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Abstract

We study the zero-bias anomaly in disordered superconductors of symmetry class C,
where time-reversal symmetry is broken while spin-rotational invariance is preserved. Us-
ing the Finkel’stein nonlinear sigma model, we compute the disorder-averaged local density
of states up to two-loop order in the presence of statically screened interaction. The re-
sulting correction is derived analytically using dimensional regularization and evaluated
numerically in the limit of strong interaction. We identify a parametric regime where the
two-loop correction dominates over the leading one-loop result, leading to a breakdown of
the previously established double-log-squared behavior at low energies. Renormalization
group equations are obtained within the minimal subtraction scheme. We also propose a
possible extension of this analysis to symmetry class A, where similar logarithmic struc-
tures are expected to emerge. Our findings refine the perturbative understanding of ZBA
in class C systems.

2



Contents

Abstract 2

1 Introduction 4
1.1 Class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Zero-Bias Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Anderson Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Finkel’stein NLσM with Interaction 9

3 Perturbation Theory 10

4 Corrections to LDoS 12

5 One-Loop Correction 13

6 Two-Loop Corrections 14
6.1 ΛW 2S

(4)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 ΛW 2S
(4)
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 ΛW 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 S

(3)
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.4.1 S
(3)
int,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4.2 S
(3)
int,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4.3 S
(3)
int,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.4.4 S
(3)
int,4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Renormalization 24

8 Results 26

9 Discussions 27

10 Contractions 28

11 Integrals Evaluation 30

12 Conclusion 38

3



1 Introduction

1.1 Class C

In our work, we study low energy quasiparticles in a disordered superconductor with bro-
ken time-reversal symmetry (TRS) and with preserved spin-rotational symmetry. The Hamil-
tonian of such a system, denoted by H, is of the Bogoliubov-de Gennes type and must satisfy
certain symmetry constraints. First, particle-hole symmetry implies:

πxH
⊤πx = −H, (1.1.1)

where πx = σx is a Pauli matrix acting in the particle-hole space with basis ψ = (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓).

Spin-rotational symmetry imposes:
σiHσi = H. (1.1.2)

Finally, broken TRS is expressed as:

U−1
T H∗(k)UT ̸= H(−k), T = UTK, (1.1.3)

where T is a time-reversal operator, UT is a unitary operator that reverses spin, and K denotes
complex conjugation. Here, H is taken to be diagonal in the momentum k basis. The Hamil-
tonian obeying these symmetries, according to the classification by Altland and Zirnbauer [1],
belongs to symmetry class C.

This class has attracted significant attention due to the possibility of realizing the spin
quantum Hall effect (sQHE)—a topological phase characterized by the presence of gapless edge
modes that carry spin current. It has been extensively studied in the literature [2, 3, 4, 5, 6]. A
prototypical system exhibiting class C behavior is a spin-singlet d-wave superconductor with a
complex order parameter of the form:

∆(k) = iσy
(
dx2−y2(k) + idxy(k)

)
, ∆∗(k) ̸= ∆(−k). (1.1.4)

The material with this order parameter was proposed by Can et al. [7]. The authors
suggest coupling two superconducting monolayers with d-wave order parameter (e.g., CuO2

layers), twisted relative to one another, as illustrated in Fig. 1. For twist angles above a certain
critical value θc, the complex order parameter (1.1.4) minimizes the free energy. The emergence
of the edge mode was demonstrated numerically in the same work.

This setup was recently investigated [8, 9, 10] for the Josephson diode effect—a hall-
mark of broken TRS (for theoretical exploration see [11]). These developments make twisted
Bi2Sr2CaCu2O8+x bilayers promising candidates for the experimental realization of the spin
quantum Hall effect.

In the regime of weak disorder, class C superconductors can be described by a nonlinear
sigma model (NLσM). A key assumption in deriving this model is that the disorder-averaged
order parameter vanishes, which is consistent with the known suppression of d-wave supercon-
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Figure 1: Adopted from Ref. [7]

ductivity by disorder [12]. Nevertheless, local superconducting fluctuations are allowed. The
resulting system may be interpreted as a normal metal interspersed with randomly distributed
superconducting regions. Another important assumption is that the average phase acquired by
an electron undergoing Andreev reflection at a normal–superconductor (NS) interface is zero
[1]; this condition is essential for the existence of gapless quasiparticle excitations.

1.2 Zero-Bias Anomaly

The interplay between disorder and Coulomb interaction in electronic systems gives
rise to the phenomenon known as the zero-bias anomaly (ZBA). It manifests as a pronounced
dip in the tunneling conductivity near the Fermi level, and has been observed in numerous
experiments [13, 14, 15, 16]. The tunneling conductivity measured in the experiment, conducted
by McMillan and Mochel [17], is shown in Fig. 2. They studied tunneling conductivity in gold-
doped germanium alloys as a function of bias voltage. The level of doping is denoted by x: higher
values of x correspond to higher concentrations of gold. Gold introduces states within the band
gap of germanium, thereby enabling conduction. For x > 0.12, close to the metal–insulator
transition, a clear square-root-type dependence emerges. That is qualitatively consistent with
the theoretical prediction by Aaronov and Altshuler in [18], which we discuss below. The curve
for x = 0.08 corresponds to the semiconducting state, in which Coulomb interaction is known
to produce a Coulomb gap [19].

The relation between the correction to the tunneling conductivity and the density of
states (DoS) of electrons could be obtained using the tunneling Hamiltonian formalism. At
zero temperature, it takes the form:

δG(V )

G0

=
δρ(eV )

ρ0
, (1.2.1)

where δG(V ) is the interaction-induced correction to the tunneling conductivity G0 at bias
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Figure 2: Differential conductance dI/dV of the tunnel junction as a function of voltage for
Ge1−xAux samples with x = 0.08, 0.12, 0.16, and 0.20. Conductance is normalized to unity at
+0.3V. Adopted from [17].

voltage V , and δρ(eV ) is the corresponding correction to the DoS ρ0 at the energy eV , where e
is an elementary charge. This relation enables a direct interpretation of tunneling data in terms
of DoS modifications.

Altshuler and Aronov showed in [18] that, in three dimensions, weak disorder and short-
range, energy-independent electron interactions give rise to a square-root correction:

δρ(E) ∝
√
E. (1.2.2)

The same calculation can be carried out for the Coulomb interaction in two dimensions, al-
though assumptions should be modified. Indeed, Coulomb interaction is not short-ranged, and
acquires energy dependence due to Debye screening in the presence of disorder. In a subse-
quent paper by Altsuler, Aronov and Lee [20], the following expression was obtained for the
screened-Coulomb-induced correction in 2D:

δρ(E)

ρ0
= − 1

2πEFτ
ln(|E|τ) ln

∣∣∣∣ EDκ2
∣∣∣∣ , (1.2.3)

where EF - Fermi energy, D - diffusion coefficient, τ is mean free time and κ - Debye screening
length in 2D.

This result is valid when the correction to the DoS is small relative to the bare DoS. That
works only in a diffusive regime, when the disorder is small. Moreover, it diverges as E → 0.
Another approach to this problem was introduced by Levitov and Shytov in 1997 [21]. They
completely avoided the weak disorder problem, considering a system at thermal equilibrium
with known conductivity σ. They explore action in imaginary time and find an instanton that
corresponds to the tunneling. Within the saddle-point approximation, they derived the following
expression for the tunneling conductivity:

G(V )

G0

= exp
(
−1

ℏ
S(V )

)
, S(V ) =

e2

8π2σ
ln
( e

4π2σV τ

)
ln

(
eτσ (νe2)

2

4π2V

)
, (1.2.4)
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where ν - compressibility and could be expressed using Einstein relation ν = σ/(e2D). This
result is self-consistent when eV < e2/στ and in the range of applicability of the perturbative
result coincides with (1.2.3).

The same result was previously obtained by Finkel’stein [22], Nazarov [23], and was later
obtained by Kamenev and Andreev [24] using the Keldysh NLσM and K-gauge.

In symmetry class C, ZBA can in principle also be observed. This is because the super-
conducting gap is, on average, suppressed by disorder, leaving quasiparticle states at the Fermi
level that are susceptible to interaction effects. A key difference, however, is that interactions in
class C occur in the triplet channel, whereas traditional ZBA calculations typically involve the
singlet channel. Nevertheless, this distinction does not prevent meaningful comparison: class
C and class A (the symmetry class of disordered metals with broken TRS) are connected via
a continuous crossover, during which the triplet channel effectively transforms into the singlet
channel [25]. Our perturbative analysis permits extension of the results to class A, enabling a
direct comparison of the corresponding corrections to the LDoS.

1.3 Anderson Localization

The phenomenon of Anderson localization has been known since the middle of the pre-
vious century [26]. In his seminal work, P.W. Anderson studied non-interacting electrons on a
disordered lattice, where the on-site energies were randomly distributed. He discovered that,
beyond a critical strength of disorder, the electronic wavefunctions become localized. The re-
sulting disorder-driven metal–insulator transition occurs at zero temperature and serves as a
prototypical example of a quantum phase transition.

A notable feature of this transition is the anomalous scaling of the disorder-averaged
moments of the local density of states (LDoS) with system size. Near the critical point, one
finds:

⟨ρq(E, x)⟩ ∼ L−xq , xq = d(q − 1) + ∆q. (1.3.1)

xq are called multifractal exponents and ∆q represent the corresponding anomalous dimensions.
In the delocalized (metallic) phase, these anomalous dimensions vanish. Such multifractal be-
havior is not restricted to the LDoS: many other operators exhibit similar scaling properties
[27].

