Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа физики и исследований им. Ландау Кафедра проблем теоретической физики

Направление подготовки / специальность: 03.04.01 Прикладные математика и физика **Направленность (профиль) подготовки:** Общая и прикладная физика

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ МЕТОДАМИ КВАНТОВОГО МОНТЕ-КАРЛО СВЕРХПРОВОДИМОСТИ НЕУПОРЯДОЧЕННЫХ ФЕРМИ-ГАЗОВ

(магистерская диссертация)

Студент:
Маснев Николай Геннадиевич
(подпись студента)
II
Научный руководитель:
Щур Лев Николаевич,
д-р физмат. наук, проф.
(подпись научного руководителя)
Консультант (при наличии):
(подпись консильтанта)

Москва 2023

1 Аннотация

Работа посвящена численному моделированию модели Хаббарда на кубической трёхмерной решётке при разных температурах, поиску критической температуры сверхтекучего фазового перехода при малом беспорядке.

В ходе исследования были получены разные значения критических температур при разных размерах системы, проведена оценка сходимости.

Численный счёт выполнялся на вычислительном кластере института теоретической физики им. Л.Д. Ландау в течении двух лет.

2 Содержание

Содержание

1	Анн	отация	
2	Содержание		
3	Опр	ределения и сокращения	
4	Вве	дение	
	4.1	Унитарный газ	
	4.2	Модель Хаббарда	
	4.3	Теоретические работы	
		$4.3.1$ ϵ - разложение	
		4.3.2 Резонанс Фешбаха	
	4.4	Экспериментальные работы	
		4.4.1 Эксперимент Регала	
		4.4.2 Эксперимент Цвирляйна	
5	Основная часть		
	5.1	Цели работы	
	5.2	Параметры модели	
	5.3	Критическая температура	
	5.4	Представление Рубцова	
		5.4.1 Проблема знака	
		5.4.2 Диаграммы для средних	
	5.5	Worm algorithm	
	5.6	Вычисление определителей	
	5.7	Обработка ошибок	
	5.8	Результаты	
	5.9	Анализ сходимости	
	5.10	Обсуждение используемых приближений	
6	Зак	лючение	
7	Спи	сок литературы	

3 Определения и сокращения

- 1. режим БКШ состояние системы, которое можно описать с помощью микроскопической теории, построеной Бардином, Купером и Шриффером [7]
- 2. режим БЭК состояние системы, которое можно описать с помощью микроскопической теории Бозе Эйнштейна [1]
- 3. кроссовер плавный переход, не являющийся фазовым

4 Введение

4.1 Унитарный газ

Рассмотрим разреженный Ферми газ. В силу того, что фермионы в среднем располагаются далеко друг от друга, можно рассматривать только парные взаимодействия между ними, не учитывая взаимодействия трёх и более частиц. Тогда физической характеристикой системы будет длина рассеяния в двухчастичной задаче, обозначим её a. Оказывается, меняя внешнее магнитное поле, приложенное к системе, можно менять длину рассеяния в произвольных пределах. Этот эффект называется резонансом Фешбаха, который рассмотрен ниже. Благодаря ему можно устремить длину рассеяния к бесконечности при конечном магнитном поле. Удобно взять вместо длины рассеяния безразмерную величину $\frac{1}{k_F a}$. Так вот, унитарный газсистема, в которой $\frac{1}{k_F a} \to 0$. Приведём качественную фазовую диаграмму [9] для понимания, где находится унитарность 1.

Приведём основные свойства унитарного газа: во-первых, система не имеет никаких малых параметров, то есть поведение системы универсально на любых масштабах, не зависит от деталей взаимодействия. Поэтому все термодинамические величины зависят только от безразмерного параметра $x=\frac{T}{\mu}$, где μ - химический потенциал. Мы выпишем только основные соотношения, более подробно свойства унитарного газа рассмотрены в [14]. Автор в своём теоретическом выводе использует гипотезу универсальности, которая не доказана, однако, автор приводит экспериментальные данные других групп учёных.

В [14] показано, что давление описывается **универсальными** функциями W_0, \mathcal{G}_0 :

$$P(T,\mu) = \frac{2k_B T}{5\lambda^3} \mathcal{W}_0(x^{-1}) = \frac{2\mu n_f(\mu)}{5} \mathcal{G}_0(x)$$
 (1)

Где $\lambda = \frac{h}{\sqrt{2\pi M k_B T}}, n_f(\mu) = (3\pi^2)^{-1} (2M\mu/\hbar)^{3/2}$ Отсюда плотность:

$$n = \frac{dP}{d\mu} = n_f(\mu) \left(\mathcal{G}_0(x) - \frac{2}{5} x \mathcal{G}_0'(x) \right)$$
 (2)

Удельная энтропия:

$$s = \frac{2n_f(\mu)k_B}{5}\mathcal{G}_0'(x) \tag{3}$$

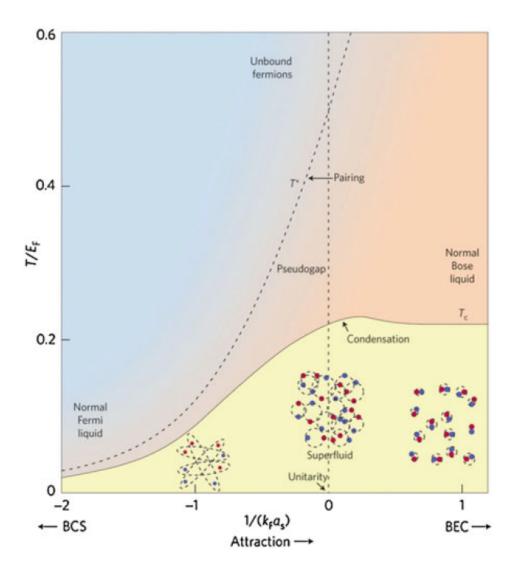


Рис. 1: Качественная фазовая диаграмма для системы ферми частиц [9] в зависимости от температуры и длины рассеяния. Унитарный предел изображён вертикальной пунктирной линией при $1/k_F a_s = 0$

Удельная энергия:

$$\epsilon = \frac{3}{2}P\tag{4}$$

4.2 Модель Хаббарда

Для исследования свойств газа в окрестности точки перехода в области унитарности (пересечение вертикальной пунктирной и сплошной кривой линий fig. 1), мы выберем модель Ферми-Хаббарда [12], которая описывает систему с сильными электронными корреляциями, это именно наш случай, поскольку взаимодействие в сверхтекучем переходе предполагается сильным. Модель Хаббарда богата совер-

шенно разнообразной физикой, от изолятора Мотта до высокотемпературной сверхпроводимости.

Модель Хаббарда:

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} \hat{a}_{i,\sigma}^{\dagger} \hat{a}_{j,\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
 (5)

Первый член - кинетический, связанный с тунеллированием электрона на соседний узел, мы работаем в приближении ближайших соседей, поэтому на другое узлы частица не тунеллирует. Второй член отвечает за взаимодействие электронов противоположных спинов на одном узле, пренебрегая взаимодействием на соседних узлах.

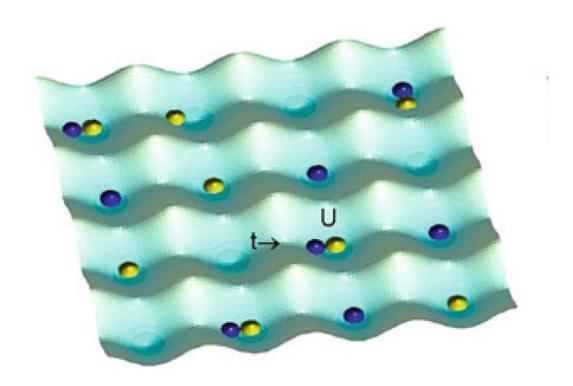


Рис. 2: Модель Хаббарда на оптической решётке [26]

На самом деле, мы будем работать в большом каноническом ансамбле, поэтому гамильтониан заменится на: $\mathcal{H} \to \mathcal{H} - \mu \mathcal{N}$

Оператор \mathcal{N} - общее число частиц, поэтому запишется в виде: $\mu \mathcal{N} = \sum_i \mu_{i\uparrow} \hat{n}_{i\uparrow} + \sum_i \mu_{i\downarrow} \hat{n}_{i\downarrow}$

Полный гамильтониан:

$$\mathcal{H} = -\sum_{\langle ij\rangle,\sigma} \hat{a}_{i,\sigma}^{\dagger} \hat{a}_{j,\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \sum_{i} \mu_{i\sigma} \hat{n}_{i\sigma}$$
 (6)

Именно этот гамильтониан мы и будем симулировать в наших рассчётах.

4.3 Теоретические работы

Как было показано в [9], метод среднего поля неприменим в точке унитарности, также нет никаких малых параметров, по которым можно построить теорию возмущений, то, в целом, непонятно, как вообще можно построить теоретическое описание. Однако в литературе есть один известный и понятный мне подход - ϵ - разложение.

