple, we have chosen to examine the predictions for the joint probability function
of the fields x, y on a given site. As we have seen previously, this object contains sufficient
information to estimate the quality of reproduction of both the onsite distribution of the order
parameter on its own and the effects of correlations that show up at small values of ξ.

To this end, one has to solve the system (166)-(167) numerically and then use the answer
for r to obtain the form of P by means of (168), requiring yet another numerical integration.
Although it is within the authors possibilities to conduct this full program, we opt for using
the approximate expressions (169)-(172), as they succeed in reproducing the exact answer just
as well, while being enormously simpler for numerical analysis. The results are presented on
Figures 13-14 below.

Figure 13: Density plots of the joint probability distribution P (∆, ξ), as extracted from the
numerical data (left) and the theoretical model (right). The values are multiplied by P−1

ξ (ξ) ·∆−2
0

to reflect the data in a small region ∆ ∼ ξ ∼ ∆0. Color represents the magnitude of the resulting
quantity, according the legend on the right. Parameters of the simulation: g = 0.16, K = 50,
total system size N = 222 ≈ 4.2 · 106, which corresponds to v = 0.19. The perceived ”noise“ in
the numerical data is due to a finite sample size, as we are zooming in to a very small region of
the ξ values, so that there are only 2∆0 ·N ∼ 3 · 104 contributing to the areas showed on the
plot. White lines show cross-sections of the plots that are presented on Figure 14.

62



Figure 14: Plot of the probability distribution P (∆, ξ). The values are multiplied by P−1
ξ (ξ)·∆−2

0 .
All theoretical and numerical parameters are the same as on Figure 13. Left plot shows the
distribution for ξ = ξ0 = 0.3∆0, and the right one stands for ξ = ξ0 = 6∆0. For numerical plots,
a window of ξ ∈ [ξ0 − 0.15∆0, ξ0 + 0.15∆0] was used to collect statistics. The perceived ”noise“
in the numerical data is due to a finite sample size, as we are zooming in to a very small region of
the ξ values, so that there are only 0.3∆0 ·N ∼ 5 · 103 contributing to the data on the histogram.

In addition to what we have already observed during the investigation of the uncorrelated
approximation, we highlight the following additional features:

• As we have expected, the value of ∆ indeed bumps up for ξ ∼ ∆. This will be of crucial
importance for further applications.

• This time no fitting is done whatsoever, yet we can see an excellent agreement between the
theory and the experiment. As additional numerical experiments show, the discrepancy is
explained by a finite value of v and can be removed either by considering smaller values of
g ∼ v, or by taking into account O (v) corrections to the equations (169)-(172).

Part IV

Low energy fluctuations of the order parameter
9 Description of small fluctuations of the order parameter at low

energies

9.1 Propagator of quadratic fluctuations
Away from the region of strong dynamical fluctuations, i.e., away from the superconducting
transition itself, one expects to describe all properties of the fluctuations by Gaussian quadratic
fluctuations. In terms of functional integrals this means expanding the order parameter action
(17) up to the second power of deviation ∆−〈∆〉 from the saddle-point configuration. Note that
by 〈•〉 we denote the quantum mechanical averaging of a given field ∆ (τ) over all configurations
according to functional integral (19) in a particular realization of static disorder fields ξj, as
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opposed to statistical averaging over all configuration of ξ fields, as in Part III. The resulting
quadratic action reads:

δiα (τ) := ∆α
i (τ)− 〈∆α

i 〉 , (176)

S [δ] = S [〈∆〉] +
1

2

ˆ
dτdτ ′ · δiα (τ) · Lαβij (τ, τ ′) · δiα (τ ′) +O

(
δ3
)
, (177)

where the first term is the saddle-point action (57) that delivers the free energy, the linear term
vanishes by virtue of the saddle-point equation, and the quadratic term is expressed via the
following operator:

Lαβij (τ, τ ′) =

(
1

2
J

)−1

ij

δαβ · δ (τ − τ ′)− 4
〈〈
Tτ

{
sαi (τ) sβj (τ ′)

}〉〉
〈∆〉

(178)

where the second term represents the response function of non-interacting spins calculated at
the saddle point configuration. One can express it either as the dynamic spin correlator with
non-interacting Hamiltonian

Hspin =
∑
i

2ξis
z
i − 2 〈∆α

i 〉 sαj (179)

or as a Matsubara semionic response loop with spin operators as vertices and a semionic Green
function, as presented in [15]. Either way, one ends up with the following expression for the
Fourier image of this correlator in the zero-temperature limit:

Παβ
ij (ω) = −δij

1

4

√
ξ2
i + |∆i|2

ξ2
i + |∆i|2 − ω2

4

(
∆α
i ∆β

i

ξ2
i + |∆i|2

− δαβ + εαβ
ωξi

2
(
ξ2
i + |∆i|2

)) , (180)

where εαβ = iσy is a fully antisymmetric matrix, and we have removed averaging brackets 〈•〉
in notation of the saddle-point configuration of the order parameter. In this expression we
have swiftly switched from imaginary bosonic Matsubara frequencies to real ones describing the
zero-temperature limit.

Within the approximation of Gaussian fluctuations, the inverse of the introduced operator L
gives the propagator of fluctuations δ of the order parameter:

Gαβ
ij (τ, τ ′) =

〈
δαi (τ) δβj (τ ′)

〉
≈
(
L−1

)αβ
ij

(τ, τ ′) , (181)

where L−1 implies full operator inverse, including component indices α, β, spatial indices i, j
and time τ, τ ′, i.e.,

ˆ
dτ ′′ ·

∑
j

Lαβij (τ, τ ′′) ·Gβγ
jk (τ ′′, τ ′) = δαγδikδ (τ − τ ′) (182)

There is one important aspect to be mentioned at this point. By virtue of the saddle-point
equation (60), the operator L possesses a unique zero eigenmode corresponding to the phase
rotation of the order parameter, which corresponds to a rotation with iσy matrix in vector
notation:

〈∆α
i 〉 (φ) := [exp {iφσy}]αβ

〈
∆β
i

〉
, (183)
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so that the following expression is an immediate consequence of the saddle-point equation 60:

ˆ
dτ ′
∑
j

Lαβij (τ, τ) ·
d
〈

∆β
j

〉
(φ)

dφ
=
∑
j

Lαβij (ω = 0) · [iσy]βγ ·
〈
∆γ
j

〉
= 0, (184)

where the second expression is written in terms of a Fourier image at zero frequency. As it now
becomes evident, the presented eigenmode is a direct consequence of U (1) gauge symmetry of
the problem. One generally expects this relation to be respected by a proper averaging technique.
The same type of symmetry mode can be shown to be present at a finite temperature as well.

9.2 Transverse modes at low energies: formulation of the problem
As already discussed in Subsection 4.3.2, we expect that the propagator of the order parameter
fluctuations possesses low energy eigenmodes that create a significant contribution to the current
response function at subgap frequencies. While the loop term (34) of the response function can
deliver additional contributions to the current response, at the very least it is true that if the
correlator (181) does indeed possess eigenmodes at low energies, they will inevitably cause a finite
current response. Additionally, as was demonstrated previously in Subsection 4.3.2, because of
the structure of the current vertex it also makes sense to expect those modes to be coming from
the transverse component of the fluctuations, i.e., the ones that are directed perpendicular to
the static saddle-point order parameter 〈∆α

i 〉 and thus are themselves fluctuations of the phase
of the order parameter in complex representation.

However, the linear operator (178) also contains information about the dynamics of the
longitudinal, or Higgs’, modes of the fluctuations corresponding to alterations in the absolute
value of the order parameter. Finally, it also includes mixing terms that lead hybridization of
phase and amplitude modes. Generally this means that at a finite frequency the sought-for
low-energy modes represent some superposition of amplitude and phase oscillations. However, in
[15] it is argued that the amplitude mode is gapful with the corresponding energy scale of order
2∆0. Therefore, low-energy excitations, if any, will have only a small amplitude component. And
even more so, when taking into account that the hybridizing term in (178) is proportional to
frequency and thus is expected to bring in additional smallness and low energies. Having this in
mind, we can basically ignore the existence of amplitude modes, and only work with that part of
operator L that represents dynamics of the phase modes. Its Fourier image in zero temperature
real frequency domain is given by:

L (ω) =

(
1

2
J

)−1

ij

− δijΠi, Πi =

√
ξ2
i + ∆2

i

ξ2
i + ∆2

i − ω2

4

, (185)

where the component indices are now absent because the operator is projected onto the subspace
of phase fluctuations, and ∆i denotes the saddle-point configuration of the order parameter,
chosen to be aligned along the (1, 0) vector uniformly across the whole system, as was also done
in the previous Part III. In what follows, we will drop the quantum mechanical average 〈•〉 in
notations of the saddle-point value of the order parameter, reserving it now for averages over
disorder, as it should not cause any confusion.

One might note that the operator (185) seems to be ill-defined when the frequency reaches
the value 2 ·

√
ξ2
i + ∆2

i . However, this event would imply that that either both ξ and ∆ at a given
site are abnormally low, or the frequency itself takes a value of at least several ∆0 in magnitude.
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While the former is an incredibly rare event—as we have seen in Part III, this is even less likely
to happen than having a small value of ∆i alone, which is, itself, a double exponentially rare
event—the latter can by no means be referred to as a “low frequency”. In other words, we expect
such a singularity to never occur in our problem.

We are finally in position to formulate the immediate task of this part: we are studying
the existence and properties of low energy transverse fluctuations of the order parameter.
Mathematically this is formulated as searching for all pairs of frequency ωλ and normalized
vectorsψ(λ) satisfying the following equation:∑

j

Lij (ωλ) · ψ(λ)
j = 0,

∑
i

[
ψ

(λ)
i

]2

= 1, (186)

with L given by (185). We already know one such solution guaranteed to us by U (1) symmetry
(184):

ω0 = 0, ψ
(0)
i =

1

N
∆i, N 2 :=

∑
i

∆2
i , (187)

where N is a normalizing coefficient. Note, however, that this does not imply a finite thermody-
namical density of states at low frequencies, as this mode is found to be a solitary one, so that
its contribution to any physical quantities vanishes in the thermodynamical limit.

As already indicated, we are interested in the values of ωλ well below the typical supercon-
ducting scales. The concrete choice of the upper limit for frequency beyond which it should be
regarded as a high frequency is hard to define though. Indeed, from Part III we can infer that
there is no clear quantitative scale for the magnitude of the order parameter, as the body of the
order parameter distribution occupies an interval of several ∆0. Therefore, below we will present
data with frequencies up to several ∆0 in magnitude, implying that it still provides valuable
insights into the spectrum structure. Also, keep in mind that for all practical concerns, we are
interested in characterizing the region of parameters in which the eigenmodes with arbitrarily
low energy exist.

9.3 Important characteristics of the spectrum
9.3.1 Density of solutions

One important characteristic of the spectrum to keep track of its the density of solutions of the
discussed eigenproblem (186), formally defined as

ρ1 (ω) := lim
N→∞

〈
1

N

∑
λ

δ (ω − ωλ)

〉
ξ

, (188)

where N is the system size, λ enumerates all solutions to the eigenvalue problem (186) in a
particular realization, and the average 〈•〉 is taken over all realizations of the disorder field ξ.
This quantity obviously describes the total density of eigenmodes on the frequency axis.

9.3.2 Inverse Participation Ratio

Among other characteristics of solutions to (186) we are also interested in localization properties,
as they are responsible for whether the corresponding low-energy mode actually causes dissipation.
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Indeed, while both localized and extended modes will show up in the current response function,
one expects only the extended mode to contribute to the real part of conductivity, that would
then induce dissipation. Of course, there are mechanisms that can cause dissipation to occur in
localized modes as well, but those are well beyond the scope of the present model and deserve a
separate investigation. Therefore, the classification of the spectrum into localized and extended
parts provides valuable information. Mathematically, localization properties can be accessed by
the so called Inverse Participation Ratio (IPR), defined as

I (ω,N) :=

〈
1

N

∑
i

·
∑
λ

|〈ψλ|i〉|4 · δ (ω − ωλ)

〉
, (189)

where ψλ is the normalized eigenvector corresponding to the frequency model ωλ, and summation
over i is performed across all sites of the system. Note that this quantity now contains a
dependence on N , and the character of this dependence is what describes the localization
properties. To illustrate that, let us consider two limiting cases:

• All eigenfunctions ψλ at a given frequency ω are extended. In this case, the eigenfunction is
spread approximately uniformly across the whole system, so that a typical onsite amplitude
of a normalized vector reads:

1 =
∑
i

|〈ψ|i〉|2 ∼ N · |〈ψ|i〉|2 ⇒ 〈ψ|i〉 ∼ 1√
N

For the IPR this results in

I (ω,N) ∼

〈
1

N

∑
i

·
∑
λ

1

N2
· δ (ω − ωλ)

〉
∼ 1

N
· ρ (ω) , (190)

i.e., one expects the IPR to be inversely proportional to the system size.