In class C systems without interactions, an infinite set of these anomalous dimensions can
be obtained analytically through a mapping to the percolation problem [4, 28, 29, 30, 31, 32].
In the presence of interactions, a two-loop perturbative analysis using the Finkel’stein NLσM
was performed by Babkin and Burmistrov [33]. Although anomalous dimensions for several
operators were computed, the two-loop result for the LDoS was not derived.

The goal of the present work is to compute the two-loop correction to the LDoS operator
in class C, thereby completing this aspect of the analysis. Furthermore, the presence of the ZBA
is expected to modify the pure power-law scaling. This deviation should manifest itself in the
structure of the two-loop correction.
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1.4 Outline of the Paper

In Section 2, we introduce the Finkelstein NLσM, a field-theoretical approach for describ-
ing disordered superconductors. We explain its symmetries and discuss their physical origins.
In Section 3, we describe the parametrization of matrix fields used for perturbative calculations
in the weak-disorder regime and discuss the diagrammatic correspondence between propagators
in the NLσM and Green’s function formalism.

In Section 4, we identify the disorder-averaged operator corresponding to the LDoS and
develop its expansion up to the two-loop approximation. In Section 5, we reproduce the one-loop
result and discuss how the known double-log-squared law is recovered in the limit of Coulomb
interaction in class A.

Section 6 presents our detailed two-loop calculations, including analytical expressions
for each contribution and the evaluation of results in the limit of zero temperature and zero
energy. Section 7 is dedicated to deriving the renormalization group (RG) equations.

In Sections 8, 9, and 12, we present analytical expressions for the RG coefficients, analyze
them analytically and numerically in the γ → −1 limit, and discuss the resulting implications
for the ZBA. Finally, we address the possibility of extending our results to symmetry class A.
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2 Finkel’stein NLσM with Interaction

We use Finkel’stein NLσM to study the behavior of diffusive modes in the presence of
the interaction between quasiparticles. In this section, we outline the symmetries of this field
theory. The partition function takes the form:

Z =

∫
D
[
Q
]
exp(S0 + Sint), (2.1)

where S0 - non-interacting part of the action, and Sint is attributed to the quasiparticle inter-
action:

S0 = − g

16

∫
x

Tr
(
∇Q

)2
+ Zω

∫
x

Tr
(
ε̂Q
)
; (2.2)

Sint = −πTΓt

4

∑
α,n

∫
x

Tr
(
Iαn sQ

)
Tr
(
Iα−nsQ

)
,

where Tr denotes the trace over all degrees of freedom, excluding spatial integration. We briefly
summarize the parameters appearing above. Conductance is denoted as g, which will serve as a
parameter of the perturbation theory. Zω is a counterterm and controls the renormalization of
the corresponding term in the action. T is the temperature, and Γt is an interaction amplitude,
which is taken to be statically screened to ensure its short-range nature. We use the notation∫
x
=
∫
ddx.
Q is a matrix field over which we integrate, and we shall discuss its degrees of freedom. It

is a matrix in a replica space of dimension Nr, and in a 2-dimensional Nambu space. It also acts
in a 2Nm-dimensional Matsubara space (Nm for positive and Nm for negative frequencies). The
latter is necessary for the discussion of the interacting system. Strictly speaking, the Matsubara
space is infinite-dimensional, and one should take the limit Nm → ∞ with care. Nonetheless,
this subtlety is irrelevant for our purposes. Another limit we need to take is Nr → 0, as this
corresponds to physical observables. In (2) there are operators:

ε̂αβnm = εnδn,mδ
αβs0, εn = 2πT

(
n+

1

2

)
, (2.3)

s = (s1, s2, s3),(
Iαn
)βγ
km

= δk−m,nδ
βαδαγs0.

We use superscripts for replica space and subscripts for Matsubara frequencies, si acts on Nambu
space as a Pauli matrix σi with the convention, that σ0 = 1̂.

Q matrices are not entirely arbitrary: Q is an Hermitian matrix Q† = Q and satisfies
a nonlinear constraint Q2(x) = 1̂. These constraints are general for any NLσM, the specific
symmetries of class C superconductors, such as spin rotational and Bogolyubov-de Gennes
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symmetries (time-reversal symmetry is broken), further restrict the structure of Q:

Q = −Q̄, Q̄ = s2L0Q
⊤L0s2,

(
L0

)αβ
nm

= δεn,−εmδ
αβs0, (2.4)

(L0)
αβ
nm = δεn,−εmδ

αβs0.

These constraints could be satisfied with unitary transformations T of a saddle point configu-
ration Λ:

Q = T−1ΛT, Λαβ
nm = sign(ϵn)δnmδ

αβs0. (2.5)

Unitary transformation matrices, according to (2), satisfy the relation:

(
T−1

)⊤
L0s2 = s2L0T. (2.6)

These matrices T form a target manifold of the class C NLσM - Sp(4NrNm)/U(2NrNm). The
fluctuations around the saddle point Λ will be small with respect to g−1, as we will discuss in
the next section. The only interaction term here corresponds to the triplet particle-hole channel.
Other interactions are prohibited in this symmetry class: Cooper channel is suppressed due to
the broken time-reversal symmetry, and the singlet particle-hole channel vanishes due to the
symmetry (2):

Tr Iαn s0Q = 2
∑
k

Qαα
k,k+n = −2

∑
k

Qαα
k,k+n = 0. (2.7)

3 Perturbation Theory

In this section, we discuss the main method of the work - perturbative expansion. We
assume that the corrections to the saddle-point approximation are small with respect to the
parameter g−1. We start by parametrizing Q matrix field with matrix field W :

Q = W + Λ
√
1−W 2 (3.1)

In order for that parametrization to be consistent with nonlinear constraints, we need to impose
another condition:

ΛW +WΛ =
{
Λ,W

}
= 0. (3.2)

Condition (2) and hermiticity are also imposed on W :

W = W †, W = −W̄ . (3.3)

These conditions allow us to write W as a block matrix:

W =

(
0 w

w† 0

)
, wαβ

nm ̸= 0 if εn > 0 and εm < 0, wαβ
nm = 0 otherwise. (3.4)
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W is off-diagonal in Matsubara space. Since w is Hermitian in Nambu space, we could decom-
pose it using Pauli matrices: w =

∑3
i=0wisi. Finally, we can rewrite (2) in terms of w:

(wi)
αβ
n,m = vi(wi)

βα
−m,−n, v = (−1, 1, 1, 1). (3.5)

This relation is incredibly useful for calculations. Now, we can expand the action in terms of w
matrices and obtain gaussian part:

S(2) =
∑

ni,α,β,µ,ν,i

∫
q

(wi,q)
αβ
n1,n2

(w†
i,−q)

µν
n4,n3

[(
−g
4
q2 − Zω

2
(εn1 − εn2)

)
δn1,n3δn2,n4δ

ανδβµ+ (3.6)

+(−2πTΓt)(1− δi,0)δn1−n2,n3−n4δ
ανδβµδαβ

]
. (3.7)

Here we used another notation
∫
q
=
∫
ddq(2π)−d for integration in momentum space. One can

obtain correlation functions of the field w that respect symmetry (2):

⟨(wi,q)
αβ
n1,n2

(w†
i,−q)

µν
n4,n3

⟩ = 2

g
δn1−n2,n3−n4

[
δανδβµδn1n3 + viδ

αµδβνδn1,−n4−

−4πTγ

D
(1− δi,0)δ

ανδβµδαβDt
q(iωn1−n2)

]
Dq(iωn1−n2), (3.8)

where iωn1−n2 = iεn1 − iεn2 . Here we introduced D = g/4Zω - diffusion coefficient, γ = γt/Zω -
interaction parameter and diffusive propagators:

Dq(iω) =
1

q2 + ω
D

;

Dt
q(iω) =

1

q2 + (1 + γ) ω
D

. (3.9)

These show the diffusive nature of fluctuations. We note that due to (3.8) g−1 is indeed a
small parameter of our perturbation theory. This expansion can be understood in terms of the
disorder-averaged diagrammatic perturbation theory. The propagators in Eq.(3.9) correspond to
diffusons, while the combination γDDt captures the dynamically screened interaction mediated
by impurity scattering, as illustrated in Fig.3. This formulation recasts the perturbation theory
in a more convenient language of interacting diffusive modes.

We now discuss the physical interpretation of these propagators. The emergent diffusive
poles are typically associated with conservation laws. Castellani et al. [34] demonstrated that, in
a disordered interacting electron gas (class AI), the Ward identity relates the spin susceptibility
to the renormalized triplet propagator Dt and its pole structure.

The NLσM describes dynamics in the hydrodynamic regime, i.e., at small momenta
k ≪ pF (with pF the Fermi momentum) and low energies E ≪ τ−1. Corrections outside this
regime correspond to Landau Fermi-liquid effects and result in renormalizations of the theory’s
parameters, such as the single-particle density of states.

In Landau Fermi-liquid theory, the spin susceptibility is related to the triplet interaction
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Figure 3: a) Statically screened interaction (wiggly line) is dressed by the diffusive ladder
(dashed lines); b) Vertices of the interaction are also dressed by the diffusive ladder.

amplitude via the standard expression [35]:

γ = − Ft

1 + Ft

, (3.10)

where Ft is the s-wave Fermi-liquid parameter in the triplet channel. For repulsive interactions,
Ft < 0, so γ is positive. Moreover, since γ receives no one-loop corrections in the sigma model
[33], this sign persists at large momentum scales.