4.3.1 ϵ - разложение

В этом разделе будут приведены теоретические результаты [20], основанные на ϵ - разложении. Суть этого метода заключается в том, чтобы рассмотреть ту же систему, но в другой размерности, в частности в $4-\epsilon$ и в $2+\epsilon$ при $\epsilon\ll 1$, далее, выведя свойства такой системы, устремить $\epsilon\to 1$, получив, тем самым, результат для трёхмерной задачи. Все результаты получаются при рассмотрении Лагранжиана:

$$\mathcal{L} = \sum_{\sigma = \uparrow, \downarrow} \psi_{\sigma}^{\dagger} \left(i \partial_t + \frac{\partial^2}{2m} + \mu \right) \psi_{\sigma} + c_0 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$$
 (7)

$$\frac{1}{c_0} = -\frac{m}{4\pi a} + \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{1}{2\varepsilon_{\mathbf{k}}}$$
 (8)

Смысл разложения в том, что при d=4 газ состоит из слабо взаимодействующих бозонов и фермионов, а при d=2 - из слабо взаимодействующих фермионов:

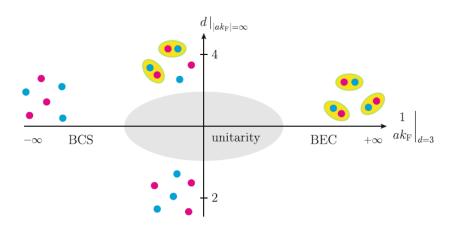


Рис. 3: Качественная фазовая диаграмма свойств системы ферми частиц от длины рассеяния и размерности при температуре ниже критической [20].

Для размерности $d=4-\epsilon$ экстраполяция в d=3 даёт:

$$\frac{T_c}{\varepsilon_F} = \sqrt{\frac{2}{3\pi^2}} \simeq 0.26 \tag{9}$$

Для размерности $d = 2 + \epsilon$ экстраполяция в d = 3 даёт:

$$\frac{T_c}{\varepsilon_F} \simeq 0.18 \tag{10}$$

Стоит отметить, что эти результаты близки к численным [2] и экспериментальным[8],[6].

4.3.2 Резонанс Фешбаха

Для того, чтобы понять физику всех последующих экспериментальных работ, необходимо обсудить такой важный эффект как резонанс Фешбаха, без которого было бы невозможно реализовать БКШ-БЭК кроссовер. В литературе достаточно работ, но я приведу, как мне кажется, самый прямой и понятный вывод [4]. Рассмотрим две частицы, не вдаваясь в детали их внутренней структуры. Столкновение двух частиц сводится к задаче рассеяния частицы на потенциале в системе центра масс. Запишем уравнение Шредингера:

$$-\frac{1}{2\mu}\phi_l''(r) + \left(V(r) + \frac{l(l+1)}{2\mu r^2}\right)\phi_l(r) = E\phi_l(r) \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}, E = \frac{k^2}{2\mu}$$
(11)

Решение для задачи рассеяния запишется в виде:

$$\phi_l(r, E) = const \frac{\sin(kr - \pi l/2 + \eta_l(E))}{\sqrt{k}} e^{i\eta_l(E)} \quad r \to \infty$$
 (12)

 η_l - сдвиг фазы, c - константа.

Поскольку мы рассматриваем ультрахолодный газ, ограничимся рассеянием в s-канале: l=0. Для разреженного ультрахолодного газа имеет место резонансное рассеяние [15].

$$\phi_0(r, E) = const \frac{\sin(kr + \eta_0(E))}{\sqrt{k}} e^{i\eta_0(E)} \quad r \to \infty$$
 (13)

$$k \operatorname{ctg} \eta_0(E) = -\frac{1}{a} + \frac{1}{2}r_0k^2 \tag{14}$$

Где a - длина рассеяния, та самая физическая величина, по которой происходит кроссовер, r_0 - характерный радиус потенциала.

Теперь введём понятие открытого канала, при котором энергия после взаимодействия не больше начальной, и закрытого канала, когда она больше начальной. Резонансом Фешбаха называется случай, когда энергетический уровень открытого канала сближается с уровнем закрытого канала, в котором есть связанное состояние, и возникает ненулевая вероятность перехода в закрытый канал и обратно. Подробное описание есть в [18], приведём лишь краткий вывод. Пусть \mathcal{P} - проекция на открытый канал, \mathcal{Q} - проекция на зарытый канал. Запишем уравнение Шредингера:

$$\Psi = \mathcal{P}\Psi + \mathcal{Q}\Psi \tag{15}$$

$$E(\mathcal{P}\Psi + \mathcal{Q}\Psi) = H(\mathcal{P}\Psi + \mathcal{Q}\Psi) \tag{16}$$

Домножим уравнение на \mathcal{P} и учтём, что $\mathcal{P}^2 = \mathcal{P}$, и для \mathcal{Q} аналогично:

$$(E - H_{PP})\Psi_P = H_{PQ}\Psi_Q$$

$$(E - H_{QQ})\Psi_Q = H_{QP}\Psi_P$$
(17)

Где $\Psi_P = \mathcal{P}\Psi,\ H_{PP} = \mathcal{P}H\mathcal{P},$ остальное аналогично. Решение второго уравнения: $\Psi_Q = \frac{H_{QP}}{E-H_{QQ}+i0}\Psi_P,$ подставим в первое:

$$E\Psi_{P} - H_{PP}\Psi_{P} = \frac{H_{PQ}H_{QP}}{E - H_{QQ} + i0}\Psi_{P}$$
 (18)

Отсюда эффективный гамильтониан: $H_{eff} = H - \frac{H_{PQ}H_{QP}}{E - H_{QQ} + i0}$

Мы рассматриваем случай, когда энергия открытого канала близка к уровню энергии связанного состояния $|\phi_B
angle, arepsilon_0$, тогда формально решая У.Ш., получим для S матрицы выражение:

$$S_{ii} = S_{ii}^{0} \left(1 - \frac{i\Gamma}{E - \varepsilon_0 - \Delta + \frac{i}{2}\Gamma} \right)$$
 (19)

Где Γ, Δ - ширина и сдвиг резонанса [18]

В случае ультрахолодого газа формула упрощается:

$$S_{ii} = S_{ii}^{0} \left(1 - \frac{2iCk_i}{iCk_i - \varepsilon_{res}} \right) \tag{20}$$

Где k_i соответствует энергии E_i , $\varepsilon_{res} = \varepsilon_0 + \Delta - E_{th}(B)$, E = $E_i - E_{\rm th}$

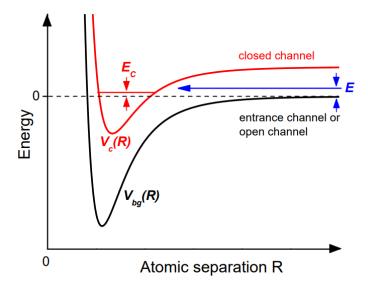


Рис. 4: Резонанс Фешбаха, открытый и закрытый каналы сближаются, за счёт чего есть вероятность перехода [4]

Отсюда выражение для длины рассеяния:

$$a(B) = a_0 - \frac{C}{\varepsilon_{res}} \tag{21}$$

Именно тут и фигурирует магнитное поле, а именно, эффект Зеемана:

$$\varepsilon_{res} = [2\mu_i(B_0) - \mu_0(B_0)] (B - B_0)$$
 (22)

 μ_i - момент атома, μ_0 - момент системы из двух связанных частиц в резонансе.

В итоге получим:

$$a = a_0 - \frac{const}{B - B_0} \tag{23}$$

Это очень важный результат, поскольку мы можем физически контроллировать взаимодействие частиц с помощью магнитного поля.

4.4 Экспериментальные работы

4.4.1 Эксперимент Регала

В эксперименте, проведённым группой американских учёных [8], исследовался переход из режима БКШ в режим БЭК для газа фермионов ⁴⁰К. В эксперименте магнитное поле менялось около резо-

нансного значения в 200 Гаусс за миллисекунды. Время было достаточно велико для формирования молекул, но мало для того, чтобы они успели значительно сдвинуться в оптической ловушке или столкнуться с другими молекулами. Для подтверждения формирования молекул так же проводились измерения распределения импульса. Для эксперимента был подготовлен разреженный газ калия в практически равной пропорции $|9/2, -9/2\rangle$, $|9/2, -7/2\rangle$. Конденсация была обнаружена по обе стороны от резонанса.

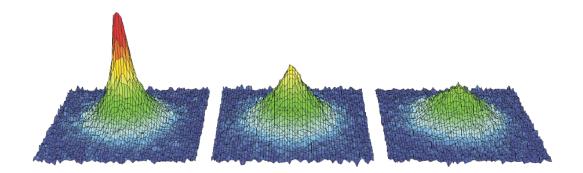


Рис. 5: Изображения, показывающие наличие конденсата в оптической ловушке [8] для отклонений поля от резонансного значения на $\Delta B=0.12,0.25,0.5G$ соответственно. Отношение конденсатной части к количеству частиц $\frac{N_0}{N}=0.10,0.05,0.01$ соответственно. В ловушке порядка 10^5 частиц.

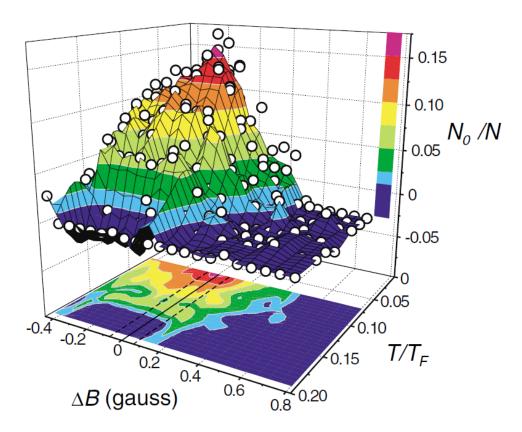


Рис. 6: Фазовая диаграмма, полученная в результате измерений при разных температурах и отклонениях поля от резонансного значения.

4.4.2 Эксперимент Цвирляйна

Работа [6] проводилась для атомов лития 6 Li, для которых не существует стабильных молекул 6 Li $_2$ в вакууме. Было достигнуто гораздо большее отношение конденсированных частиц $\frac{N_0}{N}\approx 0.8$. Из графика ниже видно, что степень конденсации линейно зависит от температуры. Результаты согласованы с теоретической работой [11], в которой конденсация была возможна при $T/T_F < 0.2$.