• In the opposite regime, when all eigenfunctions are confined to a finite number of sites
defined by the localization volume, similar considerations result in

I (ω,N) ∼ 1

Nloc (ω)
· ρ (ω) , (191)

where Nloc is the typical localization volume at a given energy.

The general tendency is that the typical value of IPR is given by the inverse support size of
the eigenvector. Of course, there is a wide variety of intermediate cases, as well as there are
possibilities to conduct a much more detailed research of eigenfunctions moments. However, our
numerical capabilities are not quite enough to gather the necessary statistics. Hence we resort
to a qualitative analysis of N -dependence of the IPR at a given energy. In the results presented
below, we will only discriminate between power law decay of the IPR with system-size N ,
corresponding to delocalized states at the given energy, and N -independent behavior indicative
of localization.
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9.3.3 Imaginary part of correlator trace

Finally, we will be interested in the imaginary part of the diagonal matrix elements of transverse
fluctuations correlator, given by the inverse of L:

ρ2 (ω) := lim
N→∞

〈
1

π
· Im

{[
L−1 (ω + i0)

]
ii

}〉
ξ

= lim
N→∞

〈
1

π
· Im

{
1

N
Tr
[
L−1 (ω + i0)

]}〉
ξ

, (192)

where L is given by (185), the second expression assumes restoration of the translational
invariance upon averaging over disorder, and the whole equation includes retarded regularization
+i0 to define the inverse of L. As we have seen in Subsection 4.3.2, this expression is a candidate
for creating a finite real part of conductivity at a given frequency. Additionally, this is the only
quantity among the three considered for which we have developed quantitative predictions.

At this point it is important to understand that, contrary to what may seem initially, the
quantities ρ1 and ρ2 are not equal to each other. Initially, one can spot an obvious dimensionality
mismatch: ρ1 has the dimension of inverse energy, while ρ2 has a multiplier of dimension ∆2

0 on
top of that. Mathematically, this is because the problem (186) is not a standard eigenproblem
of the form

H |ψλ〉 = E |ψλ〉 , (193)

where the eigenvalue enters the equation in a scalar (in terms of matrix structure) and linear
fashion, and one can then express the Green function via a standard expansion in orthogonal
projectors:

(ω + i0−H)−1 =
∑
λ

|ψλ〉 〈ψλ|
ω + i0− Eλ

, (194)

with λ enumerating all solutions 193. In our problem (186), the frequency dependence of L
is much more complicated: not only is it nonlinear, but it also contains a nontrivial matrix
structure of Π. The correct expression for the inverse of L in terms of spectral decomposition
can be obtained via mapping to a standard eigenproblem:

(
(J/2)−1 − Π (ω)

)
|ψλ〉 = 0⇔ Π (ω)

(
Π−1 (ω)− J

2

)
(J/2)−1 |ψλ〉 = 0

⇔
(
ε− J

2

)
|vλ〉 = λ · 1

ε
|vλ〉 , |vλ〉 = aλ · (J/2)−1 |ψλ〉 , λ =

ω2

4
, aλ =

1√〈
ψλ
∣∣(J/2)−2

∣∣ψλ〉
⇔
√
ε

(
ε− J

2

)√
ε |λ〉 = λ · |λ〉 , |λ〉 = bλ ·

1√
ε
|vλ〉 , bλ =

1√〈
vλ
∣∣1
ε

∣∣ vλ〉 , (195)

where ε and f (ε) stand for the following diagonal matrices:

ε = diag
{√

ξ2
i + ∆2

i

}
, f (ε) = diag

{
f

(√
ξ2
i + ∆2

i

)}
(196)

and, when passing on to the second line, we have taken advantage of the fact that the matrix Π
can be expressed as:

Π (ω) =
ε

ε2 − ω2/4
(197)
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The resulting problem (195) is now a standard eigenproblem for the operator ε2 −
√
εJ

2

√
ε, so

that the spectral decomposition for its inverse can be used:[
z −
√
ε

(
ε− J

2

)√
ε

]−1

=
∑
λ

|λ 〉〈λ|
z − λ

, z ∈ C (198)

One can then rewrite the inverse of the target operator (185) as follows:

L−1 (ω) :=
(
(J/2)−1 − Π (ω)

)−1
=
J

2

[
Π−1 (ω)− J

2

]−1

Π−1 (ω)

=
J

2

[
ε2 − zω

ε
− J

2

]−1

Π−1 (ω) =
J

2

[
1√
ε

(
ε2 − zω

) 1√
ε
− J

2

]−1

Π−1 (ω)

= −J
2

√
ε

[
zω −

√
ε

(
ε− J

2

)√
ε

]−1√
εΠ−1 (ω)

= −J
2

√
ε

(∑
λ

|λ 〉〈λ|
zω − λ

)
√
εΠ−1 (ω) , (199)

where we have denoted zω = ω2/4. Finally, we use the definition of |λ〉 to make the expression
explicitly symmetric:

J

2

√
ε |λ〉 =

J

2

√
ε · bλ ·

1√
ε
|vλ〉 =

/(
ε− J

2

)
|vλ〉 = λ · 1

ε
|vλ〉

/
= bλ ·

(
ε− λ · 1

ε

)
|vλ〉 = bλ ·

(
Π−1 (ω) + (zω − λ)

1

ε

)
|vλ〉 (200)

So that we finally obtain to the desired spectral decomposition

L−1 (ω) = −Π−1 (ω)
√
ε

(∑
λ

|λ 〉〈λ|
zω − λ

)
√
εΠ−1 (ω)− Π−1 (ω) (201)

where we have used that |λ〉 form a complete basis, which allowed us to simplify the second
term. In particular, one obtains for the imaginary part of the trace:

ρ2 (ω)

=
1

πN

〈
Im


∑
λ

〈
λ

∣∣∣∣(ε2−(ω+i0)2/4)
2

ε

∣∣∣∣λ〉
λ− (ω + i0)2 /4

− ImTr
{

Π−1 (ω + i0)
}〉

ξ

=
1

N

〈∑
λ

δ (ω − ωλ) ·
〈λ |ε3|λ〉+ 2

ω2
λ

4
〈λ |ε|λ〉+

(
ω2
λ

4

)2 〈
λ
∣∣1
ε

∣∣λ〉
ωλ/2

〉
ξ

(202)

In particular, we can see, that the weight of each eigenvector takes a nontrivial frequency-
dependent form that leads to quantitative differences with ρ1 even upon switching to dimensionless
quantities. However, due to the presence of the common spectral weight δ (ω − ωλ) for each
value of frequency, the two densities ρ1 and ρ2 are either simultaneously equal to zero because of
absence of states at that frequency or both take some positive value, as it is also discussed in
[19, sec. 2.3.5].
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9.3.4 Note about the qualitative character of physics conclusions

As a final note, let us draw attention to the fact that it is neither the current response function
(32) that is being averaged over disorder and analyzed in the present research, nor is it any
other physical object that can be directly accessed via measurement. As discussed in Part II,
this is both because of an overly simplistic initial model in the first place and because any
potential candidate for a physical quantity in the present model requires large technical effort to
come up with an adequate averaging scheme, be it a numerical or an analytical one. All of the
spectral quantities described above characterize some auxiliary objects that present a simple
initial target for analysis. As a result, these quantities bear only qualitative information about
the typical orders of relative scales and key elements of the phase diagram of the real materials.
Nevertheless, it still is a meaningful task to seek qualitative convergence for any theoretical
approach, as the latter might contain potential generalizations to actual systems. Having this
convergence would imply that the underlying technical apparatus accurately reflects any delicate
interplay between different physical mechanisms in the model and thus, if generalizable, claims
to be a hopeful approach to real systems.

10 Numerical study
In building the qualitative picture and verifying our theoretical predictions we will rely on exact
numerical diagonalization of the operator (185) in each particular disorder realization. Such a
choice is a consequence of important correlations present in the order parameter distribution,
which renders most of commonly applied indirect numerical schemes inapplicable. The framework,
as well as a showcase of the results is presented below.

10.1 Implementation notes on the numerical algorithm
To this end, one has to conduct the following program for each particular realization of the
disorder and then analyze statistics of quantities of interest across multiple disorder realizations:

1. Numerically solve the saddle-point equation (60), as discussed in Subsection 6.4

2. Calculate the operator (185) and solve the associated eigenvalue problem (186).

3. Calculate the required characteristics of eigenvalues and eigenvectors, such as ρ1, ρ2, I.

However, it is worth making several important implementation notes:

1. Because it is numerically expensive to calculate and store the inverse of a large adjacency
matrix contained in J as well as to diagonalize the resulting dense matrix (185), we use
the discussed mapping of the problem to a standard eigenvalue problem (195). Luckily
for us, it is formulated in terms of the adjacency matrix itself, which is a sparse matrix.
There is a number of good techniques to deal with numerical diagonalization of large sparse
matrices, we opted for the FEAST algorithm [24].

2. At this point we also note that there is little to no profit in restoring the full spectrum of
the target operator (185), as discussed in the previous section. We then take advantage of
the fact that we are only interested in the presence or absence of eigenvalues in a small
region of frequencies with order of several ∆0 in magnitude. Out of the total large number
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of eigenvalues, this constitutes only a small fraction of order of numerical value of ∆0,
which significantly reduces the required computational resources and time.

3. Our implementation of the program above allowed us to study systems with sizes of up to
216 ≈ 65 · 103 sites, thus being well beyond the 222 ∼ 4.2 · 106 that we have managed to
reach for the saddle-point equation itself. The main limitation that bounds the accessible
sizes is that the execution time of the algorithm grows quickly with the system size:

texec ∼ n2N ∼ (N∆0)2N ∼ N3,

where n is the number of sought eigenvalues. Thus, studying systems with N ∼ 3 · 103

requires some 8 hours of computational time on available hardware. There is still a room
for improvement, however, and the corresponding work is in progress.

4. However, the fact that the eigenvalues of interest are situated in a small region of several
∆0 in size has its adverse sides: as ∆0 is decreased, one needs to take larger system sizes to
secure the same quality of statistical averaging. Together with the discussed limitation on
the system sizes, this puts a lower limit on the value of ∆0 that we can access numerically.
For similar reasons, the exponential growth of the number of neighbors at distance d puts
an upper limit on the numerically accessible values of K, as discussed in Subsection 6.4.

5. Finally, one should take care of practical difficulties emerging from δ-functions in the
definitions of all spectral properties of interest. While these quantities are well defined for
theoretical computation, estimating them numerically presents two complications. First
of all, for any finite ensemble a sum of δ-functions remains a function with zero support,
hence we have to introduce a finite regularization to smear the δ-peak enough to cover the
level spacing between adjacent eigenvalues. This is done by replacing the δ-function with
a Lorentzian of finite width ε:

δ (x) 7→ 1

π

ε

ε2 + x2
, (203)

which can be regarded as a finite level broadening from the physics point of view. Below we
will specify the value of ε for all data presented. Practically, it should be large enough to
have many eigenvalues contained within an interval of width ε. It then follows from typical
magnitudes of the frequencies that ε should be significantly larger than ∆0/ (N ·M), where
N is the system size and M is total number of realizations for the given system size. The
smaller the ε can be while still containing a sufficiently large number of eigenvalues, the
more accurately can the true profile of the quantity in question be reproduced. Additionally,
a finite value of ε implies that the resulting estimate of the target quantity at a given
frequency is only valid when the collected data is representative for the spectrum in an
interval of several ε on either side of the target frequency. In particular, to present reliable
data for frequency ω, we need to have also collected frequencies at least as large as ω± 10ε.