We also need to add a term to our action:

Sh =
gh2

8

∫
x

Tr
(
ΛQ
)
. (3.11)

In terms of expansion around the saddle-point, this term changes diffusive propagators :

Dq(iω) →
1

q2 + h2 + ω
D

;

Dt
q(iω) →

1

q2 + h2 + (1 + γ) ω
D

. (3.12)

It is very useful to us, since it regularizes infrared divergencies without affecting the UV and,
hence, the renormalizability. In our calculations it will be more convenient not to keep track of
Matsubara frequencies, but rather express corrections in terms of h. The possibility to restore
the energy and temperature dependence from this limit is discussed in [36]. In the next section,
we derive a perturbative expression for the LDoS correction.

4 Corrections to LDoS

The expansion of action in terms of w matrices produces vertices of the perturbation
theory. There are three terms in action, which will be relevant for the consideration of two-loop

12



corrections to the LDoS:

S
(3)
int =

πTΓt

4

∑
α,n

∫
x

Tr Iαn sW Tr Iα−nsΛW
2

S
(4)
int = −πTΓt

16

∑
αn

∫
x

Tr Iαn sΛW
2Tr Iα−nsΛW

2

S
(4)
0 =

g

64

4∏
i=1

∫
qi

∑
αi,ni

δ

(∑
i

qi

)
×
(
q12q34 + q14q23 − 2h2 − ωn12+n34

D

)
× tr

[
(wq1)

α1α2

n1n2

(
w†

q2

)α2α3

n2n3
(wq3)

α3α4

n3n4

(
w†

q4

)α4α1

n4n1

]
, (4.1)

where qij = qi + qj, and ωn12 = ϵn1 − ϵn2 , and tr denotes the trace over Nambu degrees of
freedom. The first and second lines originate from the expansion of the interaction term in
action, whereas the last term comes from the non-interacting part. The LDoS corresponds to
the single Q matrix operator:

ρ(iϵn) =
ρ0
2
tr
(
Qαα

nn

)
. (4.2)

Note that the replica and Matsubara indices are fixed. In order to obtain corrections to the
LDoS, one should use the expanded action, as well as the expansion of Q matrix up to two
loops:

tr⟨Qαα
nn⟩ = 2− 1

2
tr
〈
(ΛW 2)ααnn

〉
− 1

8
tr
〈
(ΛW 4)ααnn

〉
− 1

2
tr
〈
(ΛW 2)ααnn [S

(4)
0 + S

(4)
int + (S

(3)
int )

2/2]
〉
+ . . .

(4.3)

Here ⟨⟩ denotes averaging using Wick’s theorem and the correlation functions (3.8). For con-
venience, we assume ϵn > 0. The main goal of this work is to compute these contributions
explicitly. Once obtained, they will allow us to derive the RG equations and ultimately access
the correction to the ZBA.

5 One-Loop Correction

This section is dedicated to reproducing the known one-loop result for the LDoS. In
doing so, we will apply our assumptions and introduce notations that will be used in two-loop
analysis as well. The one-loop correction arises from the second term on the right-hand side of
(4.3). Rewriting it in terms of propagators (3.12), we obtain:

tr⟨Qαα
nn⟩ = 2−

∑
i,k,γ

⟨(wi)
αγ
nk(x)(w

†
i )

γα
kn(x)⟩ = 2−4

g

∫
p

Dp(iω2n)+
2

g

∑
k:ϵk<0

12πTγ

D
DpDt

p(iωn−k). (5.1)

From this point on, we adopt a shorthand notation for products of multiple propagators eval-
uated at the same frequency argument, as exemplified above:

Dn
p

(
Dt

p

)m
(iω) = Dn

p (iω)
(
Dt

p

)m
(iω). (5.2)
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Note that there are only two contributions, not three. That is because one of the terms in (3.8)
vanishes in the replica limit Nr → 0. From now on, we will only consider contractions in this
limit. We will also consider a zero-temperature limit, in which the summation over Matsubara
frequencies is replaced by integration:

∑
n

f(iωn) =

∫
dω

2πT
f(iω). (5.3)

The integrals over momenta will be computed in the ϵ-regularization, assuming, that
d = 2+ ϵ. Moreover, we retain only the pole parts in ϵ, as these are the only terms relevant for
the minimal subtraction scheme of renormalization [37]. Changing the variables of integration
from Q-matrices to W introduces a Jacobian, which usually regularizes the UV divergences.
Since we use ϵ-regularization, it can be disregarded [37].

We can now obtain the result for the one-loop correction:

tr⟨Qαα
nn⟩ = 2− 4

g
A(ϵ)

[
1− 3 ln(1 + γ)

]
. (5.4)

Here we introduce another quantity:

A(ϵ) = − Sd

(2π)d
Γ(1 + ϵ/2)Γ(1− ϵ/2)

ϵ
,

∫
p

Dp(iω) = A(ϵ)
( ω
D

+ h2
)
, (5.5)

where Sd is the surface area of a sphere, embedded in a d-dimensional space (volume of a d−1-
dimensional manifold). This factor emerges frequently in our calculations, and we will use it to
redefine RG-charge in Section 7. It is clear, that for γ = −1, which corresponds to the Coulomb
interaction in class A, theory becomes nonrenormalizable - instead of a first order-pole, the
correction has a second-order pole in ϵ. That is consistent with the ZBA, where the correction
to the LDoS in one-loop approximation is proportional to the squared logarithm of energy. We
will show, that in two loops the LDoS is also renormalizable, with a similar divergence of the
exponent as γ → −1.

Under these same assumptions, we now proceed to identify the diagrams contributing
to the second-order correction.

6 Two-Loop Corrections

The two-loop corrections emerge from the third and the fourth contribution on the
right-hand side of the (4.3). These are the only contributions that are quadratic in g−1, as
will become evident when the expressions are rewritten in terms of propagators. We assume
ϵn > 0 (moreover, for some calculations it is convenient to assume n > 0, which we adopt where
appropriate) and proceed with the derivation of the two-loop contributions.
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6.1 ΛW 2S
(4)
0

We begin with this contribution, even though it is not the simplest. However, it serves
as a convenient example for illustrating some details of the derivation. We first express it in
terms of the w -matrices in momentum space:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
0 ⟩ = − g

64

∫
q,q′

ei(q+q′)x
∑

k,m,γ,i

⟨(wi,q)
αγ
nk

(
w†

i,q′

)γα
kn

4∏
j=1

∫
qi

∑
αj ,nj

δ
(∑

j

qj
)
×

×
(
q12q34 + q14q23 − 2h2 − ωn12+n34

D

)
tr
[
(wq1)

α1α2

n1n2

(
w†

q2

)α2α3

n2n3
(wq3)

α3α4

n3n4

(
w†

q4

)α4α1

n4n1

]
⟩. (6.1.1)

Details of the subsequent derivation can be found in the section 10. The result of the
contraction is:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
0 ⟩ = +

1

2g2

∫
q1,q3

[
16Dq3(iω2n)D2

q1
(iω2n)

(
D−1

q3
(iω2n) +D−1

q1
(iω2n)

)
− 96πTγ

D
×

×
∑
n1>0

Dt
q1
(iωn1+n)D2

q1
(iωn1+n)Dq3(iω2n1)

(
D−1

q3
(iω2n1) +D−1

q1
(iωn1+n)

)
− 96πTγ

D
×

×
∑
n1>0

Dt
q1
(iωn1+n)D2

q1
(iωn1+n)Dq3(iω2n)

(
D−1

q3
(iω2n) +D−1

q1
(iωn1+n)

)
+

192π2T 2γ2

D2
×

×
∑
n3>0
n2<0

θ(n3 − n2 − n)
(
Dt

q1

)2
(iωn3−n2)D2

q1
(iωn3−n2)Dq3(iω−2n2)

(
D−1

q3
(iω−2n2) +D−1

q1
(iωn3−n2)

)
−

−96πTγ

D

∑
n1>0

Dq3(iωn+n1)Dt
q3
(iωn+n1)D2

q1
(iω2n)

(
D−1

q3
(iωn+n1) +D−1

q1
(iω2n)

)
+

+
576π2T 2γ2

D2

∑
n1>0
n2<0

Dt
q3
(iωn1−n2)Dq3(iωn1−n2)Dt

q1
(iωn−n2)D2

q1
(iωn−n2)×

×
(
D−1

q3
(iωn1−n2) +D−1

q1
(iωn−n2)

)
+

576π2T 2γ2

D2

∑
n1>0
n2<0

Dt
q3
(iωn1+n)Dq3(iωn1+n)Dt

q1
(iωn−n2)D2

q1
(iωn−n2)×

×
(
D−1

q3
(iωn1+n) +D−1

q1
(iωn−n2)

)
− 576π3T 3γ3

D3

∑
n3≥0
n2<0

θ(n3 − n2 − n)
(
Dt

q1

)2
(iωn3−n2)D2

q1
(iωn3−n2)×

×

( ∑
v≥−n2

(
D−1

q3
(iωv) +D−1

q1
(iωn3−n2)

)
Dt

q3
(iωv)Dq3(iωv)+

+
∑
v>n3

(
D−1

q3
(iωv) +D−1

q1
(iωn3−n2)

)
Dt

q3
(iωv)Dq3(iωv)

)]
. (6.1.2)

This result is valid for an arbitrary n > 0, next step is to assume T = 0 and calculate the result
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for ϵn → 0:

−1

2
tr
〈
(W 2)ααnnS

(4)
0

〉
→ 1

2g2

∫
pq

[
16(D−1

p (0) +D−1
q (0))Dp(0)D

2
q(0)

1

−

−48γ

∫ ∞

0

dz(D−1
p (z) +D−1

q (0))DpD
t
p(z)D

2
q(0)

2

−

−48γ

∫ ∞

0

dz(D−1
p (0) +D−1

q (z))Dp(0)D
2
qD

t
q(z)