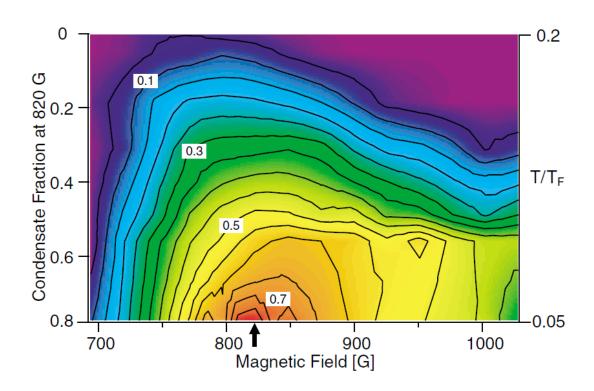


Рис. 7: График зависимости степени конденсации от температуры и магнитного поля

5 Основная часть

Мы исследовали модель Ферми-Хаббарда с беспорядком в химпотенциале на кубической трёхмерной решётке.

$$\hat{H} = -t \sum_{i,\sigma} (\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+\vec{1},\sigma} + \hat{c}_{i+\vec{1},\sigma}^{\dagger} \hat{c}_{i,\sigma}) + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} - \sum_{i,\sigma} (\mu_0 + \delta \mu_i) \hat{n}_{i,\sigma}$$
(24)

5.1 Цели работы

Основной целью данной работы является получение критической температуры сверхтекучего перехода для системы с беспорядком, а так же проверка результатов, полученных в работе [2] для системы без беспорядка.

5.2 Параметры модели

 $\hat{c}_{i,\sigma}^{\dagger},\hat{c}_{i,\sigma}$ - операторы рождения и уничтожения фермионов на узле i со спином σ

 $\begin{aligned} \sigma &\in \{\uparrow,\downarrow\} \\ i &\in \{1,L\}^3 \end{aligned}$

U = -7.913t - потенциал взаимодействия, см. вывод ниже.

 $\hat{n}_{i,\sigma}=\hat{c}_{i,\sigma}^{\dagger}\hat{c}_{i,\sigma}$ - локальная плотность

 $\mu_0 = 5.2t$ - химический потенциал, см. вывод ниже.

 $\delta\mu_i$ - случаное малое возмущение химического потенциала на узле i

 $|\delta\mu_i|=0.1t$ - амплитуда беспорядка на любом из узлов решётки. $\mu_i\in\{-0.1t,0.1t\},\,\sum_i\mu_i=0$

 $i+\vec{1}$ - любой из соседних к i узлов.

Модель отличается от оригинальной [2] тем, что в ней есть беспорядок в хим. потенциале. Значения параметров модели определяются следующим образом:

Мы знаем как связана амплитуда рассеяния в двухчастичной задаче с вершинной функцией:

$$\Gamma_{\alpha\beta,\gamma\delta} = \delta_{\alpha\gamma}\delta_{\beta\delta}\frac{4\pi}{m}f\tag{25}$$

Связанное состояние впервые появляется при возникновении полюса у вершинной части. То есть когда f=0. Амплитуда рассеяния f связана с длиной рассеяния следующим образом: когда основное

состояние очень близко к нулю, в двухчастичной задаче возникает резонанс (см. §133 [15])

$$f(k) \simeq \frac{1}{-\frac{1}{a} - ik} \sim -\frac{1}{a} \tag{26}$$

Следовательно, в этой же точке длина рассеяния расходится. Это и есть точка унитарности.

Теперь посчитаем вершинную часть. Ясно, что в силу того, что взаимодействие не зависит от времени, неприводимая вершинная часть совпадает с взаимодействием[17]:

$$\Gamma^0 = \left\{ + \right\} + \dots$$

Рис. 8: Неприводимая вершинная часть [17]

Поэтому уравнение Бете-Солпитера имеет следующее решение:

$$\Gamma(\xi, \mathbf{p}) = \frac{U}{1 + U\Pi(\xi, \mathbf{p})}$$
 (27)

Отсюда получим:

$$\Gamma^{-1}(\xi, \mathbf{p}) = U^{-1} + \Pi(\xi, \mathbf{p}) \tag{28}$$

Где:

$$\Pi(\xi, \mathbf{p}) = \int_{BZ} \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{\xi + \epsilon_{\mathbf{p}/2 + \mathbf{k}} + \epsilon_{\mathbf{p}/2 - \mathbf{k}}}$$
(29)

Как было показано выше, вершинная часть функции грина имеет полюс в точке унитарности, при чём, поскольку газ ультрахолодный и очень разреженный, то $\xi \to 0$, $\mathbf{p} \to 0$:

$$U^{-1} = -\Pi(0,0) \tag{30}$$

В случае чистой системы получим: [2]

$$U = -7.915t (31)$$

Учёт беспорядка не приводит к отличиям от данного ответа, поскольку неприводимая вершинная часть остаётся той же. Важно отметить, что система уже не будет являться унитарным газом, поскольку, как было показано в разделе про унитарный газ, он трансляционно инвариантен, что, учитывая беспорядок, теперь конечно не так. Мы исследуем систему ферми частиц в точке с бесконечной длиной рассеяния, в той точке, где система без беспорядка в состоянии унитарности.

Мы работаем в большом каноническом ансамбле, поэтому параметрами задачи являются $\{L,T,\mu\}$. μ определяется следующим образом: в работе [23] исследовалась модель Хаббарда при плотности $\nu=\frac{1}{4}$. Чтобы получить химпотенциал, соответствующий такой плотности, было проделано нескольку симуляций при разных химпотенциалах и произведена интерполяция для нахождения $\mu(\frac{1}{4})$. Значение равно $\mu=5.2t$

5.3 Критическая температура

Находясь в окресности фазового перехода, ассимптотическое поведение некоторых средних зависит от конечного числа параметров критических экспонент. Критические экспоненты, в свою очередь, зависят от симметрии системы. Из фазовой диаграммы системы ферми частиц 1, можно понять, что ниже перехода по температуре сверхпроводник слева и бозе-конденсат справа, поэтому происходит нарушение U(1) симметрии. Рассмотрим четырёхточечную корреляционную функцию:

$$G_2(\mathbf{x}\tau, \mathbf{x}'\tau') = \left\langle \mathcal{T}\hat{c}_{\mathbf{x}\uparrow}\hat{c}_{\mathbf{x}\downarrow}\hat{c}_{\mathbf{x}'\downarrow}^{\dagger}\hat{c}_{\mathbf{x}'\uparrow}^{\dagger} \right\rangle$$
(32)

Где τ - мнимое время. $\tau \in [0, \beta]$

В окресности фазового перехода:

$$G_2(\mathbf{x}\tau, \mathbf{x}'\tau') = \left\langle \mathcal{T}\hat{c}_{\mathbf{x}\uparrow}\hat{c}_{\mathbf{x}\downarrow}\hat{c}_{\mathbf{x}'\downarrow}^{\dagger}\hat{c}_{\mathbf{x}'\uparrow}^{\dagger} \right\rangle \propto |\mathbf{x} - \mathbf{x}'|^{-(1+\eta)}$$
(33)

Где η - критическая экспонента

Для U(1) симметрии $\eta = 0.380(4)$ [3]

Теперь возьмём среднее значение четырёхточечной корреляционной функции по решётке:

$$K(L,T) = (\beta L^{d})^{-2} \sum_{\mathbf{x},\mathbf{x}'} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' G_{2}(\mathbf{x} - \mathbf{x}', \tau - \tau') \sim L^{-1-\eta}$$
(34)

Введём новую величину, не зависящую в нулевом приближении от размера системы:

$$R(L,T) = L^{1+\eta}K(L,T) \sim const \tag{35}$$

Значит, в окресности фазового перехода есть величина, которая не зависит от размера системы. Метод нахождения критической температуры будет следующим: мы будем запускать систему при разных L и температурах, и там, где кривые $R(L_i,T)$ и $R(L_j,T)$ пересекаются, находится критическая температура:

$$R(L_i, T) = R(L_i, T) \to T = T_c \tag{36}$$

Однако, нам недостаточно нулевого приближения, поскольку непонятно, для каких размеров системы $\{L_i, L_j\}$ получится результат с наибольшей точностью, поскольку для разных пар размеров, вообще говоря, пересечение будет при разных температурах. В [10] с помощью методов ренормгруппы было показано, что четырёхточечная корреляционная функция зависит от размера системы следующим образом:

$$R(L,T) = f(L^{1/\nu_{\xi}} \xi_{corr}^{-1/\nu_{\xi}}) (1 + cL^{-\omega} + \dots)$$
(37)

$$\xi_{corr} = \left| \frac{T - T_c}{T_c} \right|^{-\nu_{\xi}} = |\tau|^{-\nu_{\xi}} \tag{38}$$

 $\omega \simeq 0.8, \, \nu_{\xi} \simeq 0.67$ - критические экспоненты, f - **неуниверсаль- ная** неизвестная аналитическая функция возле точки перехода, c - **неуниверсальный** неизвестный коэффициент.

$$f(L^{1/\nu_{\xi}}\xi_{corr}^{-1/\nu_{\xi}}) = f(L^{1/\nu_{\xi}}\tau)$$
(39)

Разлагая f в окрестности критической температуры:

$$R(L,T) = [f_0 + f_1(T - T_c)L^{1/\nu_{\xi}} + \dots](1 + cL^{-\omega} + \dots)$$
 (40)

Приравняем для разных размеров L_i, L_j системы при температуре T_{ij} возле T_c :

$$R(L_i, T_{ij}) = R(L_j, T_{ij}) \tag{41}$$

$$[f_0 + f_1(T_{ij} - T_c)L_j^{1/\nu_{\xi}} + \dots](1 + cL_j^{-\omega} + \dots) = [f_0 + f_1(T_{ij} - T_c)L_i^{1/\nu_{\xi}} + \dots](1 + cL_i^{-\omega} + \dots)$$
(42)

Итого, поправка к температуре:

$$T_{ij} - T_c = \frac{f_0 c}{f_1} \frac{1}{L_j^{\omega + \frac{1}{\nu_{\xi}}}} \frac{1 - \left(L_i / L_j\right)^{-\omega}}{1 - \left(L_i / L_j\right)^{\frac{1}{\nu_{\xi}}}}$$
(43)

Из формулы видно, что чем больше размеры системы и чем ближе они друг к другу, тем меньше поправка.