10.2 Demonstration of representative results
In this section we present and discuss a sample of our numerical results. Figure 15 shows the
density of frequencies ρ1 (ω), as given by (188), and on Figure 16 one can find the Inverse
Participation Ratio (189) for the same dataset.
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Figure 15: Frequency density of eigenmodes ρ1 (ω) of the operator (185) according to the results
of a numerical diagonalization. The frequency is measured in native units of mean fields order
parameter ∆0. Parameters of the model: g = 0.24, K = 8, which corresponds to ∆0 = 0.031
and v = K∆0 = 0.25. Each curve is labeled with the corresponding systems size and number
of realizations. To calculate the density of states from a finite numerical dataset, Lorentzians
with width ε = 0.05∆0 were used to approximate the δ-function, as described in (203). This
corresponds to ∼ 102 eigenvalues effectively contributing to each value on the plot. The blue
strip indicates the approximate position of the localization transition, as judged by the Inverse
Participation Ratio curves on Figure 16.

Based on Figure 15, the spectrum can be qualitatively characterized by 4 main regions:

• Firstly, we observe a well pronounced body of the spectrum, qualitatively reminiscent of
a smeared BCS-like coherence peak. Note that the region climbs down to frequencies of
ω ≈ ∆0, being well beyond the conventional threshold of 2∆0.

• Secondly, there is a gap region with no states detected. Numerical experiments with
different parameters suggest that the eigenmodes can penetrate to arbitrary low energies,
so that the gap eventually closes.

• Finally, there is a small peak exactly at zero frequency, originating from the discussed
solitary U (1) eigenmode (187). One can clearly see how the corresponding contribution
diminishes with system size, indicating that there is indeed no finite density of states in the
thermodynamical limit, but just a single eigenvalue pinned at zero frequency and protected
by gauge invariance.
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Figure 16: Inverse participation ration I (ω), as obtained from a numerical diagonalization.
Frequency is measured in units of ∆0. Note that the ordinate axis has a logarithmic scale, which
reveals the power-law decay of the IPR with system size at large frequencies, as evident from the
uniform spacing of the curves in that region. All parameters of the model, as well as parameters
of the numerical procedure are identical to those on Figure 15. The position of the blue strip
marks the approximate position of the localization transition w.r.t frequency as deduced from the
qualitative change in system-size dependence of I (ω). As one can also see from from Figure 15,
for frequencies lower than ω ≈ ∆0 the states are completely absent. As a result, the observed
IPR below ω ≈ ∆0 is nonphysical and emerges from a finite value of regularization ε ≈ 0.05∆0,
with an exception of ω ≈ 0, where IPR is determined by the solitary U (1) eigenvalue (184),
whose contribution, however, vanishes in the thermodynamical limit, as also evident from the
decay of the zero frequency density of states on Figure 15.

Information about localization properties on Figure 16 as well as additional numerical
experiments performed provide some additional valuable insights:

• As it is evident from Figure 16, one can clearly distinguish both localized and extended
modes in the spectrum of the problem. As it generally happens in localization theory, the
density of states on Figure 15 shows no qualitative signs of the occurring transition, whose
position is indicated on both Figures.

• Quite importantly, the position of the mobility edge is heavily dependent on the particular
values of the parameters, as indicated by numerical experiments with different sets of
parameters. The fact that this mobility edge falls within a close neighborhood of 2∆0 is a
special feature of the particular set of parameters chosen.

• One should also take into account that the mere presence of localized states creates an
additional technical difficulty in determining the overall spectral edge, naively situated at
ω ≈ ∆0 on Figure 15. The main issue is caused by the fact that some mechanisms capable
of delivering the existence of localized states are known to demonstrate exponentially slow
saturation with system size. As an example, let us consider the general framework of the
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so-called optimal fluctuation mechanism, describing the occurrence of spatially limited
regions with certain properties that lead to eigenfunction localization within a given region.
As one might understand, the probability of such an event decreases exponentially as
the size of the region increases. Though, it is always mathematically possible that a
particular configuration of a thermodynamically large configuration has an arbitrary large
subregion with some special configuration driving the frequency of the resulting eigenstate
to zero. As a result, the formal spectrum edge may be much lower or even be zero, but yet
with a minuscule value of density of states, indistinguishable from zero from all practical
points of view. This is precisely the case detected in [19] for a simplified version of the
problem, which is a yet another indicator that such an event might take place in the
current formulation of the problem.

• Finally, it is not hard to observe that the power law decay of average IPR with system
size at large frequencies is described by N−α with α clearly below 1, contrary to naive
expectation suggested by simple estimation (190). A simple fitting procedure suggests that
the decay exponent is approximately α ≈ 2/3. This fact is typically indicative of nontrivial
fractal structure of the underlying eigenvectors, yet the presented analysis is too crude to
come up with definite claims.

Finally, we note the characteristics of the order parameter distribution for the current set of
parameters. The average value of the order parameter is given by 〈∆〉 ≈ 1.66 · ∆0, while
the double-exponential front of the distribution is numerically indistinguishable from zero
approximately at ∆min ∼ 0.3, meaning that the probability to find ∆ below ∆min is much smaller
than the inverse of the total number of sites in all disorder realizations combined. Therefore it
should be noted that the finite width of ∆ distribution makes it harder to accurately determine
the reference superconducting scales and thus prevents us from making any reliable qualitative
interpretations of the data regarding the mechanism responsible for the formation of the spectrum.
For instance, one might be tempted to explain the appearance of localized modes by existence
of the corresponding optimal fluctuation of local order parameter field, but the data presented
does not allow one to confidently make such a claim.

For this reason, we encourage the reader to exercise caution in giving the data any deep
physical interpretation. As already mentioned in the beginning of the section, work to expand
the practical numerical capabilities of the approach presented is in progress, so that much deeper
statistical information would become accessible to both qualitative and quantitative analysis.

11 Simplified model: uniform order parameter
As a first step that provides the relevant scales of all quantities and paves the way towards the
full analytical analysis, in this section we will consider a simplified version of the problem. Our
approximation will be to completely ignore the exact value of the order parameter in (185) and
replace it with a constant value ∆i = const = ∆0 across the whole system, with ∆0 being the
uniform approximation to the saddle-point equation, as given by mean field approximation (62)
The resulting simplified expression for the inverse correlator of transverse modes simply reads:

Lij ≈ (J/2)−1
ij − Π0

i · δij, Π
(0)
i =

√
ξ2
i + ∆2

0

ξ2
i + ∆2

0 − ω2/4
(204)
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In this way, the only source of disorder in the eigenproblem for (204) is that the original disorder
fields ξ explicitly enters the expression for the spin response function Π(0). The resulting problem
becomes a much simpler task both because the distribution of the disorder is thus fully known
and because the resulting diagonal disorder Πi in the target operator (204) is uncorrelated.

While this seems reasonable to do so in the limit of large v = K∆0, where the order parameter
assumes Gaussian distribution with small variance and quickly decaying correlations, as shown
in Subsection 7.1, the results of our analysis in Part III also suggest that this might be a
substantially incorrect approximation for smaller values of v. The question at this point is
about the typical ranges of v, at which one can eventually observe the appearance of the subgap
excitations.

Nevertheless, this simplified model is both of historical and methodological interest, hence
we will devote some effort to analyze this model.

11.1 Review of previous studies
The simple model (204) with constant order parameter has already been circulating in the
community for a while. For instance, calculations performed in [15] assume constant distribution
of the order parameter and only deal with explicit disorder originating from ξ in the definition
of the operator (204). A separate attention should be brought to the paper [1] that served as
the primary motivation for the present research. In this paper the authors started with the
simplified expression (204) for the inverse correlator and reformulated the emerging eigenproblem
in terms of a standard eigenvalue problem for a local operator, similarly to how it is done in
Subsection 9.3.3. Assuming that the densities of states for both problems demonstrate identical
qualitative features (such as the localization edge, the edge of the spectrum), the authors then
investigated the resulting local problem by means of Anderson upper limit technique [25], which
initially looked perfectly applicable for the analysis of the resulting hopping problem on a random
regular graph with diagonal uncorrelated disorder. As an outcome of such an analysis, the
authors presented the phase diagram on Figure 17. Most importantly, it implies that one could
indeed expect excitations with arbitrarily low energy at sufficiently low values of K, either
localized or extended depending on the parameters.
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Figure 17: Phase diagram of the transverse modes in constant order parameter approximation,
as presented in [1]. For a fixed value of g, the diagram depicts 4 regions of the spectrum in the
plane of parameter K and frequency ω: region with no eigenmodes (area to the right of the red
curve), region of localized eigenmodes (bounded by green and red curves), region of extended
eigenmodes (to the left of the green line). The values of the characteristic values of K are found
to be K1 = g exp {1/2g} ∼ g

√
1/∆0 � 1 and K2 = g/4 · exp {1/g} ∼ g/∆0 � K1.

As a consequence of the absence of correlations in the diagonal matrix elements of simplified
operator (204), the problem (or its equivalent reformulations) also admits extensive numerical
analysis by means of population dynamics, as extensively discussed in the previous iteration of
this research [19]. The method essentially solves the integral equation on the full distribution of
the diagonal matrix elements of the Green function. The results of this numerical approach have
revealed that the Anderson upper limit condition used in [1] is a rather crude approximation
that fails to accurately describe the spectral properties of the simplified operator (204). The
main reason for such a result is that the system always finds itself at the point of localization
transition up to leading order in 1/K, which implies that all physics including the localization
transition itself is potentially sensitive to any effects given by subleading order in formal 1/K
expansion.

We should note that due to the lack of correlations in diagonal disorder in (204) the problem
admits exact solution by means of supersymmetric approach, as presented in [26]. The ability
of the aforementioned numerical method to reproduce the full statistics of the diagonal matrix
elements of the Green function can be traced back to the same ideas that lead to the existence
of the exact solution presented in [26].

Finally, we note that in [19] it was pointed out that the described simplistic model destroys
the U (1) gauge symmetry of the original operator (185), because constant order parameter does
not satisfy the exact saddle-point equation (60) and thus renders the zero-frequency mode (187)
absent.

Nevertheless, below we propose a yet another scheme of analysis for the problem discussed
that provides the information on the relevant scale of the problem and serves as a basis for a
more accurate technique, that takes into account the full distribution of the order parameter.

11.2 Self-consistent non-Born approximation (SCnBA)
The technique that is about to be presented in this section can be understood as a logical
extension of simple Self-consistent Born approximation (SCBA) for the case of strong impurities
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(i.e., the ones that are beyond Born approximation for the scattering amplitude) that are still
assumed to be sparse.

Such an approach rests on the following qualitative consideration, already familiar to the
reader from Part III:

• Most of the time one has ξ ∼ 1 with the resulting amplitude of the disorder being of order

Π (ξ ∼ 1) ∼ |ξ|
|ξ|2
∼ 1

|ξ|
∼ 1,

which is a small disorder given the fact that each site has a large number of neighbors
K � 1 .

• However, with an exponentially small probability of order ∆0 � 1 the value of ξ falls
within a narrow region of several ∆0, causing the resulting disorder field to be large:

Π (ξ ∼ ∆0) ∼ 1

∆0

� 1 (205)

In other words, a situation can roughly be described as a set of strong impurities scattered
at an exponentially small rate across the system, which seems to be a good basis for the
aforementioned SCBA-like treatment. Of course, the situation is complicated by the slow decay
of 1/ξ dependence, so that the background weak disorder from the majority of the impurities can
add up to only logarithmically large effects, but those are not expected to change the qualitative
situation.

The framework of self-consistent approximation originally deals with the notion of the
self-consistent self-energy defined as

〈G〉−1 = G0 − Σ, (206)

with 〈G〉 representing the target average of the Green function, i.e., 〈L−1〉 in our case (we
will actively use this notation further on); G0 being some good initial approximation typically
inferred from the properties in the absence of disorder, so that the bare adjacency matrix J
of a graph is a good starting approximation to think of. The self-energy operator Σ is then
evaluated self-consistently in terms of the average Green function 〈G〉. There is a number of
known approaches to the derivation of such an approximation for Σ, among which the reader
might probably be familiar with the Thomas-Fermi approximation or the impurity diagrammatic
technique. The latter is discussed in all relevant detail in [3].

As it follows from the formulation of the method, this approach originally cannot capture
the change of spectral structure occurring due to the presence of disorder, as it is ultimately
based on perturbation theory, which by no means can be expected to capture the localization
transition. In particular, the SCBA or its extensions are not intended for describing the localized
part of the spectrum if the initial approximation G0 contains only extended wave functions.

In what follows, we will actively exploit our favorite limit K →∞, ∆0 → 0 with v = K∆0

being fixed.