3

+ 144γ2
∫ ∞

0

dydz(D−1
p (y) +D−1

q (z))DDt
p(y)D

2
qD

t
q(z)

4

−48γ

∫ ∞

0

dz(D−1
p (2z) +D−1

q (z))Dp(2z)D
2
qD

t
q(z)

5

+

+144γ2
∫ ∞

0

dydz(D−1
p (y + z) +D−1

q (z))DpD
t
p(y + z)D2Dt

q(z)
6

+48γ2
∫ ∞

0

dydz(D−1
p (2y) +D−1

q (y + z))Dp(2y)D
2
qD

t2
q (y + z)

7

−144γ3
∫ ∞

0

dxdydz(D−1
p (x+ y) +D−1

q (y + z))DpD
t
p(x+ y)D2

qD
t2
q (y + z)

8

]
. (6.1.3)

The propagator used here is slightly different:

D(t)
q (ω/D) = D(t)(iω). (6.1.4)

Extracting the poles in ϵ, we obtain:

−1

2
tr
〈
(W 2)ααnnS

(4)
0

〉
→ A2(ϵ)h2ϵ

g2

(
8− 2γ(2 + 9γ)− 12(4 + γ) ln(1 + γ) + 72(1 + γ) ln2(1 + γ)

1 + γ
+

+ϵ
3γ(3γ − 2(5 + ln 4)) + 6 ln(1 + γ) (1− 3(−2 + γ)γ + 3(2 + γ) ln(1 + γ))

2(1 + γ)

)
. (6.1.5)

Note that the prefactor A2(ϵ) diverges as ϵ−2; therefore, the expansion in brackets must
be carried out up to first order in ϵ in order for the result to contain poles.

6.2 ΛW 2S
(4)
int

This contribution is of the same order in g−1, as the previous one. Upon evaluating the
traces over Nambu space, we obtain:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
int ⟩ = −πTΓt

16
⟨
∑

m,n1,n4
m1,m4,α4

α′,α′
4

∫
p1,p2

ei(p1+p2)x
[
[(wi,p1)

αα′

nk (w†
i,p2

)α
′α

kn

]
Bβδ,λρ×

×
∫
qi

δ

(∑
i

qi

)
sign(εn1−m)

[
(wβ,q1)

ξα4
n1−m,n4

(w†
δ,q2

)α4ξ
n4n1

+ h.c.
]
sign(εm1+m)[

(wλ,q3)
ξα′

4
m1+m,m4

(w†
ρ,q4

)α
′
4ξ

m4m1
+ h.c.

]
⟩, (6.2.1)
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where Bβδ,λρ =
∑

i>0 tr(σiσβσδ) tr(σiσλσρ). h.c. stands for hermitian conjugation. Summarizing
all of the possible corrections one could obtain:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
int ⟩ =

+πTΓt

g3
×
∫
q1,q3

∑
m>0

192Dq1 (iωm)D2
q3
(0)+

+96Dq1 (0)D2
q3
(iωm) + 96Dq1 (iω2m)D2

q3
(iωm)−

−4πγT

D
× 2

∑
k>0

[
192θ(k −m)Dq1(iωk−m)Dt

q3
D2

q3
(iωk) + {288 + 48θ(k −m)}Dq1(iωk+m)Dt

q3
D2

q3
(iωk)

]
−

−4πγT

D

∑
k>0

[
144θ(k −m)Dt

q1
Dq1(iωk−m)D2

q3
(iωk) + 384Dt

q1
Dq1(iωk+m)D2

q3
(iωk)

]
+

+
16π2γ2T 2

D2

∑
k>0

{
192(k −m)θ(k −m)Dq1(iωk−m)

(
Dt

q3

)2D2
q3
(iωk) +

+ [144k + 48(k −m)θ(k −m)]Dq1(iωk+m)
(
Dt

q3

)2D2
q3
(iωk)

}
+

+2× 16π2γ2T 2

D2

∑
k>0

96
{
(k −m)θ(k −m)Dt

q1
Dq1(iωk−m)Dt

q3
D2

q3
(iωk) + 2kDt

q1
Dq1(iωk+m)Dt

q3
D2

q3
(iωk)

}
−

−64π3T 3γ3

D3

∑
k>0

96
{
(k −m)2θ(k−m)Dt

q1
Dq1(iωk−m)

(
Dt

q3

)2D2
q3
(iωk)+

+k2Dt
q1
Dq1(iωk+m)

(
Dt

q3

)2D2
q3
(iωk)

}
. (6.2.2)

In the limit T → 0, n = 0, one derives:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
int ⟩ →

12γ

g2

∫
pq

∫ ∞

0

dz
[
2Dq(z)D

2
p(0)

1

+Dq(0)D
2
p(z)

2

+D2
q(z)Dp(2z)

3

]
−12γ2

g2

∫
pq

∫ ∞

0

dydz
[
8Dp(y)D

2
qD

t
q(y + z)

4

+ 12Dp(y + z)D2
qD

t
q(y)

5

+ 2Dp(y + 2z)D2
qD

t
q(y + z)

6

−8yγDp(y)D
2
qD

t2
q (y + z)

7

−6yγDp(y + z)D2
qD

t2
q (y)

8

−2yγDp(y + 2z)D2
qD

t2
q (y + z)

9

+ 3DpD
t
p(y)D

2
q(y + z)

10

+8DpD
t
p(y + z)D2

q(y)
11

−8yγDpD
t
p(y)D

2
qD

t
q(y + z)

12

−16yγDpD
t
p(y + z)D2

qD
t
q(y)

13

+8y2γ2DpD
t
p(y)D

2
qD

t2
q (y + z)

14

+ 8y2γ2DpD
t
p(y + z)D2

qD
t2
q (y)

15

]
. (6.2.3)

One could evaluate this integrals in the limit ϵ→ 0:

−1

2
⟨Tr
(
ΛW 2

)αα
nn
S
(4)
int ⟩ →

A2(ϵ)h2ϵ

g2

[
6γ (3 + 4γ − (11 + 3γ) ln(1 + γ))

1 + γ
+

+ϵ
3
(
γ (10+γ(7+ ln 4)+ ln 1024)−2 (1+4γ(3+4γ+ ln 2)+ ln 16) ln(1+γ)+γ(27+19γ) ln2(1+γ)

)
2(1 + γ)

]
.

(6.2.4)
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6.3 ΛW 4

This contribution is given by the expression:

−1

8
tr⟨
(
ΛW 4

)αα
nn
⟩ = − 1

g2

∫
q,p

(
8Dq(iω2n)Dp(iω2n)− 36γ

2πT

D

∑
m>0

Dt
pDp(iωn+m)Dq(iω2n)−

−12γ
2πT

D

∑
m>0

Dt
pDp(iωn+m)Dq(iω2m) + 36γ2

(
2πT

D

)2 ∑
m,l>0

Dt
pDp(iωn+m)Dt

qDq(iωn+l)+

+36γ2
(
2πT

D

)2 ∑
m,l>0

Dt
pDp(iωn+m)Dt

qDq(iωm+l)
)
. (6.3.1)

For n = 0:

−1

8
tr⟨
(
ΛW 4

)αα
nn
⟩ → − 1

g2

∫
q,p

(
8Dq(0)Dp(0)− 36γ

∫
dxDt

pDp(x)Dq(0)− 12γ

∫
dxDt

pDp(x)Dq(2x)+

+36γ2
∫
dxdyDt

pDp(x)D
t
qDq(y) + 36γ2

∫
dxdyDt

pDp(x)D
t
qDq(x+ y)

)
. (6.3.2)

Evaluating these integrals yields:

−1

8
tr⟨
(
ΛW 4

)αα
nn
⟩ → A2(ϵ)h2ϵ

g2

[
−8+42 ln(1+γ)−54 ln(1+γ)2+ϵ

(
3 ln(2) ln(1+γ)−3

2
ln2(1+γ)

)]
.

(6.3.3)

6.4 S
(3)
int

Now, we write the whole expression:

−1

4
⟨tr
(
ΛW 2

)αα
nn

[
S
(3)
int

]2
⟩ = −2

(
πTΓt

4

)2 ∑
ni,m,m′,k
i,p,r,s,t,j,l

∫
p1,p2

ei(p1+p2)x
[
(wi,p1)

αα′

nk (w†
i,p2

)α
′α

kn

]
CprsCtjl×

×
∫
qi,q

′
i

δ

(∑
i

qi

)
δ

(∑
i

q′
i

)[
(wp,q1)

ξξ
n1−m,n1

+ (w†
p,q1

)ξξn1−m,n1

]
×

×
[
(wr,q2)

ξα1
n2+m,n3

(w†
s,q3

)α1ξ
n3,n2

− (w†
r,q2

)ξα1
n2+m,n3

(ws,q3)
α1ξ
n3,n2

]
×

×
[
(wt,q′1

)ξ
′ξ′

m1−m′,m1
+ (w†

t,q′1
)ξ

′ξ′

m1−m′,m1

] [
(wj,q′2

)
ξ′α′

1

m2+m′,m3
(w†

l,q′3
)α

′
1ξ

′

m3,m2
− (w†

j,q′2
)
ξ′α′

1

m2+m′,m3
(wl,q′3

)α
′
1ξ

′

m3,m2

]
,

(6.4.1)

where Ctjk = tr(σtσjσk). Using Wick’s theorem, one could obtain four different nonzero contri-
butions. We present the expressions for them.
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6.4.1 S
(3)
int,1

First contraction and (6.2.2) are very similar:

S
(3)
int,1 = −πTΓt

g3
γ ×

∫
q1,q3

∑
m>0

ωm

D
Dt

q1−q3
(iω|m|)×

∫
q1,q3

192Dq1 (iωm)D2
q3
(0)+

+96Dq1 (0)D2
q3
(iωm) + 96Dq1 (iω2m)D2

q3
(iωm)−

−4πγT

D
× 2

∑
k>0

[
192θ(k −m)Dq1(iωk−m)Dt

q3
D2

q3
(iωk) + {288 + 48θ(k −m)}Dq1(iωk+m)Dt

q3
D2

q3
(iωk)

]
−

−4πγT

D

∑
k>0

[
144θ(k −m)Dt

q1
Dq1(iωk−m)D2

q3
(iωk) + 384Dt

q1
Dq1(iωk+m)D2

q3
(iωk)

]
+

+
16π2γ2T 2

D2

∑
k>0

{
192(k −m)θ(k −m)Dq1(iωk−m)

(
Dt

q3

)2D2
q3
(iωk) +

+ [144k + 48(k −m)θ(k −m)]Dq1(iωk+m)
(
Dt

q3

)2D2
q3
(iωk)

}
+

+2× 16π2γ2T 2

D2

∑
k>0

96
{
(k −m)θ(k −m)Dt

q1
Dq1(iωk−m)Dt

q3
D2

q3
(iωk) + 2kDt

q1
Dq1(iωk+m)Dt

q3
D2

q3
(iωk)

}
−

−64π3T 3γ3

D3

∑
k>0

96
{
(k −m)2θ(k−m)Dt

q1
Dq1(iωk−m)

(
Dt

q3

)2D2
q3
(iωk)+

+k2Dt
q1
Dq1(iωk+m)

(
Dt

q3

)2D2
q3
(iωk)

}
. (6.4.2)

We now proceed by implementing the same limit:

S
(3)
int,1 → −12γ

g2

∫
pq

∫ ∞

0

dz
[
γzDt

p+q(z)
][
2Dq(z)D

2
p(0)

1

+Dq(0)D
2
p(z)

2

+D2
q(z)Dp(2z)

3

]
+

+
12γ2

g2

∫
pq

∫ ∞

0

dydz
[
γzDt

p+q(z)
][
8Dp(y)D

2
qD

t
q(y + z)

4

+ 12Dp(y + z)D2
qD

t
q(y)

5

+ 2Dp(y + 2z)D2
qD

t
q(y + z)

6

−8yγDp(y)D
2
qD

t2
q (y + z)

7

−6yγDp(y + z)D2
qD

t2
q (y)

8

−2yγDp(y + 2z)D2
qD

t2
q (y + z)

9

+ 3DpD
t
p(y)D

2
q(y + z)

10

+8DpD
t
p(y + z)D2

q(y)
11

−8yγDpD
t
p(y)D

2
qD

t
q(y + z)

12

−16yγDpD
t
p(y + z)D2

qD
t
q(y)

13

+8y2γ2DpD
t
p(y)D

2
qD

t2
q (y + z)

14

+ 8y2γ2DpD
t
p(y + z)D2

qD
t2
q (y)

15

]
(6.4.3)

Details of the integral evaluations are provided in section 11. The result in the form of
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a series is given by the expression:

S
(3)
int,1 →

A2(ϵ)h2ϵ

g2
×

×
[
−6γ(4+γ(9+γ(20+7γ)))+6(1+γ) ln(1+γ)(4+γ(19+γ(32+3γ))−3(1+γ)(4+3γ) ln(1+γ))

γ(1+γ)2
+

+ϵ
3

2γ(1+γ)2
[
−8(−3+γ)γ3+(1+γ) ln(1+γ)(16+2γ(14+19γ(1+γ))+ ln(1+γ)(−44−γ(77+γ(25+6γ))−

−6(1+γ)(2+γ) ln(1+γ)))+2(1+γ)(8+2γ(7+17γ)−3(1+γ)(8+5γ) ln(1+γ)) Li2(−γ)−

−6γ(1+γ)2 ln(1+γ)(Li2(−γ)+
1

2
ln2(1+γ))

]
+

+ϵ

(
R5(γ) + E5(γ) + T2(γ) +R6(γ) + T3(γ) + E6(γ) + E7(γ) +R7(γ)

)]
. (6.4.4)

Contributions, denoted as capital letters, are analytic expressions in the form of con-
verging integrals; some of them are irrelevant, namely E contributions, since they cancel out
exactly. The expressions for the relevant contributions will be written down below:

R5(γ) = −3γ

∫ 1+γ

1

dz

∫
[]

u2
(uiuj)(u1(1 + γ) + u2 + 2u3)2

R6(γ) = −6γ

∫ 1+γ

1

dz(1 + γ − z)

∫
[]

u22
(uiuj)(u1(1 + γ) + zu2 + 2u3)2(u3 + u2z)

R7(γ) = 6γ

∫ 1+γ

1

dz(z − 1)(1 + γ − z)

∫
[]

u32
(uiuj)(u1(1 + γ) + zu2 + 2u3)2(u3 + u2z)2

T2(γ) = −18γ2
∫ 1+γ

1

dz

∫
[]

u23
(uiuj)z2(u3 + u2z)(u1(1 + γ) + u3)2

T3(γ) = 9γ2
∫ 1+γ

1

dz

∫
[]

u23
(uiuj)z(u3 + u2z)(u1(1 + γ) + u3)2

. (6.4.5)

Here we used the notation
∫
[] =

(∏
i

∫ 1

0
dui
)
δ(1−

∑
i ui) for integration over Feynman param-

eterization variables and uiuj = u1u2 + u2u3 + u1u3.
These expressions look huge, but each contribution corresponds to a diagram in Green’s

function formalism. Let us consider, for example, one of the contributions above. First, we
notice that it is possible to add (6.4.3) and (6.2.3), and using the relation

1− γxDt(x) = D−1Dt(x), (6.4.6)

we obtain a contribution that is expressed in terms of propagators as:∫
q1,q3

∫ ∞

0

dxdyD−1
q1+q3

Dt
q1+q3

(y)Dq1(x+ y)Dt
q3
D2

q3
(x). (6.4.7)

This contribution is a sum of the fifth contributions in (6.4.3) and (6.2.3). Here, the powers of
γ and other prefactors were dropped for convenience. Combination D−1Dt corresponds to the
screened interaction without the dressed vertices: that is due to the fact, that two incoming
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retarded Green’s functions don’t get dressed by the diffusive ladder. The diagram, corresponding
to that expression, is presented in Fig. 4.

Figure 4: Fifth contributions from (6.4.3) and (6.2.3), depicted as a diagram in Green’s function
formalism. Black lines denote retarded Green’s functions, red lines - advanced.

In principle, not every contribution we obtain could be mapped back to the corresponding
one in Green’s function formalism, but the sum of all contributions is inevitably equivalent to
the one obtained with Green’s functions. That could be traced to the fact that the expansion
of action and Q matrix depends on the parametrization we chose, while the result should be
independent of it. Therefore, it is not a coincidence that in order to draw a graph with Green’s
functions, we need to consider a sum of expressions in terms of propagators, as we did here,
when we added up (6.4.3) and (6.2.3).
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6.4.2 S
(3)
int,2

The second contraction in this series is given by:

S
(3)
int,2 = −8

16

g4

(
πTΓt

4

)2 ∫
q1,q2

∑
m,k<0

{
2− 4πTγ

D
(n− k)Dt

q1+q2
(iωn−k)

}
Dq1+q2(iωn−k)×

×
{
2− 4πTγ

D
mθ(m)Dt

q1
(iωm)

}
Dq1(iωm)Dq1+q2(iωn−k)×

×

[
(−48)

{
θ(m+ k) + θ(m− n)− 4πTγ

D
Dt

q1+q2
(iωn−k)

∑
n2>0

θ(n− k − n2)θ(m− (n− k − n2))

}
+

96
4πTγ

D
mθ(m)Dt

q2
(iωn−k+m)

{
θ(n+m) + θ(m− k)− 4πTγ

D
(n− k)Dt

q1+q2
(iωn−k)

}]
Dq2(iωn−k+m).

(6.4.8)

In the limit n = 0, T → 0 one obtains:

S
(3)
int,2 →→ 24γ2

g2

∫
pq

∫ ∞

0

dydz
[
DqD

t
q(y)D

t
p(z)Dq+p(y + z)

1

+DqD
t
q(y)D

t
p(y + z)Dq+p(z + 2y)

2

−

−2γzDqD
t2
q (y + z)Dt

p(z)Dq+p(y + 2z)
3

− 2γzDqD
t2
q (z)D

t
p(y + z)Dq+p(y + 2z)

4

−

−8γzDt2
q (y)D

t
p(z)Dq+pD

t
q+p(y + z)

5

]
. (6.4.9)

One could obtain poles in ϵ:

S
(3)
int,2 →

A2(ϵ)h2ϵ

g2

[
24γ (4γ−3(1+γ) ln(1+γ))

(1+γ)2
−ϵ

6
(
γ
(
16γ+3(1+γ) ln2(1+γ)+12(1+γ) Li2(−γ)

))
(1+γ)2

+

+ϵ
(
T1(γ) +R3(γ) +R4(γ) +R8(γ) + E4(γ)

)]
, (6.4.10)

where relevant contributions are given by expressions:

T1(γ) = 6γ

∫ 1+γ

1

dz

∫
[]

u3
(uiuj)z(u3 + u2z)(u1(1 + γ) + u3)

R3(γ) = −6γ

∫ 1+γ

1

dz

∫
[]

(2u3 + u1(1 + γ))

(uiuj)(u1(1 + γ) + zu2 + 2u3)(u3 + u1(1 + γ)))

R4(γ) = 12γ

∫ 1+γ

1

dz

∫
[]

(2u3 + u1(1 + γ))