Остаётся вопрос, как определить неуниверсальные параметры f_0, f_1, c .

Поскольку мы будем моделировать систему при разных размерах и температурах, у нас есть две переменные L,T и функция R(L,T), и четыре параметра f_0, f_1, c, T_c , которые определяют функцию. Мы будем использовать нелинейный метод наименьших квадратов [16] для определения параметров. Поскольку T_c - один из параметров, его мы и получим в результате процесса. Пример приведён на рис. 9. Точность нелинейного метода наименьших квадратов зависит от количества точек, поэтому важно как можно более эффективно получать R(L,T). В следующей главе будет предложено представление для средних, удобное для численного моделирования.

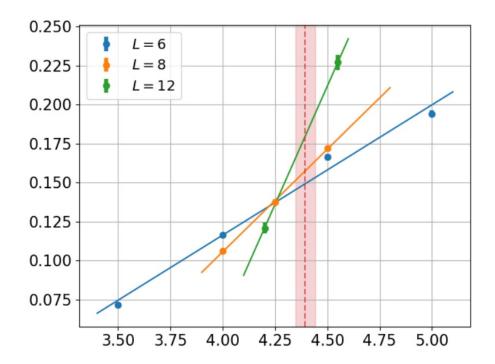


Рис. 9: Пример определения критической температуры, она находится радом с точкой пересечения кривых

5.4 Представление Рубцова

Критически важным моментом является выбор представления, в котором мы будем считать средние значения операторов. Мы будем использовать представление Рубцова [22]. Запишем его для нашего гамильтониана

Стат. сумма:

$$Z = \operatorname{Tr} \mathcal{T} e^{-S} \tag{44}$$

Поскольку гамильтониан состоит из двух частей:

$$\mathcal{H} = \sum_{i,\sigma} \left[-t(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+\vec{1},\sigma} + \hat{c}_{i+\vec{1},\sigma}^{\dagger} \hat{c}_{i,\sigma}) - (\mu_0 + \delta \mu_i) \hat{n}_{i,\sigma} \right] + U \sum_i \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} = \mathcal{H}_0 + \mathcal{H}_1$$

$$(45)$$

$$S = \beta \mathcal{H}_0 + \int_0^\beta d\tau \mathcal{H}_1(\tau) \tag{46}$$

$$Z = e^{-\beta \mathcal{H}_0} \operatorname{Tr} \mathcal{T} e^{-\beta \int d\tau \mathcal{H}_1(\tau)}$$
(47)

Теперь раскроем второй член:

$$\mathcal{T}e^{-\beta \int d\tau \mathcal{H}_1(\tau)} = \mathcal{T}\sum_{n=0}^{\infty} (-U)^n \frac{1}{n!} \int_0^{\beta} \prod_{k=0}^n \left(d\tau_k \sum_i \hat{n}_{i,\uparrow}(\tau_k) \hat{n}_{i,\downarrow}(\tau_k) \right)$$
(48)

Обозначим: $c_{i,\sigma}(\tau) \to c_{\sigma}(\mathbf{x},\tau), n_{i,\sigma}(\tau) \to n_{\sigma}(\mathbf{x},\tau).$

Так же учтём, что \mathcal{T} - упорядочение для $\tau_1,...,\tau_n$ можно записать в виде:

$$\mathcal{T} \int_0^\beta \prod_{k=0}^n d\tau_k \to n! \int_{0 < \tau_1 < \dots < \tau_n < \beta}$$
 (49)

$$\mathcal{T}e^{-\beta \int d\tau \mathcal{H}_1(\tau)} = \sum_{n=0}^{\infty} \sum_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} (-U)^n \int_{0 < \tau_1 < \dots < \tau_n < \beta} \prod_{k=0}^n \operatorname{Tr} \left(d\tau_k \hat{n}_{\uparrow}(\mathbf{x}_k, \tau_k) \hat{n}_{\downarrow}(\mathbf{x}_k, \tau_k) \right)$$
(50)

$$Z = \sum_{n=0}^{\infty} (-U)^n \sum_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \int_{0 < \tau_1 < \dots < \tau_n < \beta} \left(\prod_{i=1}^n d\tau_i \right) \times \operatorname{Tr} \left(e^{-\beta \mathcal{H}_0} \prod_{j=1}^n c_{\uparrow}^{\dagger}(\mathbf{x}_j \tau_j) c_{\uparrow}(\mathbf{x}_j \tau_j) c_{\downarrow}^{\dagger}(\mathbf{x}_j \tau_j) c_{\downarrow}(\mathbf{x}_j \tau_j) \right)$$
(51)

Среднее оператора:

$$\langle A \rangle = \frac{\operatorname{Tr} \mathcal{T} A e^{-S_0}}{Z_0} \tag{52}$$

$$Z = Z_0 \sum_{n=0}^{\infty} (-U)^n \sum_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \int_{0 < \tau_1 < \dots < \tau_n < \beta} \left(\prod_{i=1}^n d\tau_i \right) \times \left\langle \prod_{j=1}^n c_{\uparrow}^{\dagger}(\mathbf{x}_j \tau_j) c_{\uparrow}(\mathbf{x}_j \tau_j) c_{\downarrow}(\mathbf{x}_j \tau_j) c_{\downarrow}(\mathbf{x}_j \tau_j) \right\rangle$$

$$(53)$$

5.4.1 Проблема знака

Оценим сложность вычисления Z^k с ростом k: Пусть мнимое время τ принимает значения $0, \beta/N, 2\beta/N, ..., \beta$. Тогда \int_0^β имеет сложность O(N), сумма $\sum_{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ имеет сложность $O(L^{3n})$, итого общая сложность как минимум $O(L^{3n}N^n)$. Сложность экспоненциальная с ростом n, поэтому прямое суммирование ряда невозможно. Для таких случаев существуют методы Монте-Карло[13].

Пусть есть оператор A, для которого статвес каждого значения A_i - $w_i/\sum_k w_k$, тогда среднее оператора:

$$\langle A \rangle = \frac{\sum_{i} A_{i} w_{i}}{\sum_{i} w_{i}} \tag{54}$$

Для данного выражения можно применить алгоритм Метрополиса-Гастингса [13]

Запишем статсумму в соответствующем виде:

$$Z = Z_0 \sum_{n=0}^{\infty} \sum_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \int_{0 < \tau_1 < \dots < \tau_n < \beta} \left(\prod_{i=1}^n d\tau_i \right) w(\mathbf{x}_1, \dots, \mathbf{x}_n, \tau_1, \dots, \tau_n) (-U)^n$$

$$(55)$$

Где статвес $w(\mathbf{x}_1, ..., \mathbf{x}_n, \tau_1, ..., \tau_n)$:

$$w(\mathbf{x}_1, ..., \mathbf{x}_n, \tau_1, ..., \tau_n) = \left\langle \prod_{j=1}^n c_{\uparrow}^{\dagger}(\mathbf{x}_j \tau_j) c_{\uparrow}(\mathbf{x}_j \tau_j) c_{\downarrow}^{\dagger}(\mathbf{x}_j \tau_j) c_{\downarrow}(\mathbf{x}_j \tau_j) \right\rangle$$
(56)

Статвес может принимать знаки \pm , поэтому его нельзя трактовать как вероятность. Для избавления от знака запишем статвес в виде:

$$w_i = \operatorname{sign}(w_i)|w_i| \tag{57}$$

Тогда среднее:

$$\langle A \rangle = \frac{\sum_{i} \operatorname{sign}(w_{i}) |w_{i}| A_{i}}{\sum_{i} \operatorname{sign}(w_{i}) |w_{i}|} = \frac{\langle A \cdot \operatorname{sign}(w) \rangle}{\langle \operatorname{sign}(w) \rangle}$$
(58)

Где теперь под статсуммой понимается $Z' = \sum_i |w_i|$, по которой идёт усреднение, изначальная же статсумма $Z = \sum_i w_i$. Z' > Z

Пусть f - свободная энергия на частицу для статсуммы Z, f' для Z' соответственно.

$$f = -\frac{1}{N\beta} \ln Z \to f' < f \tag{59}$$

$$Z'/Z = e^{\beta N(f-f')} = e^{\beta N\Delta f}, f - f' > 0$$

Относительная погрешность среднего значения знака:

$$\frac{\Delta \text{sign}w}{\langle \text{sign}(w) \rangle} = \frac{1}{\sqrt{M}} \frac{\sqrt{1 - \langle \text{sign}(w) \rangle^2}}{\langle \text{sign}(w) \rangle} = \frac{1}{\sqrt{M}} \frac{\sqrt{1 - e^{-2\beta N \Delta f}}}{e^{-\beta N \Delta f}} \to e^{\beta N \Delta f} / \sqrt{M}$$
(60)

То есть погрешность растёт экспоненциально с ростом N. Соответственно, нам нужно усреднить по экспоненциально большому количеству членов ряда M, чтобы получить ответ с хорошей точностью.

Проблема знака является принципиальной проблемой для моделирования системы фермионов с произвольным потенциалом. В [25] было показано, что она NP сложна. Только для некоторых потенциалов она была решена. Модель Хаббарда - этот случай.