11.2.1 Analog of the full scattering amplitude for the RMT-like ensembles

For the operator (204) of our interest, one can easily construct the celebrated SCBA: the
self-energy is given by the mean value and the variance of the disorder corresponding to the the
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first 2 diagrams on Figure 18 in the impurity technique:

Σij = δij

[
〈Π〉ξ +

〈〈
Π2
〉〉

ξ
〈G〉ii

]
, (207)

where 〈〈Π2〉〉 stands for variance of Π. This expression results from neglecting two types of
diagrams in the full perturbation series for the self-energy:

• Diagrams with interleaving scatterings on different impurities, also referred to as the vertex
correction. The simplest contribution of that kind is given by the lower left diagram on
Figure 18 and reads

δΣ
(vert.)
ik = 〈Πi 〈G〉ik Πk 〈G〉ki Πi 〈G〉ik Πk〉 =

[〈
Π2
〉]2 〈G〉3ik (208)

The name originates from visual analogy of the impurity technique with the usual per-
turbation analysis of pair-wise interaction, in which case the corresponding diagram does
indeed take the form of a vertex correction. We will later show that in our problem these
corrections are as small as K−C relative to the leading contribution, where C is the number
of crossings of impurity lines. The situation is similar to what one observes in theory of
dirty metals, where each crossing of impurity lines delivers another power of (kF l)

−1 � 1
[3].

• More importantly, the diagrams containing more than 2 scatterings on the same impurity
are also neglected. The simplest such diagram is present on the bottom right of Figure 18
and reads:

δΣ
(scat.)
ij = δij · 〈Πi 〈G〉ii Πi 〈G〉ii Πi〉 = δij

〈
Π3
〉
· 〈G〉2 (209)

As it can be shown for our problem, this and higher order diagrams of the same structure
are all of the same order as the original contribution (207). This means that one has to
collect and sum all such contributions. In the theory of dirty metals, this can be done by
calculating the full scattering amplitude on a single impurity and then replacing the Born
approximation with this exact value [3]. However, in our case some additional technical
effort has to be put in, as it is explained below.
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(a) Mean value contribution 〈Π〉 (b) SCBA contribution
〈〈

Π2
〉〉
· 〈G〉ii

(c) Vertex correction 〈Πi 〈G〉ik Πk 〈G〉ki Πi 〈G〉ik Πk〉 (d) Higher order process 〈Πi 〈G〉ii Πi 〈G〉ii Πi〉

Figure 18: Illustrations for the types of diagrams and corresponding contributions to the
self-energy within the impurity technique.

To make a generalization similar to replacing Born scattering amplitude with the full one
in the conventional theory of metals, one has to exercise some caution. In case of metals one
deals with the case of randomly distributed identical impurities characterized by some short-
range potential V (r) identical across all impurities—we will refer to this case as the “metal-like
ensemble”. In our problem the diagonal disorder represents the ensemble of regularly positioned
impurities with random magnitude—which we will henceforth call “RMT-like ensemble”. In
terms of a continuous problem the latter ensemble would correspond to something akin to a
random weak potential drawn from some functional distribution (e.g., Gaussian), rather than a
sum of copies of a fixed function translated to random positions. While within the SCBA these
two ensembles are quite unsurprisingly identical in all physical properties, the corrections from
higher order processes have different structure in these 2 ensembles.
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Now, in a metal-like ensemble higher order diagrams correspond to higher numbers of
scattering processes on the same impurity and thus add up to the full scattering amplitude
of a particle, with Green function given by its average value on a solitary potential V (r). In
RMT-like ensemble the situation is different, as higher order diagrams correspond to higher
cumulants of the onsite disorder potential 〈〈Πn〉〉, so that the self-energy reads

Σij = δij ·
∞∑
n=0

〈〈
Πn+1

〉〉
[〈G〉ii]

n , (210)

where 〈〈•〉〉 denotes the cumulant of order n of a random variable Π. As one can see, the
whole series does not evaluate to a simple object. This fact can be intuitively understood by
considering some higher order contributions to Σ and noting that upon collecting the contributions
corresponding to the average Green function itself (so called rainbow diagrams), the remaining
series of Σ should contain no two identical impurities in a row, as those are already counted in
the average Green function. However, instead of classifying all types of diagrams contributing to
the self-energy, we will demonstrate this claim later in Section 12 using a functional approach.

At this point, however, a specific character of our problem comes into play. Namely, let us
consider the formal expansion of Σ in powers of small quantity ∆0, just as we did with the
cumulant generating function for the order parameter in Subsection 7.2. Then each diagram in
the aforementioned series for Σ can also be expanded in this way. And exactly in the same way
as it happened during our consideration of the order parameter distribution, all higher order
cumulants will be identical to the moments in the leading order, because all averages over ξ gain
their contribution in a small region ξ ∼ ∆0, i.e.,

〈〈Πn〉〉 = 〈Πn〉 (1 +O (∆0)) , n ≥ 2 (211)

In other words, in our particular problem the self-consistent self-energy is still equal to the exact
scattering amplitude in the leading order w.r.t small parameter ∆0. As a result, we have

Σij = δij ·
∞∑
n=0

〈Π (〈G〉ii Π)n〉ξ +O (∆0) = δij ·
〈

Π

1− Π 〈G〉ii

〉
ξ

+O (∆0) , (212)

with the leading term containing contributions of the order O (ln 1/∆0) = O (1/g) and O (∆0
0),

with the former originating from the same type of logarithmic divergence at large ξ as in Part III
and the latter computed by replacing the limits of integration over ξ with infinity, in full analogy
with Part III:

Σij =

[
ln

2

∆0

+ ν0 · t
(
G =

〈G〉ii
∆0

; ζ =
ω

2∆0

)]
δij +O (∆0) , (213)

t (G; ζ) =

∞̂

0

dx·

[ √
x2 + 1

(x2 + 1)− ζ2 − G
√
x2 + 1

− 1√
x2 + 1

]
=

(ζ2 + Gc+) f (c+)− (ζ2 + Gc−) f (c−)

c+ − c−
,

(214)
where ν0 = 2Pξ (ξ = 0) is a familiar density of states of the original disorder at the Fermi level
and

f (c) =
1√

1− c2

(π
2

+ arcsin c
)
, c± =

1

2

(
G ±

√
G2 + 4ζ2

)
(215)
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with the branch selected in accordance with the rule
√
u+ i0 = +

√
u+ i0. As a result we can

also observe that both frequency ζ itself and the target Green function 〈G〉 enter the problem as
natural dimensionless combinations, thus also indicating the proper scaling in the ∆0 → 0 limit.
Indeed, in accordance to our expectations to obtain a proper low energy field theory, both the
correlator G and the frequency ω enter the expression as natural dimensionless combinations:

[ω] = [∆] , [G (ω)] =
[∆]2

[∆]
= [∆] , (216)

where [•] denotes the typical scale of the corresponding quantity, and in the second expression
one dimension of [∆] in the denominator occurs from the fact that upon switching to Fourier
image the correlator loses one energy dimension due to time integration in the Fourier integral.

11.2.2 Self-consistency equation for the diagonal matrix element of the Green Function

To complete the theory, it only remains to calculate the value of the diagonal matrix element of
the average Green function according to (206). This can is easily be done by calculating the
diagonal matrix element of the average Green Function, or equivalently by calculating its trace
due to expected translational invariance. We opted for the latter since it is straightforward to
compute as the self-energy is given by a scalar matrix. Exploiting the McKay’s expression for
the density of states of a large RRG (38), one obtains:

G =
1

∆0

· 1

N
Tr {〈G〉} =

1

∆0

ˆ
ρ (λ) dλ
1
g
K
λ
− Σ

=

/
ρ (λ) =

K + 1

2π

√
4K − λ2

(K + 1)2 − λ2

/
=
g

v
· F (gΣ;K) ,

(217)
where v = K∆0 is a warmly welcome dimensionless parameter of the theory, G = G0/∆0 is
properly rescaled diagonal matrix elements of the Green function, and F is given by

F (s;K) = K

1ˆ

−1

K + 1

2π

4K
√

1− y2

(K + 1)2 − 4Ky2

1
K

2
√
Ky
− s

dy

=
2Ks

K
K+1

K − 2s2 + K
K+1

√
K2 − 4Ks2

(218)

Finally, as long as we expect the universal low-energy limit to take place, one expects s to be of
order O (∆0

0) (up to logarithmic accuracy), so that in the large K limit the expression above
simplified to just

F (s;K) ≈ s, s�
√
K (219)

Substituting the expression (213) for the self-energy, we finally arrive to a simple equation for
the diagonal matrix element of the average Green Function:

G =
g

v
[1 + ν0g · t (G; ζ)] , (220)

with t given by (214). Solving this simple algebraic equation for G for a given ζ yields a correct
description for the delocalized part of the spectrum of the simplified operator (204). We also
note that in full analogy with what we have observed in III, the theory is only controlled by 4
parameters: ∆0, v, g, ν0.
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11.2.3 Results for the imaginary part of the correlator

Plotted on Figure 19 is the imaginary part of the diagonal matrix element of the average
correlator 〈G〉 = 〈L−1〉, as found from the SCnBA equation (220).

Figure 19: Plots of rescaled imaginary part of the average 〈G〉 /∆0 as a function of dimensionless
frequency ζ = ω/2∆0 for various values of v and g, as found from the SCnBA equation (220).
The plots are sorted by increasing g (horizontal axis) and decreasing v (vertical axis).

The demonstration reveals an important set of qualitative features of the theory:

• The general form of the dependence at moderately small v resembles a celebrated smeared
BCS peak with a sharp spectrum edge, originally presented in [27] for the problem of
electronic Green function in a superconducting system with magnetic impurities. Closer to
our topic, similar profile was obtained in [28] for the electronic Green function with frozen
disorder of the order parameter. The direct comparison is not applicable, however, because
we are dealing with the correlator of fluctuations on top of the saddle-point configuration of
the order parameter, while the Gor’kov’s electronic Green function is purely a saddle-point
object, corresponding to the mean field semionic propagator in our theory.

• At large v one can observe the sharpening of the BCS singularity and growth of spectral
gap towards its mean-field value of 2∆0, as qualitatively expected from this limit. Because
in the limit of large v constant ∆0 approximation becomes ever more applicable, as follows
from our results in Part III, the described treatment demonstrates how a transition to
a text-book situation occurs. We also note here that one should not be confused with
the apparent increase of peak width and decrease of spectral gap with the increase of g,
because having a constant v while increasing g also implies decreasing K to keep the value
of v intact.
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• However, at small v one also expects the appearance of a considerable tail of localized states
instead of a sharp spectrum edge, as our numerical results in Section 10 suggest. However,
not only are those states inaccessible by the constant ∆0 approximation, but it also is the
fault of the approach that fails to reproduce localization properties, as announced earlier.

• Additionally, the model shows that the spectral gap closes at sufficiently small v, that are
yet well above the superconductor-insulator transition itself. While one does not expect
the simplistic approximation of constant ∆0 to reproduce the gap closure quantitatively
accurately, this is an indicator that the low energy transverse fluctuations can indeed be
pushed to arbitrarily low energies, as it was initially suggested in [1].

11.2.4 Position of the spectral edge of extended states

Within the simple equation (220), one can analytically identify the position on the spectrum edge.
As it follows from the definition of the density of states, absence of any states tautologically
corresponds to existence of a purely real stable solution of equation (220). By means of graphical
analysis one can establish that the r.h.s of this equation represents a concave real function for
real arguments. Therefore, the moment when equation (220) loses real solutions corresponds to
the moment when the straight line in the l.h.s of (220) touches the curve corresponding to the
r.h.s. This can be formulated by the following tangency condition:

1 =
∂

∂G

{g
v

[1 + ν0g · t (G; ζ)]
}

= ν0g ·
∂t

∂G
(221)

Being solved simultaneously with (220) w.r.t values of both G and ζ, this equation provides the
boundary value of frequency ζ at which the spectrum edge is situated. The visualization of the
solution is presented in Figure 20.
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Figure 20: Phase diagram of the SCnBA Green function in v − ζ variables for g = 0.05. For a
constant g, v literally translates to the value of K, so that a comparison with Figure 17 can be
conducted.

One particular observation is that the resulting phase diagram in ζ − v plane can be
qualitatively compared to Figure 17. We can see that for sufficiently small v the gap does
indeed close off, as already showcased in the previous section. Yet we obtain at our disposal a
quantitative instrument to characterize this event. At this point, we also note that the technical
approach being discussed is similar to that of [28].