(uiuj)(1 + γ)(u1(1 + γ) + (1 + γ)u2 + 2u3)(u3 + u1(1 + γ))

R8(γ) = 12γ

∫ 1+γ

1

dz(z − 1)

∫
[]

u22
(uiuj)(u3 + u2z)(u1(1 + γ) + u2z + 2u3)2

. (6.4.11)
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6.4.3 S
(3)
int,3

The third contraction takes the form:

S
(3)
int,3=−8

16

g4

(
πTΓt

4

)2 ∫
q1,q2

∑
m

θ(m−n)
[
2−4πTγ

D
mθ(m)Dt

q1+q2
(iωm)

]2
D2

q1+q2
(iωm)

∑
n1>0

{
48Dq1(iω2n1)Dq2(iω2n1+m) + 48Dq1(iω2n1+m)Dq2(iω2n1+2m)−

4πTγ

D

∑
n2<0

[72 + 24θ(−m− n2)−

−4πTγ

D
(n1 − n2)Dt

q2
(iωn1−n2+m)

]
Dq2(iωn1−n2+m)Dq1Dt

q1
(iωn1−n2)−

−4πTγ

D

∑
n2<0

96Dq1(iωn1−n2)Dq2Dt
q2
(iωn1−n2+m)

}
(6.4.12)

In the limit n = 0, T → 0 one obtains:

S
(3)
int,3 → −12γ2

g2

∫
qp

∫ ∞

0

dydz
[
Dt2

p (y)Dq(z)Dq+p(y + z)
1

+Dt2
p (y)Dq(y + z)Dq+p(2y + z)

2

−6γzDt2
p (y)DqD

t
q(z)Dq+p(y + z)
3

− 2γzDt2
p (y)DqD

t
q(y + z)Dq+p(2y + z)

4

−

−8γzDt2
p (y)D

t
q(z)Dq+pD

t
q+p(y + z)

5

(6.4.13)

One could obtain poles in ϵ:

S
(3)
int,3 →

A2(ϵ)h2ϵ

g2

[
12γ2(−1+3γ)

(1+γ)2
+

+ϵ
γ2
(
π2(−1+4γ)−24(−1+γ+6γ2)+36(1+γ) ln2(1+γ)+6(7+2γ) Li2(−γ)

)
2(1+γ)2(1+2γ)

+

+ϵ
(
R1(γ) +R2(γ) + E3(γ)

)]
, (6.4.14)

where relevant contributions are given by expressions:

R1(γ) = −3γ

∫ 1+γ

1

dz

∫
[]

u2 + 2u3
(uiuj)(1 + γ)(u1(1 + γ) + u2 + 2u3)(u2 + u3)

R2(γ) = 6γ2
∫ 1+γ

1

dz

∫
[]

u2(2u3 + u2z)

(uiuj)(1 + γ)(u1(1 + γ) + zu2 + 2u3)(u3 + u2z)2
. (6.4.15)
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6.4.4 S
(3)
int,4

The fourth contraction in this series can be written as:

S
(3)
int,4=−8

16

g4

(
πTΓt

4

)2 ∫
q1,q2

∑
m,m′

[
2−4πTγ

D
m′θ(m′)Dt

q1
(iωm′)

]
Dq1(iωm′)[

2−4πTγ

D
mθ(m)Dt

q2
(iωm)

]
Dq2(iωm)D

2
q1+q2

(iωm+m′)θ(m+m′ − n)×

×
[
−24 {θ(n−m)θ(n−m′) + θ(m− n)θ(m′ − n)}+ 48

4πTγ

D
Dt

q1+q2
(iωm+m′) ×

× {m′θ(m′)θ(n−m′)+m′θ(m′)θ(m−n)+mθ(m)θ(n−m)+mθ(m)θ(m′−n)−

−4πTγ

D
mm′θ(m)θ(m′)Dt

q1+q2
(iωm+m′)

}]
(6.4.16)

In the limit n = 0, T → 0 one obtains:

S
(3)
int,4 →

12γ2

g2

∫
pq

∫ ∞

0

dydzDt
q(y)D

t
p(z)D

2
q+p(y + z)

[
1
1
− 4yγDt

q+p(y + z)
2

− 4zγDt
q+p(y + z)

3

+

+8yzγ2Dt2
q+p(y + z)
4

)]
(6.4.17)

One could obtain poles in ϵ:

S
(3)
int,4 →

A2(ϵ)h2ϵ

g2
ϵ

[
γ2
(
−π2+6 ln2(1+γ)+12Li2(−γ)

)
2+4γ

+ 2E1(γ) + E2(γ)

]
. (6.4.18)

7 Renormalization

At dimensionality d = 2, the LDoS operator is renormalizable, which is shown in section
7. Therefore, once the two-loop correction to the LDoS is known, one can derive the corre-
sponding renormalization-group (RG) equations. We adopt the minimal subtraction scheme
[37], which enables the derivation of RG equations using only the divergent parts proportional
to ϵ = d − 2. We start by writing down the expression for the field-renormalization constant,
defined as follows:

ρ = ρ0Z. (7.1)

Here ρ0 denotes bare Fermi-level LDoS, and the so-called Z factor is a field-renormalization
constant. In ϵ-regularization, this factor could be obtained as an asymptotic series in the small
parameter t ∝ g−1:

Z = 1 +
thϵ

ϵ
A1(γ) +

t2h2ϵ

ϵ2
(
B(γ) + C(γ)ϵ

)
. (7.2)

There are also one-loop corrections to the conductivity and our IR cutoff h2, which
effectively plays the role of an inverse system size L−1 or, at non-zero temperature, the inverse
temperature scale (

√
D/T )−1. We are interested only in one-loop corrections to these quantities

since only they will contribute to the two-loop result we are pursuing. We therefore write down
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the renormalized conductance g′ and the infrared scale h′:

g′ = g
[
1 + a1(γ)

thϵ

ϵ

]
, h′2 = h2

[
1− b(γ)

thϵ

ϵ

]
. (7.3)

It is convenient to define t as
t =

2−ϵ

gπ1+ϵ/2
Γ(1− ϵ/2). (7.4)

The correction to the infrared scale is intimately related to field-renormalization and conduc-
tance corrections. That is due to the fact that h2 multiplies the elementary field, and not a
composite operator. There are also one-loop corrections to Zω and Γt [33]:

δZω

Zω

=
δΓt

Γt

= (1− 3γ)
thϵ

ϵ
. (7.5)

These corrections cancel each other out in the interaction strength correction:

δγ =
δΓt

Zω

− δZωΓt

Z2
ω

=
Γt

Zω

(δΓt

Γt

− δZω

Zω

)
= 0. (7.6)

Therefore, γ is not renormalized in one-loop approximation. We now define a renormalized t′:

t′−1 = t−1
[
1 + a1(γ)

thϵ

ϵ

]
. (7.7)

I would like to get into some details of the derivation of the RG equations using the minimal
subtraction scheme. First, the UV divergencies are treated with ϵ-regularization - there is no
need to introduce an additional cutoff. Since the only scale we are left with is h′, it is convenient
to use dimensionless parameters:

t = t′h′ϵ. (7.8)

Expressing the Z factor in terms of t, we obtain:

Z = 1 +
t

ϵ
A1(γ) +

t
2

ϵ2
(
B(γ) + A1(γ)a1(γ) +

[
C(γ) + A(γ)b(γ)

]
ϵ
)
. (7.9)

For observables to be UV finite, we need to redefine bare parameters of the theory. Dimensional
analysis allows us to rewrite t in a form

t = th′−ϵZt(t). (7.10)

Zt could be obtained from (7.7), it contains poles as a function of ϵ. Furthermore, it is natural to
assume the independence of t from h′, since a bare parameter in a theory should be independent
of the varying IR scale. Hence, we can evaluate β-function:(

∂t

∂ log(1/h′)

)
t

≡ β(t) = − ϵt

1 + (∂ lnZt(t)/ ln(t))h′
= −ϵt+ a1t

2
+O(t

3
). (7.11)
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This result is useful to find an equation for the renormalization flow of the LDoS. We write(
∂ lnZ(t)

∂ log(1/h′)

)
t

=

(
∂ lnZ(t)

∂ ln(t)

)
h′
β(t) = −A1(γ)t−

(
2A1(γ)b(γ) + 2C(γ)

)
t
2
+

+
t
2

ϵ

(
A2

1(γ)− a1(γ)A1(γ)− 2B(γ)
)
. (7.12)

The requirement that the RG flow be finite implies a consistency condition on the coefficients:

B(γ) =
1

2
A1(γ)

(
A1(γ)− a(γ)

)
. (7.13)

8 Results

The result of this work is the analytic expression for B(γ) and C(γ). Substituting t as
defined in (7.8) and (7.4), we obtain analytic expression for B(γ):

B(γ) =
1

2

(
−6 + 21 ln(1 + γ) + 6

ln(1 + γ)

γ
− 9 ln2(1 + γ)− 18

ln2(1 + γ)

γ

)
. (8.1)

In order to verify whether this operator is renormalizable, we must check the validity of
the identity (7.13). To this end, we use the expression for a1(γ) obtained in [33]:

a1(γ) = 1 + 6

(
1− (1 + γ) ln(1 + γ)

γ

)
. (8.2)

According to (5.4), A1(γ) is given by the following expression:

A1(γ) = 1− 3 ln(1 + γ). (8.3)

By substituting these functions into the expression (7.13), we see that the equality holds.
As for C(γ), the expression is a little more elaborate:

C(γ) =
1

16γ(1+γ)2(1+2γ)

(
γ2
(
−γ
(
π2(1−4γ)+66(1+γ)(1+2γ)

)
+6(1+γ)(3+γ)(1+2γ) ln 2

)
+3(1+γ) ln(1+γ)

(
−2(1+2γ) (−8+γ(−14+γ(−13+ ln 8))+ ln 8)

+ ln(1+γ) (−44+γ(−154+γ(−137+γ(15+26γ)))−3(1+γ)(1+2γ)(4+3γ) ln(1+γ))
)

−6
(
−8−γ(38+γ(68+γ(65+22γ)))+6(1+γ)2(1+2γ)(4+3γ) ln(1+γ)

)
Li2(−γ)

)
+

+
1

8

(
R1(γ) +R2(γ) +R3(γ) +R4(γ) +R5(γ) +R6(γ) +R7(γ) +R8(γ) + T1(γ) + T2(γ) + T3(γ)

)
,

(8.4)

where Li2(x) =
∑∞

k=1 x
k/k2 is dilogarithm.