5.4.2 Диаграммы для средних

Среднее от 4n операторов по теореме Вика можно разложить на произведение попарных средних, функций Грина.

Двухточечная функция Грина:

$$G_{\sigma}(r, r') = \langle \mathcal{T} c_{\sigma}^{\dagger}(r') c_{\sigma}(r) \rangle \quad r = (\mathbf{r}, \tau)$$
 (61)

Рассмотрим несколько первых членов:

$$Z^{(0)} = Z_0 (62)$$

В первом порядке есть только одна диаграмма. На рисунке ниже линиям сопоставляется функция Грина, точкам взаимодействие.

$$Z^{(1)} = Z_{0}(-U) \sum_{\mathbf{x}} \int_{0}^{\beta} d\tau \langle c_{\uparrow}^{\dagger}(\mathbf{x}\tau) c_{\uparrow}(\mathbf{x}\tau) c_{\downarrow}^{\dagger}(\mathbf{x}\tau) c_{\downarrow}(\mathbf{x}\tau) \rangle =$$

$$= Z_{0}(-U) \sum_{\mathbf{x}} \int_{0}^{\beta} d\tau \langle c_{\uparrow}^{\dagger}(\mathbf{x}\tau) c_{\uparrow}(\mathbf{x}\tau) \rangle \langle c_{\downarrow}^{\dagger}(\mathbf{x}\tau) c_{\downarrow}(\mathbf{x}\tau) \rangle =$$

$$= Z_{0}(-U) \sum_{\mathbf{x}} \int_{0}^{\beta} d\tau G_{\uparrow}(\mathbf{x}\tau) G_{\downarrow}(\mathbf{x}\tau) =$$

$$(63)$$

Во втором порядке их четыре:

$$Z^{(2)} = Z_{0}U^{2} \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} \int_{0}^{\beta} d\tau_{2} \int_{0}^{\tau_{2}} d\tau_{1} \langle c_{\uparrow}^{\dagger}(\mathbf{x}_{1}\tau_{1}) c_{\uparrow}(\mathbf{x}_{1}\tau_{1}) c_{\downarrow}^{\dagger}(\mathbf{x}_{1}\tau_{1}) c_{\uparrow}^{\dagger}(\mathbf{x}_{2}\tau_{2}) c_{\uparrow}(\mathbf{x}_{2}\tau_{2}) c_{\uparrow}(\mathbf{x}_{2}\tau_{2}) \rangle$$

$$= Z_{0}U^{2} \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} \int_{0}^{\beta} d\tau_{2} \int_{0}^{\tau_{2}} d\tau_{1} \Big[$$

$$G_{\uparrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{1}\tau_{1}) G_{\uparrow}(\mathbf{x}_{2}\tau_{2}, \mathbf{x}_{2}\tau_{2}) G_{\downarrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{1}\tau_{1}) G_{\downarrow}(\mathbf{x}_{2}\tau_{2}, \mathbf{x}_{2}\tau_{2}) - G_{\uparrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{1}\tau_{1}) G_{\downarrow}(\mathbf{x}_{2}\tau_{2}, \mathbf{x}_{2}\tau_{2}) G_{\uparrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) G_{\downarrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) - G_{\downarrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{1}\tau_{1}) G_{\uparrow}(\mathbf{x}_{2}\tau_{2}, \mathbf{x}_{2}\tau_{2}) G_{\uparrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) G_{\downarrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) - G_{\uparrow}^{2}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) G_{\downarrow}^{2}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) \Big] =$$

$$= \left\{ \begin{array}{c} O_{\uparrow} \\ O_{\uparrow}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) G_{\downarrow}^{2}(\mathbf{x}_{1}\tau_{1}, \mathbf{x}_{2}, \tau_{2}) \\ O_{\downarrow} \\ O_{\uparrow} \\$$

Из выражений выше видно, что в статсумму входят все различные диаграммы. Хорошим свойством является то, что ряд для экспоненты всегда сходится, поэтому мы можем не беспокоиться за сходимость.

Пусть $S_n = \{(\mathbf{x}_k, \tau_k), k = 1, ..., n\}$ - совокупность всех диаграмм из n вершин.

Пусть $n \times n$ матрица $A_{ij}(S_n) = G(\mathbf{x}_i \tau_i, \mathbf{x}_j \tau_j)$.

Тогда статсумму можно записать в виде: [2]:

$$Z = \sum_{n=0}^{\infty} (-U)^n \sum_{S_n} |\det A(S_n)|^2$$
 (65)

Где:

$$\sum_{S_p} = \sum_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \int_{0 < \tau_1 < \dots < \tau_n < \beta} \left(\prod_{i=1}^n d\tau_i \right)$$
 (66)

Спиновые индексы опущены, поскольку мы полагаем, что число частиц со спинами вверх и вниз одинаково.

Нетрудно по аналогии записать выражение в терминах определителей для четырёхточечной функции Грина:

$$G_2(\mathbf{x}\tau, \mathbf{x}', \tau') = \left\langle \mathcal{T}c_{\uparrow}(\mathbf{x}\tau)c_{\downarrow}(\mathbf{x}\tau)c_{\downarrow}^{\dagger}(\mathbf{x}'\tau')c_{\uparrow}^{\dagger}(\mathbf{x}'\tau') \right\rangle$$
(67)

$$G_2(\mathbf{x}\tau, \mathbf{x}', \tau') = \frac{1}{Z} \sum_{n=0}^{\infty} (-U)^n \sum_{\tilde{S}_n} |\det \tilde{A}(\tilde{S}_n)|^2$$
(68)

 \tilde{S}_n - совокупность диаграмм с n вершинами, куда вставили ещё две вершины в точках $(\mathbf{x}\tau, \mathbf{x}', \tau')$

 $A(\hat{S}_n)$ - матрица размера $(n+1) \times (n+1)$, идентичная $A(S_n)$, в которую вставили строку и столбец:

$$\tilde{A}_{i,n+1}(\tilde{S}_n) = G(\mathbf{x}_i \tau_i, \mathbf{x}\tau) \tag{69}$$

$$\tilde{A}_{n+1,j}(\tilde{S}_n) = G(\mathbf{x}'\tau', \mathbf{x}_i\tau_i)$$
(70)

$$G_2 = \bigcirc + \bigcirc \bigcirc + \bigcirc \bigcirc + \ldots$$

Рис. 10: Пример диаграмм для G_2 [2]

Мы избавились от проблемы знака! Этот ряд подходит для методов Монте-Карло.

5.5 Worm algorithm

В данной секции мы обсудим выбор алгоритма. Во-первых, мы будем использовать алгоритм Метрополиса [5]. Например, ряд 65, $|\det A(S_n)|^2$ является суть вероятностью для члена $(-U)^n$. Рассмотрим общий алгоритм для данного ряда.

Пусть $\mathcal{D}(S_n) = (-U)^n |\det A(S_n)|^2$ - вес конфигурации S_n с заданными $\{(\mathbf{x}_1\tau_1),...,(\mathbf{x}_n\tau_n)\}$. Пусть $W(S_n,S_p)$ - вероятность изменить конфигурацию $S_n \to S_p$. У нас есть свобода в выборе данной функции, от этого зависит эффективность симуляции.

В алгоритме Метрополиса есть уравнение детального баланса:

$$\mathcal{R}W(S_n, S_p)\mathcal{D}(S_n) = W(S_p, S_n)\mathcal{D}(S_p)$$
(71)

Решение которого:

$$\mathcal{R} = \frac{W(S_p, S_n)\mathcal{D}(S_p)}{W(S_n, S_p)\mathcal{D}(S_n)} = \frac{W(S_p, S_n)}{W(S_n, S_p)} \frac{(-U)^p |\det A(S_p)|^2}{(-U)^n |\det A(S_n)|^2}$$
(72)

Следующий общий алгоритм мы будем использовать (в несколько иной форме):

Algorithm 1 Общий алгоритм

```
⊳ Число шагов
M_{steps} \leftarrow 0
Z \leftarrow 0
                                                                ▶ Статсумма
S \leftarrow S_n
                                   ⊳ Задаём начальную конфигурацию
while M_{steps} \leq 10^{10} do

    Считаем пока позволяет время

    S' \leftarrow S_p
                                      ⊳ Выбираем новую конфигурацию
    R \leftarrow \min\{1, R(S, S', W(S.S'))\}
                                               ▶ Считаем acceptance ratio
                             ⊳ Генерируем случайное число от 0 до 1
    u \leftarrow Random([0,1])
   if u \leq R then
        S \leftarrow S'
                                                  ⊳ Принимаем изменение
        Z \leftarrow Z + (-U)^n |\det A(S)|^2 \triangleright Учитываем в статсумме
    M_{steps} \leftarrow M_{steps} + 1
end while
Result \leftarrow Z/M_{steps}
```

Данный общий алгоритм крейне неэффективен. Во-первых, он производит вычисления только для статсуммы, а нам бы хотелось также и для G_2 , энергии, и многих других средних. К тому же, генерировать каждый раз S_p и пересчитывать определители занимает $O(N^3)$ времени, что очень затратно.