One final remark is that the equation allows a full analytical analysis in the limit of small g.
In particular, one can analytically extract the value of v at which the gap closure occurs, as it
corresponds to seeking a real solution for G to the system (220 - 221) with ζ = 0. The result
reads

vcl. = g ·
[
1 +O

(
g2/3

)]
, (222)

with subleading corrections also accessible analytically. While this result is analytically exact for
the present theory with constant ∆0, one expects it to be different in the full theory, as v ∼ g
is already well beyond the regime of Gaussian fluctuations of the order parameter, as we have
seen in Part III. However, the result (222) is still meaningful as it provides the relevant scales of
parameters at which the spectral gap closes. In other words, one expects the exact answer to be
given by the same type of parametric dependence, but potentially with a different numerical
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prefactor. Finally, the form of the subleading correction O
(
g2/3

)
also indicates that at finite

values of g one can expect significant numerical deviation from the leading asymptotic. For
instance, one can see from Figure 20 that already for g = 0.05 this correction constitutes about
30% of the answer.

11.2.5 Estimation of contributions from vertex corrections

Finally, let us revisit the announced smallness of vertex corrections. There are two major effects
stemming from the existence of such corrections:

• direct corrections to the diagonal matrix elements of the self-energy

• induction of off-diagonal matrix elements of the self-energy, absent within the SCnBA due
to the absence of correlations in disorder.

We start with the first effect using the example of the leading vertex correction (208) to the
SCBA contribution in (207). The estimation reads:

δΣ
(vert.)
ii

Σ
(SCBA)
ii

=
[〈Π2〉]2 〈G〉3ii
〈〈Π2〉〉ξ 〈G〉ii

≈
〈
Π2
〉
〈G〉2ii ∼

1

∆0

·∆2
0 · G2 = ∆0 · G2 � 1,

where in the third expression we used that 〈〈Π2〉〉 ≈ 〈Π2〉 ∼ ∆−1
0 , and the last estimate is valid

since G = O (1), as we have seen previously—it can be shown that G never exceeds O (1/g), which
is still not enough to compensate an exponential smallness of ∆0. As a result, this correction is
by all means negligible. The estimation can be extended to all vertex corrections.

The second effect can be estimated in a similar way:

δΣ
(vert.)
ik

Σ
(SCBA)
ii

∼ ∆0 ·
(
〈G〉ik
∆0

)2

(223)

However, this correction can also be shown to be unimportant, because the off-diagonal matrix
elements 〈G〉ik obey the same type of scaling with ∆0, so that 〈G〉ik ∼ ∆0 . Moreover, out of the
normalization of the translationally invariant operators on RRG discussed in Subsection 5.2.4,
one can deduce that the off-diagonal matrix elements decay with distance d = |i− k| at least as

〈G〉ik
∆0

∼ 1

Kd/2
(224)

so that the estimate (223) reads

δΣ
(vert.)
ik

Σ
(SCBA)
ii

∼ ∆0 ·K−|i−k| (225)

But as we will show later in Subsection 12.3, to produce a finite contribution to the properly
rescaled matrix element of the average Green function 〈G〉 in the limit of large K, the matrix
elements of Σ should scale as

Σik =
O (∆0

0)

K |i−k|
(226)

Already at this point we can see that the induced off-diagonal matrix element of Σ is negligible.
It will be even more so, once we demonstrate in Subsection 12.3 that the actual off-diagonal
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matrix elements of the average correlator decay even faster than (224). And again, the same
type of estimate can be seen to hold for all other types of vertex corrections to the leading
SCnBA expression (210).

As a result, we can see that vertex correction vanishes in the limit of large K and small ∆0,
thus making the remaining theory easily solvable. The situation qualitatively true in a more
general case is about to be discussed below.

12 Theoretical approach to average correlator of transverse fluctua-
tions at low energies

Guided by the simple consideration presented above, we now generalize this approach to take
into account the exact structure of the order parameter, known to us via the results of Section 8.
The main idea persistent in the entire theoretical approach of this work will be to exploit ∆0

and K as the smallest and the biggest parameters of the theory, respectively. Other than
this separation of scales and all its consequences, the approach below does not contain any
independent approximations.

In this section we choose to present all major steps of the derivation directly within the text,
as it contains a sufficient amount of independent ideas and technical peculiarities leading to the
final result. Sections 12.1 - 12.2 contain a detailed derivation of generalization for the SCnBA
expression (212) to the case of correlated disorder. Then we present the expression for arbitrary
matrix elements of average correlator 〈L−1 (ω)〉 in Subsection 12.3. Finally, in Subsection 12.4
we formulate the resulting theory for the diagonal matrix element of the average correlator, exact
in the discussed limit of small ∆0 and large K, while in Subsection 12.5 we present a comparison
of the theoretical results with those of the numerical study.

12.1 General expression for the self-energy
12.1.1 Functional representation for the average correlator

We start off by rewriting the target correlator as a replica field functional integral:[
L−1 (ω + iε)

]
ij

= lim
n→0

[ˆ
Dψ ·

(+i) · ψαi ψαj
n

· exp

{
− i

2
ψT

{(
1

2
J

)−1

− Π (ω + iε)

}
ψ

}]
, (227)

where ψ ∈ Rn is a static (i.e., without time dynamics) n-component replica field being integrated
over, with n eventually approaching zero. The exponent is implied to have a diagonal replica
structure. The Gaussian integral then performs the required inversion of the target linear
operator, while the replica limit eliminates the partition function of the Gaussian integral by
setting it to 1. For brevity, we will henceforth imply the n → 0 limit without stating that
explicitly. The convergence of integral (227) is guaranteed by the causality of the diagonal part:

Im {Π (ω + iε)} = Im
{

εi
ε2
i − ω2/4 + sgnω · iε

}
= +ε · εisgnω

(ε2
i − ω2/4)

2 > 0 (228)
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Next step is to perform the averaging over disorder.〈[
L−1 (ω + iε)

]
ij

〉
=

〈ˆ
Dψ ·

(+i) · ψαi ψαj
n

· exp

{
− i

2
ψT

{(
1

2
J

)−1

− Π

}
ψ

}〉

=

ˆ
Dψ ·

(+i) · ψαi ψαj
n

· exp

{
− i

2
ψT [J/2]−1 ψ

}〈
exp

{
+
i

2
ψTΠψ

}〉
(229)

Therefore, we need to compute the following average

exp
{
−iSdis

[
dj = ψαj ψ

α
j

]}
=

〈
exp

{
+
i

2

∑
j

Πjdj

}〉
, (230)

where we have taken into account that Π is a diagonal matrix. The averaging implies taking into
account the exact value of the order parameter field in each disorder realization and evaluating
the value of Π according to its original definition (185). In particular, the averaging also takes
into account the fact that the values of Π at sites close to each other get entangled via spatial
correlations of the order parameter discussed in Section 8.

Next step is to write an explicit expression for the disorder action Sdis. By direct inspection
one can conclude that it can be written as a power series in terms of cumulants over the exact
distribution over disorder:

− iSdis [d] =
∞∑
s=1

1

s!

∑
{ik}

〈〈
s∏

k=1

[
i

2
Πikdik

]〉〉
, (231)

where 〈〈•〉〉 denotes the corresponding cumulant, and each term in summation over s comprises
a summation over all possible sets of s indices {ik}, with all of them iterating over all sites of
the system.

In this last expression (231), as well as in what follows, by cumulants of multivariate
distribution of values of Π at all sites of the system we understand the following: given a set of
random variables {Xi}ni=1 , one defines the following generating function:

F ({ti}ni=1) = ln

〈
exp

{∑
i

tiXi

}〉
, (232)

with {ti} implying that the function F depends on n arguments t1, ..., tn, and average 〈•〉 is taken
over the joint distribution of all Xi. One then defines all possible cumulants as corresponding
coefficients of formal Taylor series of F :

F ({ti}ni=1) :=
∞∑
s=1

1

s!

∑
{ik}

〈〈
s∏

k=1

Xiktik

〉〉
, (233)

i.e., function F is a formal generating function for the cumulants. This definition is a logical
extension of the special case of a single variable. In this way, one can notice that expression (231)
is almost the definition of the joint cumulants. However, one can prove the following recursive
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combinatorial formula for the cumulants which connects them with the values of standard
moments of the joint distribution:〈

s∏
k=1

Xk

〉
:=
∑
π

∏
A∈π

〈〈∏
k∈A

Xk

〉〉
, (234)

where π iterates over all possible partitions of set [1, k] into nonempty subsets {Ai} ∈ π, and
cumulants can thus be recursively restored via this equation. For instance:

〈X1〉 = 〈〈X1〉〉 ,

〈X1X2〉 = /{π} = {{1} , {2}} , {{1, 2}}/ = 〈〈X1〉〉 〈〈X2〉〉+ 〈〈X1X2〉〉

So that
〈〈X1X2〉〉 = 〈X1X2〉 − 〈X1〉 〈X2〉

is just a covariance. Going further,

〈X1X2X3〉 = /{π} = [1, 2, 3] , [12, 3] , [13, 2] , [23, 1] , [123]/

= 〈〈X1X2X3〉〉+
∑
i

〈〈Xi〉〉 〈〈XjXk〉〉+
∏
i

〈〈Xi〉〉

so that

〈〈X1X2X3〉〉 = 〈X1X2X3〉+ 2 〈X1〉 〈X2〉 〈X3〉
− 〈X1〉 〈X2X3〉 − 〈X2〉 〈X1X3〉 − 〈X3〉 〈X1X2〉

and so on.

12.1.2 Diagrammatic technique at the functional saddle-point

This functional integral (227) along with the explicit expression for disorder action (231) spans a
certain diagrammatic technique that corresponds to the perturbation series around the trivial
saddle-point ψ ≡ 0 of functional integral (227). Below we are going to state the resulting
diagrammatic rules with a few brief comments that clarify some technical details, while the
full derivation is done in a standard fashion. The reader might consult [17, pt. 5] for a typical
framework of deriving the diagrammatic rules from the functional integral formulation. The
rules of the technique are the following:

• The propagator of the ψ-field is read off from the quadratic part of the full action of the
functional integral:

G0 =
(
[J/2]−1 − 〈Π〉

)−1 · δαβ, (235)

where the last multiplier indicates diagonal structure in replica space.

• Higher order terms in the disorder action 231 correspond to interaction vertices of the
associated order s ≥ 2:

Γ
(s)
{ik} =

〈〈
s∏

k=1

Πik

〉〉
, s ≥ 2 (236)
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• Because of the replica structure, only diagrams with no loops of ψ propagators contribute
to the final answer. Indeed, each such loop is proportional to a number of replicas n due
to an independent contraction over replica indices along the loop, and thus is eliminated
by the replica limit—at least as long as the corresponding integral is not divergent in the
replica limit, which is the case in our theory.

• Each remaining diagram is then represented by lines of ψ-propagators and interaction
vertices with s pairs of external ends, with each line corresponding to (−i)G(0) and
each vertex corresponding to isΓ(s), and because all diagrams are loopless there are no
combinatorial coefficients whatsoever. The latter is the case because:

– In each order s the coefficient in the series for Sdis eliminates the one coming from
permutation of d fields in the expression for the perturbation itself.

– In cases when there are more than one identical vertices in the expression which then
can be permuted, such a permutation is compensated by the coefficient coming from
the expansion of the exponent of the disorder action Sdis in power series.

– Finally, the coefficient 1/2 in the definition of Sdis is compensated by permutation of
ψ fields inside d.

• We can make use of one more simplification: because there are no loops, we can essentially
drop the coefficients ±i in front of all expressions, as they will always exactly compensate
each other. In other words, we can identify each line with G(0) and each vertex with Γ(s).
To understand this, one can consider a simple counting argument: each d fields attached
to interaction vertex Γ generates an i multiplier, but it also represents a pair of ψ fields to
be paired. Each such pairing generates a −i multiplier from the corresponding propagator.
In every diagram the total number of ψ fields to be paired is 2 + 2 ·# (d), with # (d) being
a shorthand for “number of d fields”. Hence the total multiplier of a diagram is

(+i)#(d) · (−i)#(ψ)/2 = (+i)#(d) · (−i)1+#(d) = (−i) , (237)

which is precisely the multiplier in front of the expression for the propagator line, so that
it can be simultaneously eliminated along with the aforementioned redefinition of lines
and vertices.