In class C, γ represents the interaction strength in the triplet channel. As mentioned
in the introduction, under the crossover to class A, γ becomes a dimensionless singlet chan-
nel amplitude, with the limit γ → −1 corresponding to the Coulomb interaction. As seen in
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Eq. (5.4), the divergence in this limit also appears in class C. It is therefore natural to study
the behavior near γ → −1 in the two-loop approximation, bearing in mind its relevance for the
class A regime. The expression is:

C(γ)
γ→−1−−−→ −1

8
(57.41 +#− (33.96 +#) ln(1 + γ) + (2.66 +#) ln(1 + γ)2 + ln(1 + γ)3). (8.5)

In the next section, we discuss the implications of this result.

9 Discussions

As we consider the limit γ → −1 in class A, due to the static screening of Coulomb
interaction introduces cutoff for the integrals over frequency, which is effectively proportional
to the inverse system size L−1, or L−1

E = (
√
D/E)−1 for the energy dependence. Therefore,

changing 1 + γ with (κL)−1, where κ is an inverse Debye screening length, will qualitatively
allow us to check for the corrections to the ZBA.

First, the expression contains no terms of order (1+ γ)−1 or more singular, even though
in the intermediate answers they were present. These divergencies cancel out exactly, which is
shown analytically. Let us recall the answer in one-loop:

ρ ∼ exp

(
−3t ln(1 + γ) ln

(
(LE/l)

−1
))
. (9.1)

Here l is a mean free path, and we assumed ln(1 + γ) ≫ 1. It is suggested that this
answer holds for arbitrarily small energies if we consider the renormalization of g. In the second
order, integrating (7.12) we obtain:

ρ(E) ∼ exp

(
−3t ln(1 + γ) ln

(
(LE/l)

−1
)
− t

2

4
ln3(1 + γ) ln

(
(LE/l)

−1
))
. (9.2)

As we mentioned above, to track the ZBA, one should substitute 1 + γ with (κLE)
−1

before integrating the RG equation. Doing this, one could obtain that for energies that satisfy
the relation:

ln
(
LEκ

)
≥ √

g ≫ 1 or ln(Dκ2/E) ≥ √
g ≫ 1, (9.3)

the two-loop correction is larger than the first-order. In the same limit, renormalization of g
could still be small, since it is controlled by − ln

(
Eτ
)
/g. Therefore, we predict the discrepancy

from the double-squared-log behavior at small enough energies.
Nevertheless, there remains an uncertainty as to whether this divergence can be physi-

cally probed in superconducting systems, due to the lack of a known microscopic system that
maps onto a class C NLσM. If class C is viewed as a projection of class AI onto a gapless sector,
then any repulsive interaction would correspond to γ > 0 in the triplet channel. Consequently,
the divergence at γ → −1 in class C lacks a clear physical realization.
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10 Contractions

In this section we present a derivation of (6.1.2). First we consider the structure of the
summation in Nambu space:∑

k<0,γ,i

⟨(wi,q)
αγ
nk

(
w†

i,q′

)γα
kn

∑
αi,ni

tr
[
(wq1)

α1α2

n1n2

(
w†

q2

)α2α3

n2n3
(wq3)

α3α4

n3n4

(
w†

q4

)α4α1

n4n1

]
⟩ =

∑
k<0,γ,i

(wi,q)
αγ
nk

(
w†

i,q′

)γα
kn

∑
αi,ni
p,r,s,t

Aprst

[
(wq1,p)

α1α2

n1n2

(
w†

q2,r

)α2α3

n2n3
(wq3,s)

α3α4

n3n4

(
w†

q4,t

)α4α1

n4n1

]
⟩, (10.1)

Where A is a matrix, its components are:

Aαβγµ = 2 (δαβδγµ − δαγδβµ + δαµδβγ)+4 (δαγδ0βδ0µ + δβµδ0αδ0γ)−8δ0αδ0βδ0γδ0µ+2i
∑

(αβγµ)

ε0αβγδ0µ.

(10.2)
Now we can look at different contractions. Let us first consider this contraction:∑

k<0,γ,i

δ(
∑
i

qi)⟨(wi,q)
αγ
nk

(
w†

i,q′

)γα
kn

∑
αi,ni
p,r,s,t

Aprst

[
(wp,q1)

α1α2

n1n2

(
w†

r,q2

)α2α3

n2n3
(ws,q3)

α3α4

n3n4

(
w†

t,q4

)α4α1

n4n1

]
⟩ =

= δ(
∑
i

qi)
∑

αi,ni,k,γ
p,r,s,t,i

Aprst⟨(wi,q)
αγ
nk(w

†
r,q2

)α2α3
n2n3

⟩ ⟨(wp,q1)
α1α2
n1n2

(w†
q′,i)

γα
kn⟩ ⟨(ws,q3)

α3α4
n3n4

(w†
t,q4)

α4α1
n4n1

⟩ = 2(2π)6δ(q + q2)×

×δ(q1 + q′)δ(q3 + q4)δ(q1 + q2)
∑

αi,ni,k,γ
p,r,s,t,i

⟨(wr,−q2)
αγ
nk(w

†
r,q2

)α2α3
n2n3

⟩ ⟨(wr,−q2)
α1α2
n1n2

(w†
r,q2

)γαkn⟩ ⟨(ws,q3)
α3α4
n3n4

(w†
,−qs)

α4α1
n4n1

⟩,

(10.3)

where we used the equality Arrss = 2. Now, using (3.8), we rewrite the contractions (leaving
delta-functions and other prefactors aside):

⟨(wr,−q2)
αγ
nk(w

†
r,q2

)α2α3
n2n3

⟩ ⟨(wr,−q2)
α1α2
n1n2

(w†
r,q2

)γαkn⟩ ⟨(ws,q3)
α3α4
n3n4

(w†
,−qs)

α4α1
n4n1

⟩ =

=
8

g3

[
δαα3δγα2δnn3δkn2 + vrδ

αα2δγα3δn,−n2δk,−n3 −
4πTγ

D
(1− δr,0)δ

αγδα2α3δαα2δn−k,n3−n2D
t
q1
(iωn−k)

]
×[

δα1αδα2γδn1nδkn2 + vrδ
α1γδα2αδn1,−kδn2,−n −

4πTγ

D
(1− δr,0)δ

αγδα1α2δαα2δn−k,n1−n2D
t
q1
(iωn1−n2)

]
×[

δα3α1δα4α4δn3n1δn4n4+vsδ
α3α4δα4α1δn3,−n4δn4,−n1 −

4πTγ

D
(1− δs,0)δ

α3α4δα1α4δα1α3δn3−n4,n1−n4D
t
q3
(iωn3−n4)

]
×

×Dq3(iωn3−n4)Dq1(iωn−k)Dq1(iωn1−n2). (10.4)

We proceed by summing over the replica indices and s, r since there is no external
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dependence on them. We start with the latter line:

∑
s,α4,n4

[
δα3α1δα4α4δn3n1δn4n4+vsδ

α3α4δα4α1δn3,−n4δn4,−n1−
4πTγ

D
(1−δs,0)δα3α4δα1α4δα1α3δn3−n4,n1−n4×

×Dt
q3
(iωn3−n4)

]
Dq3(iωn3−n4) =

∑
n4<0

[
vδα3α1δn3,−n4δn4,−n1 −

12πTγ

D
δα1α3δn3n1D

t
q3
(iωn3−n4)

]
Dq3(iωn3−n4).

(10.5)

Here we used the notation v =
∑

i vi. Terms, proportional to v will vanish when we consider
the crossover to class A, since v0 = −v3, and i = 1, 2 aren’t summed over.