Эти проблемы решает worm algorithm. Алгоритм подробно описан в оригинальной работе [21], а также применительно к модели Хаббарда [2]. Мы вкратце обсудим суть алгоритма:

Мы хотели бы на каждой итерации получать вклад в средние, учитывая, что конфигурации должны быть независимы. Мы будем работать в конфигурационном пространстве $[0, L]^3 \times [0, \beta]$. G сектором назовём конфигурацию узлов $\tilde{S_p}$. Z сектором - конфигурацию узлов S_p . Для одного и того же члена порядка $p \in G$ сектор отличается от Z сектора двумя дополнительными элементами: головой и хвостом. Голове отвечает $c_{\uparrow}(\mathbf{x}\tau)c_{\downarrow}(\mathbf{x}\tau)$, хвосту $c_{\uparrow}^{\dagger}(\mathbf{x}'\tau')c_{\downarrow}^{\dagger}(\mathbf{x}'\tau')$. Узлы друг за другом образуют некоторый путь в конфигурационном пространстве, похожий на червяка. Этот путь будет меняться. Червяк может удлиняться или сокращаться: генерируем из члена порядка n член порядка $n \pm 1$. Так же может менять свою форму без удлиннения: генерируем член того же порядка, заменив какой-либо узел: $(\mathbf{x}_i, au_i) o (\mathbf{x}_i', au_i')$ У нас есть некоторый путь из одного узла решётки в другой. Сам путь мы будем преобразовывать в ходе моделирования, то есть заставлять этого червяка двигаться. Если начало и конец этого пути не совпадают, мы находимся в G секторе, то есть там, где у нас считается G_2 , когда же путь замкнут, мы находимся в Z секторе. Ясно, что, в среднем, на одну итерацию в Z секторе приходится L^3 итераций в G секторе. Смысл алгоритма в том, что, пока мы меняем конфигурацию для Z сектора, мы по пути набираем статистику для G сектора. Будем называть хвост Ира, голову Маша |21|

У нас есть несколько операций для изменения текущей конфигурации:

1. Add

Операция, которая увеличивает число вершин на одну: $\mathcal{S}_p \to \mathcal{S}_{p+1}$. Из уравнения детального баланса имеем:

$$\mathcal{R}W(\mathcal{S}_p \to \mathcal{S}_{p+1})\mathcal{D}(\mathcal{S}_p) = W(\mathcal{S}_p \leftarrow \mathcal{S}_{p+1})\mathcal{D}(\mathcal{S}_{p+1})$$
 (73)

Отсюда получим acceptance ratio для алгоритма Метрополиса: $R = \left|\frac{\det \mathbf{A}(\mathcal{S}_{p+1})}{\det \mathbf{A}(\mathcal{S}_p)}\right|^2 \frac{(-U)\beta L^d}{p+1}$

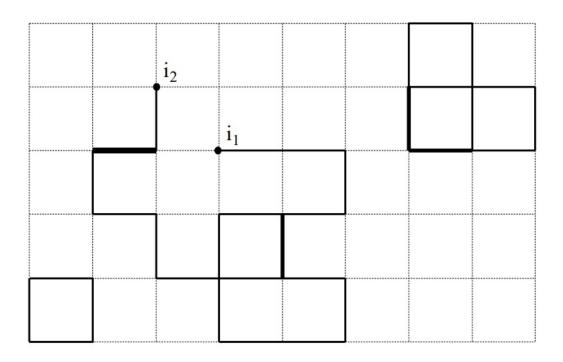


Рис. 11: i_1 и i_2 - голова и хвост червя

2. Drop

Обратная к *Add* операция

3. Create

Процедура создаёт червя: голову - Маша, и хвост - Ира. То есть данная процедура осуществляет переход от множества диаграмм S_p к \tilde{S}_p . Мы произвольно выбираем в $L^3 \times \beta$ узел для Иры, а потом в окрестности, составляющий куб элементарной решётки, Машу.

Соответствующее решение уравнения детального баланса с $W(S_p \to \tilde{S}_p) = \frac{1}{\beta L^d} \frac{1}{\Delta \tau l^d}$ будет $\mathcal{R} = \left| \frac{\det \mathbf{A}(\tilde{S}_p)}{\det \mathbf{A}(S_p)} \right|^2 \beta L^d \Delta \tau l^d \zeta$

4. Annihilate

Обратная к Create операция

5. Leap add

Перемещает Машу в новое соседнее место, создавая дополнительный кинк.

То есть осуществляется переход:

$$\tilde{S}_p = \{..., (\mathbf{x}_1, \tau_1), \mathcal{P}^{\dagger}(\mathbf{x}, \tau), ...\} \rightarrow \{..., (\mathbf{x}_1, \tau_1), (\mathbf{x}, \tau), \mathcal{P}^{\dagger}(\mathbf{x}_{new}, \tau_{new}), ...\} = \tilde{\mathcal{S}}'_{p+1}$$
(74)

Решение ур-я детального баланса:
$$\mathcal{R} = \left| \frac{\det \mathbf{A}(\tilde{\mathcal{S}}'_{p+1})}{\det \mathbf{A}(\tilde{\mathcal{S}}_p)} \right|^2 \frac{(-U)\Delta \tau l^d}{m}$$

6. Leap drop

Противоположная предыдущей операция, то есть если мы той операцией рисовали продолжение червя, этой операцией мы стираем часть его с головы.

7. *Hop*

Операция передвигает голову в новое соседнее место.

$$\tilde{S}_{p} = \{..., (\mathbf{x}_{1}, \tau_{1}), \mathcal{P}^{\dagger}(\mathbf{x}, \tau), ...\} \rightarrow \{..., (\mathbf{x}_{1}, \tau_{1}), \mathcal{P}^{\dagger}(\mathbf{x}', \tau'), ...\} = \tilde{\mathcal{S}}'_{p}$$

$$\mathcal{R} = \left| \frac{\det \mathbf{A}(\tilde{\mathcal{S}}'_{p})}{\det \mathbf{A}(\tilde{\mathcal{S}}_{p})} \right|^{2}$$
(75)

С определённой вероятностью выбирается одна из этих операций и применяется к системе. При этом раз в несколько шагов применяется операция measure, которая вычисляет наблюдаемые, корреляторы и статсумму. Если мы находимся в Z секторе (Ира и Маша аннигилировали), то Z=Z+1 при каждом вызове функции, измеряющей наблюдаемые, а так же обновляются значения средней кинетической, потенциальной энергий и локальной плотности . Если же существуют Маша и Ира, то мы в G секторе, в котором мы увеличиваем на единицу интегрированный коррелятор.

Algorithm 2 Worm algorithm

```
step \leftarrow 0
                                                         ⊳ Число шагов
                                                           ⊳ Статсумма
Z \leftarrow 0
R \leftarrow 0
                                                               \triangleright R(L,T)
                                    ⊳ Пока не вышло время, считаем
while Not timout do
   p \leftarrow Random([0,1])
   if p < p_1 then
       Add
   end if
   if p < p_2 then
       Drop
   end if
   if p < p_3 then
       Create
   end if
   if p < p_4 then
       Annihilate
   end if
   if p < p_5 then
       Leap add
   end if
   if p < p_6 then
       Leap drop
   end if
   if p < p_7 then
       Hop
   end if
end while
```

Выбор набора вероятностей p_i влияет на эффективность симуляции. Главное требование - эргодичность марковского процесса.

5.6 Вычисление определителей

В течении симуляции нам часто приходится считать величины $\frac{\det A(\mathcal{S}_{p+1})}{\det A(\mathcal{S}_p)}$

Точное вычисление определителя занимает $O(N^3)$ операций. Для вычисления отношения определителей не обязательно вычислять каждый из них отдельно. Рассмотрим матрицу $A_{N\times N}$, и нам нужно посчитать отношение для $A_{N\times N}$ и $A_{(N+1)\times (N+1)}$, где

$$A_{(N+1)\times(N+1)} = \begin{pmatrix} A_{N\times N} & \vec{u} \\ \vec{v} & s \end{pmatrix} \tag{76}$$

Где \vec{u} - вектор $N \times 1, \, \vec{v}$ - вектор $1 \times N, \, s$ - число.

Для того, чтобы сделать итерацию нашего алгоритма, нам необходимо знать

$$\frac{\det A_{(N+1)\times(N+1)}}{\det A_{N\times N}}$$
, a tak же $A_{(N+1)\times(N+1)}^{-1}$

Заметим несколько свойств определителей:

Для блочной матрицы

$$\Gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{77}$$

Определитель выражается в виде:

$$\det \Gamma = \det A \det D - CA^{-1}B \tag{78}$$

В нашем случае:

$$\det A_{(N+1)\times(N+1)} = s \det B = s \det A \det 1 - s^{-1}A^{-1}\vec{u}\vec{v} \qquad B = A - \vec{u}s^{-1}\vec{v}$$
(79)

Так же заметим, что есть связь между определителем и следом:

$$\ln \det A = \operatorname{Tr} \log A \tag{80}$$

$$\frac{\det B}{\det A} = \det 1 - s^{-1} A^{-1} \vec{u} \vec{v} = \operatorname{Tr} \ln 1 - s^{-1} A^{-1} \vec{u} \vec{v}$$
 (81)

Далее, вводя $\lambda = \vec{v} A^{-1} \vec{u}$, можно получить выражение:

$$\frac{\det A_{(N+1)\times(N+1)}}{\det A_{N\times N}} = s - \lambda = \frac{1}{\rho}$$
(82)

Обратную к $A_{(N+1)\times(N+1)}$ можно найти по формуле Шермана - Моррисона [24], что занимает $O(N^2)$ операций:

$$A_{(N+1)\times(N+1)}^{-1} = \begin{pmatrix} A^{-1} + \rho A^{-1} \vec{u} \vec{v} A^{-1} & -\rho A^{-1} \vec{u} \\ -\rho \vec{v} A^{-1} & \rho \end{pmatrix}$$
(83)

5.7 Обработка ошибок

В результате процедуры Монте-Карло мы получаем много слагаемых, каждое из которых скоррелированно с соседними. Для обработки таких рядов мы используем блочное суммирование, объединяя почти одинаковые значения в блоки.

Рассмотрим усредняемую величину m.