12.1.3 Expression for the self-energy in absence of vertex corrections

Within the described diagrammatic technique, the self-energy for the average correlator arises
naturally as a sum of all single-particle irreducible diagrams by virtue of the Dyson equation:〈

L−1
〉−1

=: G =
[
G(0)

]−1 − Σ, (238)

where we have introduced a shorthand for the target average correlator for brevity. Note that
there is an averaging in between the two inversion operations, so that the r.h.s should not be
evaluated to 〈L〉.
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First several orders of the whole series for Σ read:

Σij

= Γ
(2)
ij G

(0)
ij

+ Γ
(3)
ik1j

G
(0)
ik1
G

(0)
k1j

+ Γ
(2)
ij G

(0)
ik1

Γ
(2)
k1k2

G
(0)
k2j

+ Γ
(2)
ik1
G

(0)
ik2

Γ
(2)
k2j
G

(0)
k1j

+ Γ
(4)
ik1k2j

G
(0)
ik1
G

(0)
k1k2

G
(0)
k2j

+ ... (239)

with summation over internal indices ki of the expressions implied. Next step is to collect all
rainbow diagrams (such as, for instance, the third term in the expression above) by replacing
the propagator line with the exact average correlator, in the spirit of self-consistent approach
discussed in the previous section:

Σij = Γ
(2)
ij Gij

+ Γ
(3)
ik1j

Gik1Gk1j

+ Γ
(2)
ik1
Gik2Γ

(2)
k2j
Gk1j + Γ

(4)
ik1k2j

Gik1Gk1k2Gk2j + ... (240)

This procedure takes into account all diagrams with nested nonintersecting propagator lines, so
that they are now excluded from the series.

Finally, one neglects all diagrams that correspond to correction to any interaction vertices,
such as the third term in the latter series (240), as all of them can be shown to be at least as
small as ∆0/g → 0 relative to the leading contribution in the same order. We will omit the
explicit demonstration, as it is done in absolutely the same way as presented in Subsection 11.2.5.

As a result, one is left with the following simple series:

Σ = Γ
(2)
ij Gij +

∞∑
s=1

Γ
(2+s)

i,{k1}sl=1,j
·Gik1 ·

(
s−1∏
l=1

Gklkl+1

)
·Gksj, (241)

again, with summation convention over internal indexes ki in place. At this point, it is convenient
to explicitly include 〈Π〉 in the definition of Σ:

G−1 = [J/2]−1 − Σ (242)

Σ = 〈Πi〉 δij + Γ
(2)
ij Gij +

∞∑
s=1

Γ
(2+s)

i,{k1}sl=1,j
·Gik1 ·

(
s−1∏
l=1

Gklkl+1

)
·Gksj (243)

We can now see that the self-energy is indeed given by a series of cumulants, as promised in the
previous section. Expression (210) is then restored by using the fact that when the disorder field
Π is uncorrelated on different sites, the joint cumulants are all equal to zero except when all
indices coincide, in which case they are reduced to their single-variable counterparts:〈〈

s∏
k=1

Πik

〉〉
=

{
〈〈Πs〉〉 , i1 = i2 = ... = is

0, otherwise
(244)

as can be proved, for example, by direct inspection of the cumulant generating function (232).
In this way one obtains that Σ has only diagonal matrix elements of the form given by (210).
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12.2 Matrix elements of the self-energy in the limit of small ∆0

12.2.1 General expression

As the reader might already expect, we will further evaluate all cumulants up to leading power
in ∆0, which will in some specific sense correspond to replacing them with central moments.
However, for a generalized case with joint cumulants in a distribution with correlations, this
step requires additional technical effort.

We can conveniently rewrite series (243) for the self-energy by using the cumulant generating
function, that happens to coincide with Sdis:

Sdis [d] = i · 〈Π〉
∑
i

[
i

2
di

]
+ i ·

∞∑
s=2

1

s!

∑
{ik}

Γ
(s)
{ik} ·

s∏
k=1

[
i

2
dik

]
(245)

so that we can obtain each term in series (243) by differentiation:

〈Π〉 = (−i) · ∂iSdis ({di}) , Γ
(s)
{ik} = (−i) ·

[
s∏

k=1

∂ikS ({di})

]
di=0

, (246)

where ∂i is the following differentiation operator:

∂ik := −2i · ∂

∂dik
(247)

Series (243) then reads:

Σij = (−i) ·

([
δij∂i + ∂i∂j

(
Gij +

∞∑
s=1

s∏
l=1

∂kl ·Gik1 ·
s−1∏
l=1

Gklkl+1
·Gksj

)]
S ({d})

)
d=0

, (248)

where the r.h.s contains a differential operator that acts on Sdis.. This operator can be conveniently
rewritten in matrix notation:

Dij := δij · ∂i (249)

Σij = (−i) ·

{D +D

[
G

∞∑
s=0

(DG)s
]
D

}
ij

Sdis. ({d})


d=0

(250)

implying that the resulting matrix differential operator acts component-wise on Sdis, i.e., each
component of the matrix Σ is obtained by acting on Sdis with the corresponding component of
the matrix and then setting d = 0 in the resulting expression.

It is now convenient to switch to Fourier transform of the function Sdis, as differential
operators act trivially on each component. We introduce direct and inverse transforms as

Sdis. ({di}) =

ˆ
Dφ · U ({φi}) e+iφidi/2,

ˆ
Dω =

∏
i

ˆ
dφi
2π

, (251)

U ({φi}) =

ˆ
Dd · S ({di}) e−iφidi/2,

ˆ
Dd =

∏
i

ˆ
ddi, (252)
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where integration is performed over all arguments of Sdis., one for each site of the system.
Substituting the result in (250) gives

Σ = (−i) ·
ˆ
Dω · U ({φi}) ·

(
Φ + Φ

(
G−1 − Φ

)−1
Φ
)
, Φij = φi · δij, (253)

where Φ is a diagonal matrix, whose components contain the integration variables, and we have
explicitly performed summation of the geometric series.

Now we can exploit the smallness of ∆0. To do that, we use the same basic idea as in Part III:
the quantity 〈exp {−itiΠi} − 1〉 is as small as O (∆0) because all integrals over ξ gain the most
of their value in a small region ξ ∼ ∆0. Therefore, it is logical to expand the disorder action as:

Sdis ({d})

= ln

〈
exp

{
i

2

∑
i

diΠi

}〉
= ln

〈∏
i

{
1 +

[
exp

{
i

2
diΠi

}
− 1

]}〉
= /exp {−itiΠi} − 1 =: ∆0 · Yi/

= ln

〈
1 +

∑
A⊂1,N

∆
|A|
0

∏
i∈A

Yi

〉
= ln

1 +
∞∑
n=1

∆n
0 ·

1

n!

∑
{ik}−diff

〈
n∏
k=1

Yik

〉 , (254)

where the sum in the last expressions is done over all sets of different indexes, i.e.,

n = 1 : all i
n = 2 : i 6= j

n = 3 : i 6= j, k and k 6= j

...

Now, expanding expression (254) in powers of ∆0, we arrive at

Sdis ({d})

=
∑
i

〈exp {iΠidi/2} − 1〉

+
1

2

∑
i 6=j

[〈exp {iΠidi/2 + iΠjdj}〉 − 〈exp {iΠidi/2}〉 〈exp {iΠjdj/2}〉]

+ ... (255)

with n-th term being of order O (∆n
0 ), essentially one power of ∆0 per one independent integration

over ξ. For the U function (252) this results in:

U ({φ})

= 2π
∑
i

[PΠ (φi)− δ (φi)]
∏
k 6=i

δ (φk)

+
(2π)2

2

∑
i,j

[PΠ (φi, φj)− PΠ (φi)PΠ (φj)]

+ ... (256)
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where each successive term is again of order O (∆n
0 ), and PΠ is the full probability distribution

of the correspondent subset of Π values, i.e.,

PΠ (φ) = 〈δ (φ− Π (ξ,∆))〉
PΠ (φi, φj) = 〈δ (φi − Πi (ξ,∆)) δ (φj − Πj (ξ,∆))〉
...

with average taken over the exact ensemble of disorder field ξ and emergent values of ∆ defined
by the saddle-point equation. Finally, expression (253) for Σ takes the following form:

Σ

=
∑
m

·
ˆ
dΠ · P (Π) ·

{
Π · Em + Π · Ei

(
G−1 − Π · Ei

)−1
Π · Emi

}
+

1

2

∑
m 6=n

ˆ
dΠmdΠn · [P (Πm,Πn)− P (Πm)P (Πn)]

× {(ΠmEm + ΠnEn)

+ (ΠmEm + ΠnEn)
(
G−1 − (ΠmEm + ΠnEn)

)−1
(ΠmEm + ΠnEn)

}
(257)

+ ...

where by Em we denote the matrix basis element (Em)ij = δimδmj, the first term in (256) with
δ (φ) vanishes because the integrand in (253) is proportional to φ, and a shorthand dΠ · P (Π)
stands for integration w.r.t values of fields ξ and ∆ according to the full joint probability
distribution of the corresponding group of fields {ξ} , {∆} with the value of Π set to be Π (ξ,∆)
, i.e,

ˆ
dΠ · P (Π) · f (Π) =

ˆ
dξd∆ · P (ξ,∆) · f (Π (ξ,∆))

ˆ
dΠmdΠn · P (Πi,Πj) · f (Πi,Πj)

=

ˆ
dξid∆idξjd∆j · P (ξi,∆i, ξj,∆j) · f (Π (ξi,∆i) ,Π (ξj,∆j))

...

Again, the hierarchy of orders is still in place: each successive term contains one more power
of ∆0 because of additional integration over ξ. The full form of each term can be restored by
expanding the series (254) up to corresponding order in Ui and then plugging in the result into
(253).

As a result, expression (257) for Σ can be understood as an expansion in the intensity of
correlations in the distribution of disorder field Π, with leading order containing just the onsite
distribution and thus having no information about the correlations, and all successive terms
introducing corrections from correlations between groups of sites with increasing number. For
instance, assuming Gaussian distribution for Π would leave the 2 leading terms in (257), as
Gaussian distribution is completely characterized by its mean value and pair-wise correlator.
The whole expression (257) allows one to control corrections to any such approximation.
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12.2.2 Demonstration: small distance matrix elements Σ0, Σ1

To better understand the structure of the general series (257) for Σ, let us go through the first 2
terms. According to (257), we first need to calculate the following 2 objects:

Γ(m) (φm) = φmEm + φmEm ·
(
G−1 − φmEm

)−1 · φmEm, (258)

Γ(m,n) (φm, φn)

= [φmEm + φnEn]

+ [φmEm + φnEn] ·
(
G−1 − [φmEm + φnEn]

)−1 · [φmEm + φnEn] , (259)

where (Em)ij = δimδmj. As it appears, the explicit expression for Γ amounts to inversion of
matrices of sizes 1 and 2, accordingly. Let us first rewrite the expression back as a geometric
series:

Γ(m,n) (φm, φn)

= [φmEm + φnEn]

+ [φmEm + φnEn] ·

{
∞∑
k=0

(G [φmEm + φnEn])k
}
G · [φmEm + φnEn]

The first terms can be inspected manually:(
[φmEm + φnEn] · (G [φmEm + φnEn])1G · [φmEm + φnEn]

)
ab

= φ3
mδamG

2
mmδmb + φ2

mφn [δanGnmGmmδmb + δamGmnGnmδmb + δamGmmGmnδnb]

+ φmφ
2
n [δanGnnGnmδmb + δanGnmGmnδnb + δamGmnGnnδnb+] + φ3

nδanG
2
nnδnb

As we can see, only 4 matrix elements of G are relevant to the problem: Gnm, Gmn, Gnn and
Gnn. Similarly, Γab itself has nonzero matrix elements only for a, b ∈ {m,n}. In this case we can
project the problem just on these 2 sites, assemble the whole geometric series back together and
obtain:

Γ(m,n) (φm, φn) =

(
Γmm Γmn
Γnm Γnn

)
= φ̂+ φ̂ ·

(
ĥ− φ̂

)−1

· φ̂, (260)

φ̂ =

(
φm 0
0 φm

)
, ĥ =

(
Gmm Gmn

Gnm Gnn

)−1

, (261)

where •−1 implies an inversion of a corresponding 2x2 matrix. The result is easily computed:

Γ(m,n) (φm, φn) =

(
φm 0
0 φm

)
+

1

(hmm − φm) (hnn − φn)− hmnhnm

(
φ2
m (hnn − φn) −φmφnhmn
−φmφnhnm φ2

n (hmm − φm)

)
(262)

In a similar fashion, one can see that Γ(m) evaluates to

Γ(m) (φm) = φm +
φ2
mGmm

1− φmGmm

(263)
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At this point it is instructive to restore expression (212) for the uncorrelated case. Starting
from the general expression (257), it is obtained by noting the fact that the joint distribution of
multiple Π fields factors into a product of onsite distributions:

P (Π1,Π2, ...) = P (Π1) · P (Π2) · ... (264)

so that that the structure of expression (257) simply eliminates all terms except the first one,
which, upon substituting the expression for Γ(m), is identical to the uncorrelated approximation
(212). A more general statement is that when 2 or more sites are weakly correlated, the structure
of expression (257) implies that a term involving the correspondent group of sites will contain
this smallness, in addition to that of ∆n

0 coming from integration over ξ. This also provides a
natural measure for the strength of correlations:

∆P = P ({Πi})−
∏
i

P (Πi) (265)

Expression (257) can then be perceived as a formal expansion w.r.t this difference. Because we
expect the disorder to be weakly correlated, as our analysis in Part III suggests, the higher order
terms in (257) will contain the correspondent smallness.