Среднее m

$$\langle m \rangle = \frac{1}{n} \sum_{i=1}^{n} m_i \tag{84}$$

Стандартное отклонение для m даётся выражением:

$$\sigma = \sqrt{\frac{1}{n-1}(\langle m^2 \rangle - \langle m \rangle^2)}$$
 (85)

Выражение 87 работает при условии, что все m_i , входящие в средние, статистически независимы. Можно показать [13], что выражение для зависимых m_i :

$$\sigma = \sqrt{\frac{1 + \frac{2t_c}{T}}{n - 1} (\langle m^2 \rangle - \langle m \rangle^2)}$$
 (86)

Где t_c - автокорреляционное время, T - время, на котором проводится измерение.

Разделив n измерений на n_b блоков, и получив среднее в каждом блоке $\langle m_b \rangle$, мы можем воспользоваться обычной формулой 87, тем самым уменьшив дисперсию [19]:

$$\sigma = \sqrt{\frac{1}{n_b - 1} (\langle m_b^2 \rangle - \langle m_b \rangle^2)}$$
 (87)

Размер блока подбирается эмпирически.

5.8 Результаты

Для чистой системы $\delta\mu = 0$ были добавлены новые в окрестности критической температуры. Это не повлияло на значение β_c .

В чистой модели $\beta_c=4.39\pm0.05$

Значение в оригинальной статье [2]:

$$\beta_c = 4.41 \pm 0.01$$

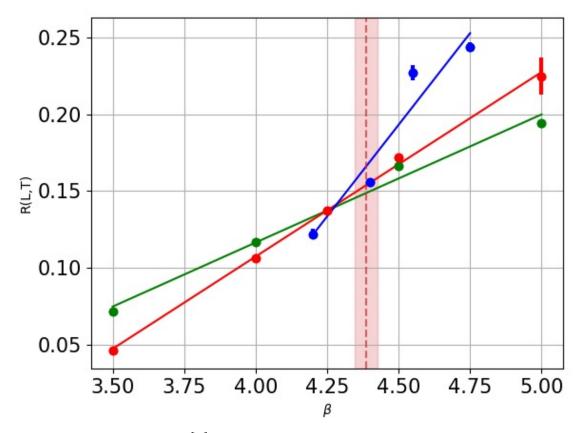


Рис. 12: Результаты [2], дополненные точками $L=12, \beta=4.4, L=12, \beta=4.75$ в окрестности β_c .

Ниже представлен график для трёх размеров для системы с беспорядком. Критическая температура стала меньше, чем в чистой системе. Поскольку теоретических исследований для малого беспорядка в химпотенциале в настоящий момент неизвестно, это первый результат.

В модели с малым беспорядком $|\delta\mu|=0.1t$ при химпотенциале $\mu=5.2t$

$$\beta_c = 4.54 \pm 0.07$$

Расхождение от результата для чистой модели на 3σ

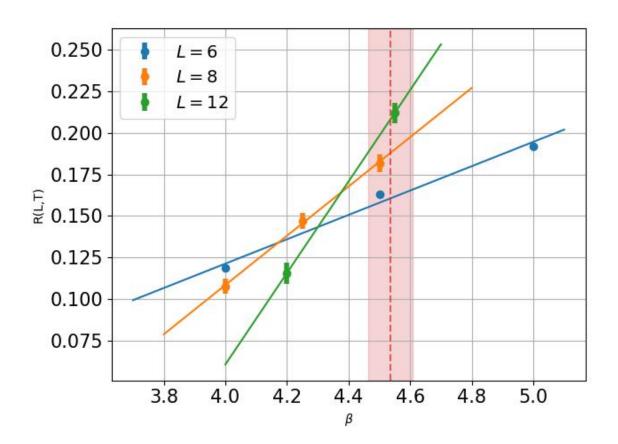


Рис. 13: Результаты для модели с беспорядком

Приведём сравнение результатов рис.12, рис.13 на рисунке 14.

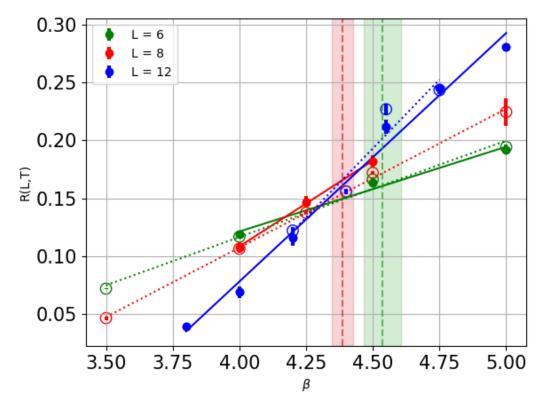


Рис. 14: Сравнение результатов для чистой модели (пунктирные линии и полые точки) и модели с беспорядком (сплошные линии, сплошные точки). Зеленая пунктирная линия отвечает за критическую температуру в системе с беспорядком $\beta_c=4.54\pm0.07$, красная пунктирная линия - без беспорядка $\beta_c=4.39\pm0.05$

Численные эксперименты проводились не только для L=6,8,12, но и для L=16, для которого не проводилось исследование ранее в чистой модели. Приведём результаты с учётом L=16, далее обсудим сходимость таких симуляций.

Из рис. 15 видно, что критическая температура гораздо меньше, чем без учёта L=16.

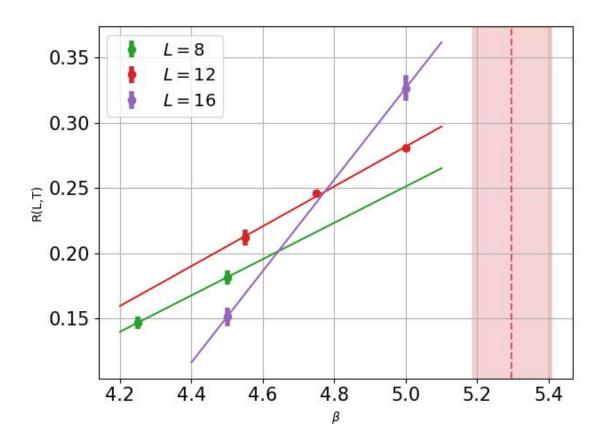


Рис. 15: Результаты для системы с беспорядком при учёте L=16, значения для L=6 были выкинуты, поскольку точек в непосредственной близости к новому β_c не было. $\beta_c=5.3\pm0.1$, отклонение от значения для чистой модели 13σ

На рисунке 16 видно, что критическая температура заметно уменьшилась. Счёт для L=16 занял более одного месяца для каждой точки и для чистой модели не хватило времени.

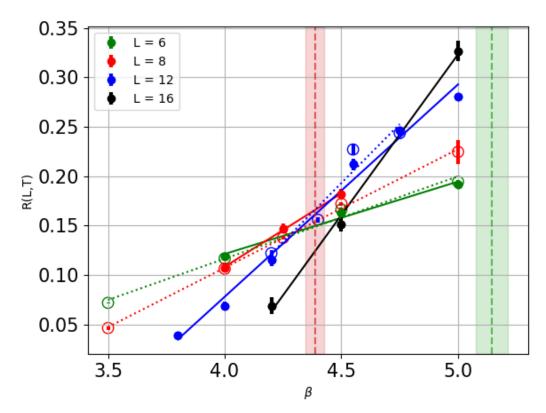


Рис. 16: Сравнение результатов для чистой модели (пунктирные линии и полые точки) и модели с беспорядком (сплошные линии, сплошные точки). Зеленая пунктирная линия отвечает за критическую температуру в системе с беспорядком с учётом L=16 $\beta_c=5.3\pm0.1$, красная пунктирная линия - без беспорядка $\beta_c=4.39\pm0.05$

5.9 Анализ сходимости

Сложность вычислений с увеличением размера системы растёт как L^3 , поэтому очень важно понимать, сходится ли процедура Монте-Карло. Поскольку беспорядок - случайный, то значения средних есть усреднение по многим реализациям беспорядка $R(L,T) = \langle R(L,T,\mu(\mathbf{r})) \rangle$. В зависимости от размера системы варьируется число реплик $R(L,T,\mu(\mathbf{r}))$, по которым мы усредняем. Для малых размеров их около 50, для больших - 20. Это связано с тем, что кластер, на котором производились вычисления имеет 30 вычислительных узлов, и повторный запуск больших размеров для одних и тех же параметров затратен по времени.

Рассмотрим вклад членов с разными S_p в суммарный ответ для L=12 рис.17. Видно, что в среднем каждая учтённая диаграмма имееет порядка 3000 вершин. Размер матрицы $A(S_p)$, соответственно, тоже. По центральной предельной теореме, распределение

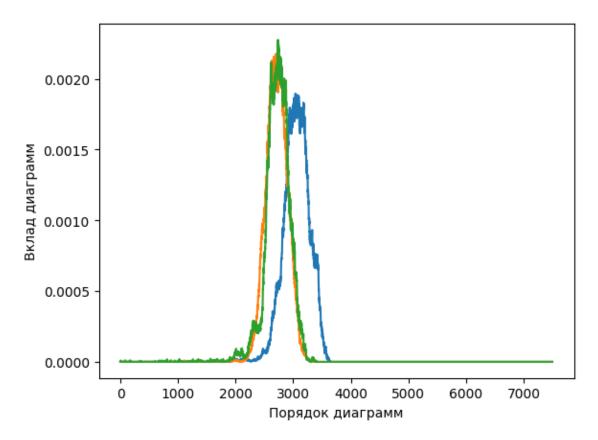


Рис. 17: Пример распределения вклада диаграмм разных порядков для L=12. Разными цветами обозначены разные реплики.

должно быть гауссовским, что видно из графиков на рис.17, рис.18.