Note also when the off-diagonal matrix elements of the Gnm ∼ Gmn are small, the answer
reduces back to that of a pair of independent sites:

Γ(m,n) (φm, φn) =

(
Γ(m) (φm) 0

0 Γ(n) (φn)

)
+O (Gmn, Gnm) (266)

And again, the structure of the corresponding term in (257) discards everything that factorizes
into a product of functions of a single argument φm or φn, so that the first term in 266 is
eliminated upon integration over φ variables. Therefore, if a given off-diagonal matrix element
of G is small, then so is every expression in (257) involving this matrix element.

The generalization of (260) for higher order terms in (257) is now quite straightforward.
Suppose we are interested in a term of (257) that contains only sites i1, ..in. We then introduce
the following projector on the subspace of sites {ik}:

P =
n∑
k=1

|vik 〉〈 ik| ∈ Mat (n×N) , (267)

where (Em)ij = δimδmj and vik denotes basis vectors in Rn, i.e., in components:

(uik)
j = δkj (268)

The corresponding matrix contribution to be averaged then reads

Γ (φi1 , .., φin) = P T

(
φ̂+ φ̂

(
ĥ− φ̂

)−1

φ̂

)
P ∈ Mat (N,N) , (269)

φ̂ = PΦP T , ĥ =
{
PGP T

}−1 ∈ Mat (n, n) , (270)

where inversion in the definition of ĥ deals with just an instance of n× n matrix.
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12.2.3 Estimation of typical magnitude of matrix elements

Now, expression (269) allows us to explicitly estimate the magnitude of each matrix element of
Σ. The latter is fully characterized by the distance d = |i− j| between the 2 sites i and j. The
matrix element Σd can be produced by one of the following ways:

• Considering the contribution of order 2 between the sites i and j. Such a contribution would
contain smallness coming from that of the corresponding matrix element Gij , as suggested
by (266). In the upcoming Subsection 12.3 we will demonstrate that this smallness is of
order K−d. Moreover, sites at large distances are weakly correlated according to the results
of Part III, so that quantity (265) is also expected to be small, thus adding up to the total
smallness of the resulting contribution. In total, we obtain that such contributions are at
least as small as

Σ
(2)
ij ∼

1

K |i−j|
(271)

• Another way is to consider a group of d sites arranging a chain of sites from i to j. Then
there are no issues with correlation intensity or smallness of the required off-diagonal
matrix elements of G. However, in this case the smallness is attributed to the fact that
each additional site brings additional integration over the value of ξ, which is the primary
source of smallness in the whole expression (257). As a result, this type of contributions is
estimated as

Σ
(d+1)
ij ∼ ∆

|i−j|
0 (272)

and because RRG is a loopless structure there is always only one such contribution.

• Such an analysis can be extended to an arbitrary path (possibly, self-intersecting) connecting
sites i and j. Each unique site in such a path adds a power of ∆0, and if the total site count
is 2 ≤ a ≤ d+ 1, the distance d can be covered only by excluding hops at distances larger
than 1, which will then introduce a total factor of Kd−a via the corresponding smallness of
the Green function matrix elements. As a result, any such contribution is estimated as

Σ
(a)
ij ∼

∆a
0

Kd−a , (273)

which incorporates both expressions for a = 2, d+ 1.

We thus arrive at the following scaling of the matrix elements of Σ:

Σd ∼
d+1∑
a=2

ka ·
∆a−1

0

Kd+1−a ∼
σd (v)

Kd
, (274)

where ka is some numerical coefficients of order unity, found by means presented in the previous
section, and σd ∼ O (∆0

0) is some dimensionless function of the control parameter v = K∆0

12.3 Explicit expression for arbitrary matrix elements of the correlator
Next step is to calculate the expression for the matrix elements of the averaged correlator,
assuming a known form of the self-energy. To do that, we need to note that upon averaging
over disorder one expects all objects to restore their translational invariance in a sense described
in Subsection 5.2.4. In other words, one expects all matrix elements of averaged operators,

96



including G and Σ, to depend solely on the distance between the sites i and j. Having this in
mind, we can exploit the full power of the analog of Fourier analysis for random regular graph
developed in Subsection 5.2.4. It allows us to write down the explicit expression for any matrix
element Gd of the average correlator by direct inversion of (242):

Gd

∆0

=
g

v
·

πˆ

−π

dθ

2π
· K

K
2
√
K cos θ

− gΣ (θ)
· −2iK sin θ

Ke−iθ − eiθ
·
[
eiθ√
K

]d

=
g

v
·
ˆ

|z|=1

dz

2πi
· 1

z

K
√
K

z+z−1 − gΣ (z = eiθ)
· K (1− z2)

K − z2
·
[
z√
K

]d
, (275)

where in the second line we have switched to an integral over a unit circle in the complex plane,
and Σ (θ) is the spectral decomposition of the self-energy matrix, as dictated by (52 - 54):

Σ (θ) =
Π (θ)σ (θ) + Π (−θ)σ (−θ)

Π (−θ) + Π (θ)
,Π (θ) =

−2iK sin θ

Ke−iθ − eiθ
,

σ (θ) := tr
{[

Σij −
1

N
Σ (K) Iij

]
· [θ]|i−j|

}
, [θ] =

eiθ√
K
,

Σ (K) = tr {ΣI} =
1

N2

∑
ij

Σij

We now switch to a proper scaling form (274) for the matrix elements of the self-energy:

sd = gΣd ·Kd (276)

So that the spectral decomposition is rewritten as:

Σ (K) =
1

g
(277)

σ (θ) := tr
{[

Xij −
1

N
X (K) Iij

]
· [θ]|i−j|

}
=

1

g

∞∑
d=0

sd ·
(
eiθ√
K

)d
(278)

gΣ (θ) = g
Π (θ)σ (θ) + Π (−θ)σ (−θ)

Π (−θ) + Π (θ)
= g

Π (θ)σ (θ) + Π (−θ)σ (−θ)
Π (−θ) + Π (θ)

=
∞∑
d=0

sd ·
1

Kd/2

zd+1 − z−(d+1)

z − z−1
, (279)

where we have explicitly evaluated the K → ∞ limit in everything but the oscillating term
containing z. Substituting this back into expression (275) for the correlator renders:

Gd

∆0

=
g

v
·
ˆ

|z|=1

dz

2πi
· K
z
·

[ √
K

z + z−1
−
∞∑
d=0

sd ·
1

Kd/2

zd+1 − z−(d+1)

z − z−1

]−1

· K (1− z2)

K − z2
·
[
z√
K

]d
(280)
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Next step is to notice that all roots of the denominator are of order K±1/2, because presence of
Σ brings only O

(
K−1/2

)
correction to the leading expression. Moreover, we can see that there

is a universal leading asymptotic for all of these roots:z0 = O
(√

K
)

: 1
z
·
(
1−O

(
1
K

))
− 1√

K
·
∑∞

d=0 sd ·
zd

Kd/2

(
1 +O

(
1
K

))
= 0

z0 = O
(

1√
K

)
: z

(
1−O

(
1
K

))
− 1√

K
·
∑∞

d=0 sd ·
z−d

Kd/2

(
1 +O

(
1
K

))
= 0

(281)

or, unifying the 2 cases, all roots are given by

z0 ≈ K±1/2 · u0

(
1 +O

(
1

K

))
(282)

where u0 iterates over all roots of the following equation:

1

u
−
∞∑
d=0

sd · ud = 0 (283)

Let us introduce the generating function of sd coefficients:

φ (u) =
∞∑
d=0

sd · ud, (284)

which is assumed to be convergent in some neighborhood of u = 0. We can now evaluate integral
(280) using the residue technique. And because all relevant values of z are in the O

(
K−1/2

)
vicinity of zero, we can expand the integrand up to the leading order in powers of K:

I (z) =
K

z
·

[ √
K

z + z−1
−
∞∑
d=0

sd ·
1

Kd/2

zd+1 − z−(d+1)

z − z−1

]−1

· K (1− z2)

K − z2
·
[
z√
K

]d
=

/
z =

u√
K

/
≈
√
K

Kd−1
· ud−1

u− φ
(

1
u

) · [1− u2

K

(
φ (0)− 2φ

(
1
u

)
u− φ

(
1
u

) )
+O

(
1

K2

)]
, (285)

so that expression (280) can be now rewritten as

Gd

∆0

=
g

v
· 1

Kd−1
·
ˆ

u=
√
K

du

2πi
· ud−1

u− φ
(

1
u

) · [1− u2

K

(
φ (0)− 2φ

(
1
u

)
u− φ

(
1
u

) )]
(286)

Now the integral possesses only one singularity u =∞ outside the integration contour, which
then delivers the value of the integral:

Gd

∆0

= −g
v
· 1

Kd−1
· res
u=∞
·

{
ud−1

u− φ
(

1
u

) · [1− u2

K

(
φ (0)− 2φ

(
1
u

)
u− φ

(
1
u

) )]}

= +
g

v
· 1

Kd−1
·
[
(1− δd,0) · 1

(d− 1)!

[
dd−1

dud−1

{
1

1− uφ (u)

}]
d=0

+ δd,0
φ (0)

K

]
, (287)
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so that we have explicit formulas for all matrix elements of the correlator

G0

∆0

=
g

v
φ (0) (288)

Gd≥1

∆0

= +
g

v
· 1

Kd−1
· 1

(d− 1)!
·
[
dd−1

dud−1

{
1

1− uφ (u)

}]
u=0

(289)

As we have claimed multiple times up to now, the matrix elements of the Green functions
indeed have the following scaling form in the limit ∆0 → 0, K →∞, v = K∆0 = const:

Gd≥1 ∼
∆0

Kd−1
, G0 ∼ ∆0 (290)

and thus express exponential decay with distance d.
Additionally, expressions (288 - 289) also prove the two claims made in Subsection 11.2.5

about the role of off-diagonal matrix elements of the self-energy:

• We can see that any contribution to Σ that falls off faster than the scaling form (274) does
not contribute to the value of any matrix element G upon proper rescaling

• Expression (288) also demonstrates that the diagonal matrix element of the Green function
G0 is only sensitive to the diagonal matrix element of the self-energy φ (0) = s0 = gΣ0.
Moreover, because we know that each successive term in (257) has smallness of order ∆n

0 ,
one ∆0 for each independent site involved, we can evaluate the value of s0 using only the
first term in (257), as all other terms die out in the scaling limit.

• More generally, matrix element Gd at distance d knows about matrix elements Σd as far as
distance d− 2.

12.4 Self-consistency equations on diagonal matrix elements
Let us consolidate everything we have gathered. We have derived a coupled set of equations on
the diagonal matrix elements of the target correlator G and its self-energy Σ in the limit

∆0 → 0, K →∞, v = K∆0 = const (291)

In this limit, the aforementioned operators possess translational invariance in a sense discussed
in Subsection 5.2.4 with the following scaling of the matrix elements:

G0 ∼ ∆0, Gd≥1 ∼
∆0

Kd−1
, Σd ∼

g−1

Kd
, (292)

so that it is appropriate to introduce the following dimensionless quantities:

G0 :=
G0

∆0

, Gd≥1 =
Gd−1

∆0

Kd−1, sd = gΣd ·Kd (293)

In terms of these quantities, the equations take the following simple form:

G0 =
g

v
· s0, (294)
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s0 =

ˆ
dxdy · P (x, y)

∆0

·
[
π (x, y) +

π2 (x, y) · G0

1− π (x, y) · G0

]
, (295)

π (x, y) =

√
x2 + y2

x2 + y2 − ζ2
, (296)

where P is the joint probability distribution of rescaled onsite values of x = ξ/∆0 and y = ∆/∆0.
One then has to solve this system (257) for s0 and G0. As it is demonstrated in subsections 12.2
- Subsection 12.3, there are no perturbative corrections to this set of equations, i.e., they become
exact in the limit (291).

By use of the previously derived expression (168) for P one then completes the analytical
description of the diagonal matrix element of G. In particular, after some algebra that heavily
exploits the analytical properties of P discussed in Part II, one can rewrite equations (294 - 296)
via the universal r function:

G0

g/v
= 1 + g · [∆Π (0) + ∆Σ (G0; ζ)] (297)

where ∆Π is a number given by

∆Π (0) = ν0

γ +

ˆ

R−i0

dω

2π
· ln iω

iω
·
∞̂

0

dz

(1 + z)3/2
· exp {v · r (ω|f (z))}

 (298)

and ∆Σ is given by

∆Σ (G0; ζ) =
∑
a=±

(icasa) · ν0 ·
∞̂

0

dz

1 + z2
·
∞̂

0

dψ · exp {v · r (−saψ|f (z))}

×

exp

{
isaεaψ√
1 + z2

}
+

exp
{
isaεaψ√

1+z2

}
− 1

iεaψ√
1+z2

(
−z∂f

∂z
(z)

)[
v · ∂r

∂f
(−saψ|f (z))

] ,
(299)

ε± =
G0

2
±

√(
G0

2

)2

+ ζ2, s± = sgnImε±, c± = ε± ∓
ζ2/2√(G0

2

)2
+ ζ2

(300)

Similarly to the simple case of constant ∆ approximation, one can observe that equations (294
- 296) possess a purely real solution for G0 for some values of the parameters, which algebraically
can be traced down to the fact that s0 is a concave function of G0. In perfect analogy with
Subsection 11.2.4, one can then formulate the additional tangential condition that would then
describe the position of the spectral edge.

Finally, as it is discussed in subsections 12.2 - Subsection 12.3, it is in principle possible to
come up with a similar type of equations for all off-diagonal matrix elements of G, with the
same universality taking place in the limit (291). However, the equations rapidly become rather
complicated. However, for each finite distance d, the matrix element Gd is described by a closed
set of equations involving all Gd′ with d′ < d.
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12.5 Comparison with the numerical solution
We now calculate the the diagonal matrix element of the average correlator using a particular
set of model parameters and compare it with the results of the numerical exact diagonalization.
The theoretical calculation is done according to expressions (297 - 300), where r is found via
small v approximation, as described in Subsection 8.2.3. Comparison of the theoretical value for
ρ2 = Im {TrG/N} with that obtained from numerical diagonalization is presented on Figure 21.

Figure 21: Frequency dependence ρ2 (ω) /∆2
0 of the (properly normalized) imaginary part of the

average correlator G, as computed by the exact numerical diagonalization and the theoretical
SCnBA method with the value of r restored from the small v approximation. The parameters of
the model: g = 0.21, K = 30, box shaped distribution of disorder Pξ (ξ) = θ (1− |ξ|) /2. This
corresponds to the following values of the control parameters for the theory: ν0 = 1, ∆0 = 0.017
v = K∆0 = 0.51. Experimental results were obtained from averaging over 8 samples with size
N = 16384 with level-broadening ε = 0.05∆0. As discussed in the main text, the peak at zero
frequency in experimental data is a consequence of finite system sizes and thus is absent in the
theoretical curve that represents the infinite N limit.

First of all, let us comment the apparent peak at low frequencies, which is present only in the
numerical data. This peak is attributed to a solitary eigenvalue of U (1)-symmetry mode (187),
whose contribution is supposed to vanish in the thermodynamical limit and thus is absent in the
theoretical curve. In the numerical data, however, this peak shows up as a consequence of the
fact that the spectral weight (202), expressing the contribution of each eigenmode to the value
of ρ2, contains an explicit 1/ω singularity at low frequencies. However, this singularity is absent
in the thermodynamical limit N →∞ for any finite level broadening ε. In the numerical data it
survives because large N is compensated by a numerical smallness of ε. To illustrate that, the
numerical data for the density of solutions ρ1 for various system sizes is presented on Figure 22.
In ρ1 such a singularity in the spectral weight at small frequencies is absent, and one can thus
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see a decrease in ρ1 (0), because it is provided by a single eigenvalue, whose contribution is not
extensive with system size.

Figure 22: Reference numeric density of solution for the numeric dataset presented on Figure 21.
All parameters of the numerical experiment are presented on Figure 21.

Next, we address the fact that the convergence between the theory and the numerical data is
not quite as outstanding as was observed in Section 8 for the saddle-point equation itself—we
ignore the behavior of the numerical data at zero frequency, as explained in the comments to
Figure 21. The explanation lies in a simple fact that the value v = 0.51 is not small enough
compared to unity to expect accurate results from the small v approximation that we used to
compute the r function, thus rendering the quantitative performance of the resulting theory
quite poor. A straightforward fix to this problem would be to use the exact set of equations
on r, which is also presented in Section 8, but the corresponding numerical routine is not yet
implemented. Another way would obviously be to use parameters yielding a smaller value of v,
but due to the technical limitations of the exact diagonalization outlined in Section 10, this is
not possible at the moment.

With that said, our theoretical approach gives a much better qualitative approximation of the
actual distribution, than the constant ∆ approximation discussed previously. In particular, the
developed model accurately reproduces the smooth form of the imaginary part of the correlator
ρ2 observed numerically, which is also consistent with the behavior of the density of solutions
ρ1.
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Part V

Conclusion
13 Achieved results
Below we summarize the immediate results of our theoretical research of the saddle-point solution
and small fluctuations of the order parameter within the Anderson Pseudospin model on a
random regular graph, presented in Part II and analyzed in Parts III and IV:

1. The complete theoretical investigation has been performed in the limit of small values
of the typical superconducting scale ∆0 and large values of K, in which case the theory
demonstrates a well-defined universal behavior

(a) Exponentially small value of ∆0 arises naturally due to the assumed smallness of
Cooper coupling constant g. The large value of K is then required to preserve the
very existence of the superconducting phase, as demonstrated in previous studies.
In our research we chose to characterize the superconducting scale by its mean field
value.

(b) All relative physical quantities are then showed to acquire a native characteristic
scale determined by the dimensionality w.r.t energy units. Upon proper rescaling,
the superconducting energy scale is then removed from the problem, while all other
energy scales may well be considered to be infinite, with the only exception of the
equation determining the value of ∆0 itself.

(c) The emerging theory for the rescaled quantities is then completely described by just
3 control parameters:

i. Density of states at the Fermi-energy: ν0 = 2Pξ (0)

ii. The value of the Cooper constant g
iii. Effective number of neighbors within the superconducting scale of energy: v =

K∆0

2. For both the saddle-point problem and the problem of low energy transverse fluctuations
we have developed a numerical approach that allowed us to conduct an explicit verification
of all the theoretical results

(a) For the saddle point equation, we have managed to come up with a good numerical
scheme for a solution that allowed us to reach system sizes of up to 2.4 · 106 sites.
This enabled us not only to probe onsite distribution of the order parameter itself,
but also to reliably probe the local correlations, that have been shown to be essential
in the problem. Yet, there still is a room for improvement to dramatically increase
the range of accessible types of statistical data.

(b) For the eigenproblem of the low-energy transverse fluctuations of the order parameter
we have also developed a numerical tool capable of restoring the profile of density
states and discriminate between localized and extended parts of the spectrum, with
both types of the states being confidently observed in the present problem. However,
our current approach is rather limited in what concerns the accessible system sizes,
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thus preventing us from providing a reliable quantitative description for the most
interesting ranges of control parameters. In this regard, a substantial piece of technical
work remains to be done, as the developed approach can be significantly improved.

3. In Part III we presented a detailed and practically complete theory for statistics of the
order parameter

(a) It was showed that there is a single function r of 2 variables that completely describes
all statistical quantities in the theory, such as the full probability distribution of the
order parameter, as well as any joint probability distribution of fields on any local
group of sites, such as joint probability distribution on the 2 neighboring sites of the
system.

(b) The only assumption used in the derivation is the absence of short loops in the system,
which is asymptotically true for large random regular graphs. Within this accepted
assumption, all equations are exact in the limit of small ∆0 and large K

(c) The aforementioned function r is shown to satisfy a nonlinear integral equation. In
the general case, this equation requires a complex procedure of obtaining a numerical
solution that is yet to be developed.

(d) However, in the regime of large v the system is trivially described by small fluctuations
and thus assumes a proper analytical solution. In the opposite limit of small v we were
able to simplify the integral equation on r and solve it analytically, thus obtaining
the full description of the statistics of the order parameter for v > g.

(e) The results of our calculations are in excellent agreement with the numerical solution,
as judged by the full structure of the joint probability distribution of ξ and ∆ fields
on a given site, thus fully verifying our approach.

4. Finally, in Part IV we have presented an analytical approach to calculate the average
correlator of low-energy transverse fluctuations of the order parameter

(a) Our treatment is shown to be exact in a sense that all perturbation corrections vanish
in the studied limit of small ∆0 and large K. The only source of corrections remaining
to be studied is the non-perturbative corrections from other functional saddle points.

(b) The outcome of our approach is a single analytical equation on the value of the
diagonal matrix elements of the average correlator.

(c) The solution to this equation demonstrates good qualitative agreement with the
numerical calculation. However, there exists a discrepancy due to the used approxima-
tion of small v that is poorly satisfied for all parameters accessible by the developed
numerical method.

(d) Once the apparent source of the aforementioned discrepancy is eliminated, the
developed approach is expected to provide a valid quantitative description for the
main body of the spectrum. However, this is yet to be verified. The question of
whether the developed approach reproduces the detected localized states also needs
to be challenged.
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14 Physics conclusions
In this section we discuss some general conclusions following from our results so far, as well as a
realistic interpretation of the observed physics:

1. One particularly important qualitative conclusion from our analysis is that the exact
structure of the order parameter field is crucial to describe any physics on top of it.
Ignoring the distribution of the order parameter might even lead to qualitatively incorrect
results when one deals with low energy physics, as the order parameter is found to
demonstrate a nontrivial distribution in the relevant region of parameters v ≈ g.

2. The fact that our model is described only by 3 control parameters suggests that the
proposed analytical approach can be extended to a more complicated model of disordered
superconductors to include possible effects from nontrivial structure of localized eigenstates.

3. The demonstrated universal behavior of the low-energy physics also qualitatively justifies
our claims about the irrelevance of some particular design choices for the initial model, as
the obtained results are based on rather general principles that seemingly remain intact in
a rather general setting.

4. Regarding our understanding of the low energy transverse fluctuations of the order param-
eter, we do not yet possess a confident quantitative description of the full phenomenology.
To date, most of the general physics conclusions drawn from our analysis are of qualitative
nature, both because of an overly simplified initial model and incomplete analysis of the
model. The cumulative outcome of our research of transverse fluctuations is summarized
in a qualitative phase diagram on Figure 23.

15 Further development
In this section we discuss potential directions of further theoretical and numerical research of
the problem. We start by noting a list of purely technical tasks to be done in order to complete
the analysis of the proposed theoretical model:

1. Among the top priorities is a technical implementation of the full numerical solution to
the integral equation describing the universal r function. While we have already developed
such a routine for relatively simple limit of small v, we are compelled to tackle the problem
for arbitrary v in order to be able to conduct a fair comparison with numerical experiments.

2. Secondly, the developed approach begs for additional analytical investigation in order to
infer the key qualitative features of the solution, such as the described position of the
spectral edge in the full SCnBA approach considered.

3. Finally, we are interested in collecting a more reliable numerical dataset to improve both
the statistical quality and the available range of parameters.

Secondly, we draw some long-term plans for future theoretical analysis:

1. One obvious aspiration is to study other saddle points of the functional integral for the
average correlator. One can intuitively expect that these saddle points are important for
describing the lowest energy scales.
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Figure 23: Sketch of an apparent phase diagram, as perceived from both analytical and numerical
studies. Green color reflects the presence of localized low-energy eigenstates, while red color
marks the region allegedly containing extended low-energy excitation, albeit with insufficient
data available for that region to draw certain conclusions.

2. A more general observation is that we can notice all signs of existence of the underlying
universal field theory that can correctly capture everything derived so far as well as
yet-to-be-obtained results of the analysis of other saddle points of the model.

3. Finally, we are interested in exploiting the universality of the studied limit to possibly
describe a more physical version of the current model, that would eventually allow one to
apply our results to real world experiments.
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