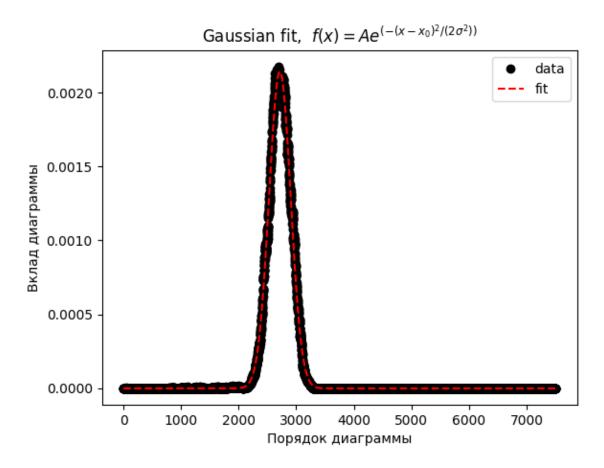


Рис. 18: Аппроксимация данных на рис.17 гауссовским распределением.

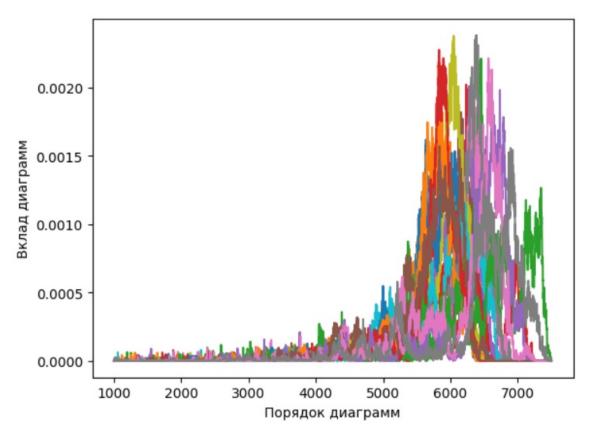


Рис. 19: L=16, время счёта - три недели, сходимости ещё нет

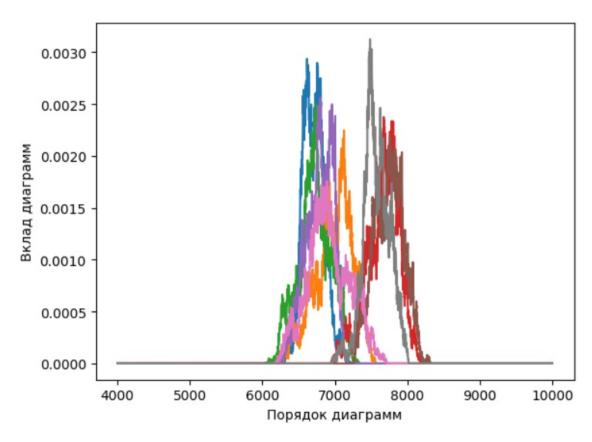


Рис. 20: L=16, время счёта - более месяца, сходимость есть, присутствует бимодальность.

Из графиков выше видно, что для вычисления лишь одной точки для L=16 нужно более одного месяца, что говорит о том, что, либо алгоритм недостаточно эффективен, либо недостаточно вычислительных мощностей. Для каждой из реплик L=16 было сделано порядка $2\cdot 10^8$ циклов алгоритма, порядок диаграмм 7000, что в два-три раза больше, чем для L=12.

Заметим, что на графике 20 присутствует не один, а два пика, это свойство бимодальности общее для всех результатов, причина явления неизвестна, она проявляется во всех результатах.

5.10 Обсуждение используемых приближений

- 1. При выводе значения потенциала 31 мы воспользовались тем, что в непрерывной системе в точке унитарности $\Gamma^{-1}=0$. Однако, в дискретной системе будут поправки за счёт того, что мы находимся, на самом деле, на решётке. Поправка мала по параметру числа заполнения $\frac{\Delta\Gamma}{\Gamma}\sim \nu^{1/3}$
- 2. При вычислении значения потенциала 30 не был учтён беспорядок. В силу того, что он мал относительна размера зоны, он вносит малую поправку в значение потенциала, и учитывать его не имеет смысла, поскольку первое приближение менее точное.

6 Заключение

Для малого значения беспорядка получены значения критических температур. На данный момент неизвестно, какое значение считается верным, поскольку требуются затратные по времени дополнительные вычисления. Моделирование системы фермионов - сложная задача, как минимум потому, что пространство состояний с ростом числа частиц растёт экспоненциально. В данный момент worm algorithm - самый эффективный и наиболее понятный метод решения подобных задач. Я надеюсь, что этот результат будет полезен в последующих исследованиях.

7 Список литературы

Список литературы

- [1] Einstein A. "Quantentheorie des einatomigen idealen gases. zweite abhandlung". B: Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften (1925).
- [2] Burovski E. et al. "The Fermi-Hubbard model at unitarity." B: New Journal of Physics. 8.8 (2006). DOI: https://doi.org/10.1103/PhysRevA.82.053621.
- [3] Campostrini M. et al. "Theoretical estimates of the critical exponents of the superfluid transition in He 4 by lattice methods". B: *Physical Review B.* 74.14 (2006). DOI: https://doi.org/10.1103/PhysRevB.74.144506.
- [4] Chin C. et al. "Feshbach resonances in ultracold gases". B: Reviews of Modern Physics 82.2 (2010). DOI: https://doi.org/10.1103/RevModPhys.82.1225.
- [5] Metropolis N. et al. "Equation of state calculations by fast computing machines". B: *The journal of chemical physics.* 21 (1953). DOI: https://doi.org/10.1063/1.1699114.
- [6] Zwierlein M. W. et al. "Condensation of pairs of fermionic atoms near a Feshbach resonance". B: *Physical Review Letters* 92.12 (2004). DOI: https://doi.org/10.1103/PhysRevLett.92.120403.
- [7] Schrieffer J. R. Bardeen J. Cooper L. N. "Theory of superconductivity". B: *Physical review letters* 108.5 (1957). DOI: https://doi.org/10.1103/PhysRev.108.1175.
- [8] M. Greiner C. A. Regal и D. S. Jin. "Observation of resonance condensation of fermionic atom pairs." B: *Physical review letters* 92.4 (2004). DOI: https://doi.org/10.1103/PhysRevLett.92.040403.
- [9] Engelbrecht J. R. De Melo C. A. R. S. Randeria M. "Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory". B: *Physical Review Letters* 71.19 (1993). DOI: https://doi.org/10.1103/PhysRevLett. 71.3202.
- [10] Fisher M. E. Scaling, universality and renormalization group theory. Springer Berlin Heidelberg, 1983.

- [11] Stoof H. T. C. Falco G. M. "Crossover temperature of Bose-Einstein condensation in an atomic Fermi gas". B: *Physical Review Letters* 92.13 (2004). DOI: https://doi.org/10.1103/PhysRevLett. 92.13040.
- [12] Hubbard J. "Electron correlations in narrow energy bands. II. The degenerate band case". B: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 277.1369 (1964). DOI: https://doi.org/10.1098/rspa.1964.0019.
- [13] Binder K. "Applications of Monte Carlo methods to statistical physics". B: Reports on Progress in Physics. 5 (1997). DOI: https://doi.org/10.1088/0034-4885/60/5/001.
- [14] Ho T. L. "Universal thermodynamics of degenerate quantum gases in the unitarity limit". B: *Physical Review Letters* 92.9 (2004). DOI: https://doi.org/10.1103/PhysRevLett.92.090402.
- [15] Lifshitz E. M. Landau L. D. Quantum mechanics: non-relativistic theory. Elsevier, 2013.
- [16] Hanson R. J. Lawson C. L. Solving least squares problems. Society for Industrial и Applied Mathematics, 1995.
- [17] Shitov A. V. Levitov L. S. Green's Functions. Problems and Solutions. 2003.
- [18] Axelsson A. Moerdijk A. J. Verhaar B. J. "Resonances in ultracold collisions of Li 6, Li 7, and Na 23". B: *Physical Review A.* 51.6 (1995). DOI: https://doi.org/10.1103/PhysRevA.51.4852.
- [19] Barkema G. T. Newman M. E. J. Monte Carlo methods in statistical physics. Clarendon Press, 1999.
- [20] Son D. T. Nishida Y. "Fermi gas near unitarity around four and two spatial dimensions." B: *Physical Review A*. 75.6 (2007). DOI: https://doi.org/10.1103/PhysRevA.75.063617.
- [21] Tupitsyn I. S. Prokof'Ev N. V. Svistunov B. V. ""Worm" algorithm in quantum Monte Carlo simulations". B: *Physics Letters A* 238 (1998). DOI: https://doi.org/10.1016/S0375-9601(97)00957-2.
- [22] Lichtenstein A. I. Rubtsov A. N. "Continuous-time quantum Monte Carlo method for fermions: Beyond auxiliary field framework". B: *Journal of Experimental and Theoretical Physics Letters* 80 (2004). DOI: https://doi.org/10.1134/1.1800216.

- [23] Beck H. Sewer A. Zotos X. "Quantum Monte Carlo study of the three-dimensional attractive Hubbard model." B: *Physical Review B.* 14.66 (2002). DOI: https://doi.org/10.1103/PhysRevB.66. 140504.
- [24] Morrison W. J. Sherman J. "Adjustment of an inverse matrix corresponding to a change in one element of a given matrix". B: *The Annals of Mathematical Statistics* 21 (1950). DOI: 10.1214/aoms/1177729959.
- [25] Wiese U. J. Troyer M. "Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations." B: *Physical review letters.* 94 (2005). DOI: https://doi.org/10.48550/arXiv.cond-mat/0408370.
- [26] Zwerger W. The BCS-BEC crossover and the unitary Fermi gas. Springer Science Business Media, 2011.