We neglect every term, which is proportional to Nr. Now we do the same thing just for
the first two lines in (10.4):

∑
r,γ,α2,k

[
δαα3δγα2δnn3δkn2 + vrδ

αα2δγα3δn,−n2δk,−n3 −
4πTγ

D
(1− δr,0)δ

αγδα2α3δαα2δn−k,n3−n2D
t
q1
(iωn−k)

]
[
δα1αδα2γδn1nδkn2 + vrδ

α1γδα2αδn1,−kδn2,−n −
4πTγ

D
(1− δr,0)δ

αγδα1α2δαα2δn−k,n1−n2D
t
q1
(iωn1−n2)

]
×

×Dq1(iωn1−n2)Dq1(iωn−k) = δα1α3δn1,n3

[
2vδαα1δn1,−n2δn,n1D

2
q1
(iω2n)(1− δn,0) + 4δn,−n2D

2
q1
(iωn1+n)−

−24πTγ

D
δαα1δn,n1D

t
q1
(iωn1−n2)D

2
q1
(iωn1−n2)−

24πTγ

D
δαα1δn,−n2D

t
q1
(iωn1+n)D

2
q1
(iωn1+n)+

+
48π2T 2γ2

D2
δαα1

(
θ(n1 − n2 − n)

(
Dt

q1

)2
(iωn1−n2)D

2
q1
(iωn1−n2)

)]
. (10.6)

Now, we can sum over n2 for the terms without external frequencies:
The product of (10.5) and (10.6) is needed to be summed over the rest of the replica

indices. Let me mention, that terms in (10.6), which don’t comprise δαα1 could be eliminated
since their contribution will be proportional to Nr:

∑
α1,α3

· · · = δn1,n3

[(
vδn4,−n1 −

12πTγ

D
Dt

q3
(iωn3−n4)

)
Dq3(iωn3−n4)×

{
2vδn1,−n2δn,n1(1− δn,0)D

2
q1
(iω2n)−

−24πTγ

D
δn,n1D

t
q1
(iωn1−n2)D

2
q1
(iωn1−n2)−

24πTγ

D
δn,−n2D

t
q1
(iωn1+n)D

2
q1
(iωn1+n)(1− δn,0)(1− δn1,0)+

+
48π2T 2γ2

D2

(
θ(n1 − n2 − n)

(
Dt

q1

)2
(iωn1−n2)D

2
q1
(iωn1−n2)

)}]
(10.7)

Before gathering the result of this contraction, let us comment on other contractions.
There is a different way to contract w matrices, which could not be reduced to the cyclic
permutation under the trace:

⟨(w−q2,r)
αγ
nk(w

†
q2,r

)α2α3
n2n3

⟩ ⟨(wr,−q2)
α3α4
n3n4

(w†
r,q2

)γαkn⟩ ⟨(wp,q1)
α1α2
n1n2

(w†
p,−q1)

α4α1
n4n1

⟩ =

= ⟨(w−q2,r)
αγ
nkvr(w

†
q2,r

)α3α2
−n3,−n2

⟩ ⟨vr(wr,−q2)
α4α3
−n4,−n3

(w†
r,q2

)γαkn⟩ ⟨(wp,q1)
α1α2
n1n2

(w†
p,−q1)

α4α1
n4n1

⟩, (10.8)

where we used the identity (3.5) twice. If we us the fact that green contraction implies n2 = n4
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and α2 = α4 = α1, and change the summation variables α2 ↔ α3, n2 ↔ −n3, we derive, that
this contribution is identical to the one calculated above, since the prefactor is unchanged under
these transformations. Multiplying (10.5) and (10.6) and summing over the spare indices, and
accounting for the cyclic permutations under the trace, one derives (6.1.2).

Since the partition function is normalized to Z = 1, only connected diagrams contribute;
vacuum bubbles cancel out upon normalization. In evaluating (6.4.1), one must also exclude
contractions where two legs of the same three-point vertex are connected. Such contractions
correspond to zero energy transfer, while the vertex itself is nonzero only when the energy
transfer is finite. In principle, the derivation procedure is the same for all contributions: one
chooses one of the contractions, the rest of them are either the same or could be obtained using
(3.5) twice.

11 Integrals Evaluation

In this section, we introduce the results of integration and discuss ways in which these
integrals should be evaluated. Contribution (6.4.1) is different from any other: integration over
momenta could not be factorized. It makes calculations a little more complicated, which we
discuss below. But first, let us introduce the detailed answer for contributions:

−1

2
tr
〈
(W 2)ααnnS

(4)
0

〉
→ 8A2(ϵ)h2ϵ

g2
1

−12ϵγA2(ϵ)h2ϵ

(1+γ)g2

2

−24 ln(1+γ)A2(ϵ)h2ϵ

g2
2

−24 ln(1+γ)A2(ϵ)h2ϵ

g2
3

+
36(−γ+(1+γ) ln(1+γ))ϵA2(ϵ)h2ϵ

(1+γ)g2

4

+
72 ln2(1+γ)A2(ϵ)h2ϵ

g2
4

−12A2(ϵ)h2ϵ

ϵ2g2

[
ln(1+γ)+

5

+
ϵ

4
ln(1+γ)(2 ln 2− ln(1+γ))

]
5

+
36A2(ϵ)h2ϵ

g2

[
−γ+ ln(1+γ)+

6

ϵ

4
· (1+γ) ln

2(1+γ)+2(1−γ2) ln(1+γ)−2γ(1−γ)
1+γ

]
6

+
36 ln2(1+γ)A2(ϵ)h2ϵ

ϵ2g2
6

+
12A2(ϵ)h2ϵ

2g2

[−γ+(1+γ) ln(1+γ)

1+γ
+

ϵ

4(1+γ)

[
2γ(1− ln 2)+

7

ln(1+γ)(−2+2(1+γ) ln 2−(1+γ) ln(1+γ))
]]

7

+
18A2(ϵ)h2ϵ

g2

[γ(2+γ)−2(1+γ) ln(1+γ)

(1+γ)
+ϵ · (10−3γ)γ+2(γ2−5) ln(1+γ)−2(1+γ) ln2(1+γ)

4(1+γ)

]
8

−36A2(ϵ)h2ϵ

g2
ln(1+γ)

[−γ+(1+γ) ln(1+γ)

1+γ
+
ϵ

4
· 2γ−(2+γ) ln(1+γ)

1+γ

]
8

. (11.1)
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−1

2
tr
〈
(W 2)ααnnS

(4)
int

〉
=

12γϵA2(ϵ)h2ϵ

g2
1

+
12γA2(ϵ)h2ϵ

g2
2

+
6γA2(ϵ)h2ϵ

g2

(
1+

ϵ

2
ln 2
)

3

−48A2(ϵ)h2ϵ

g2

(
γ− ln(1+γ)+

ϵ

4

(
2 ln(1+γ)−2γ+ ln2(1+γ)

))
4

+
72A2(ϵ)h2ϵ

g2

(
γ− ln(1+γ)+

ϵ

4

(
2γ−2(1+2γ) ln(1+γ)+ ln2(1+γ)

))
5

−12A2(ϵ)h2ϵ

g2

[
γ− ln(1+γ)+

ϵ

4

(
−2γ+2 ln(1+γ)+4 ln 2(γ− ln(1+γ))+ ln2(1+γ)

)]
6

+
24A2(ϵ)h2ϵ

g2(1+γ)

[
γ(2+γ)−2(1+γ) ln(1+γ)+

ϵ

4

(
−γ(2+γ)+2(1+γ)2 ln(1+γ)−2(1+γ) ln2(1+γ)

)]
7 + 14

−36A2(ϵ)h2ϵ

g2(1+γ)

[
γ(2+γ)−2(1+γ) ln(1+γ)+

ϵ

2

(
(2+3γ)γ−(2+5γ+2γ2) ln(1+γ)+(1+γ) ln2(1+γ)

)]
8

+
6A2(ϵ)h2ϵ

g2(1+γ)

[
γ(2+γ)−2(1+γ) ln(1+γ)+

ϵ

4

(
−5γ(2+γ)+8γ(2+γ) ln 2+(10+8γ−16(1+γ) ln 2) ln(1+γ)+

9

+2(1+γ) ln2(1+γ)
)]

9

−18γA2(ϵ)h2ϵ

g2

[
ln(1+γ)− ϵ

4
ln2(1+γ)

]
10

−48γA2(ϵ)h2ϵ

g2

[
ln(1+γ)− ϵ

4
ln2(1+γ)

]
11

−24ϵA2(ϵ)h2ϵ

g2

[
γ− ln(1+γ)

]
ln(1+γ)

12

+
48γ2A2(ϵ)h2ϵ

g2

[ ln(1+γ)
1+γ

+
ϵ

4
· (2+γ) ln

2(1+γ)

γ(1+γ)

]
13+ 15

. (11.2)

−1

8
tr
〈
(W 4)ααn1n1

〉
= −4A2(ϵ)h2ϵ

g2

[
2−21

2
ln(1+γ)+

45

4
ln2(1+γ)−3ϵ

8
ln(1+γ) (2 ln 2− ln(1+γ))

]
.

(11.3)

The aforementioned contributions allow for the systematic analytical evaluation. Let us
consider the fifth contribution in (6.2.3).∫ ∞

0

dy

∫
q

Dt
q(y)D

2
q3

∫ ∞

y

dx

∫
p

Dp(x) (11.4)

One can notice that the integrals over momentum, as was mentioned above, could be
factorized. Therefore, we perform this integration first, and then proceed with frequency inte-
gration. One of the useful identities we use in many of these contributions is:

1

A(ϵ)

∂2

∂α2

[
(α− 1)2

∫
p

1

(p2 + 1 + x)2(p2 + 1 + αx)

]
=
ϵ(ϵ− 2)

4
(1 + αx)ϵ/2−2. (11.5)
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Similar identities hold for the product of any number of D and Dt on the same momen-
tum and frequency. These identities are equivalent to using the Feynman parametrization trick
we discuss below, when considering S(3)

int terms. The idea is to simplify the result of integration
to a power of 1 + αx, then use the equation:

∫ ∞

0

dx(1+ax)α(1+bx)β = −
a−1−β

(
1− a

b

)1+α+β
bβπCsc(πβ)Γ(−1− α− β)

Γ(−α)Γ(−β)
−2F 1

(
1,−α, 2 + β, a

b

)
b+ bβ

(11.6)
The result of the integration over frequency can then be expanded in ϵ to the needed

order, after which integration over additional variables, such as α in (11.5), can be performed.
In this specific example we evaluate first:∫ ∞

0

dx(1 + αx)ϵ/2−2(1 + x)ϵ/2+1 = − 1

α2ϵ
+

−2 + 2α + ln(α)

2α2
. (11.7)

Then one should perform the integration over α twice:∫ 1+γ

1

dα′
∫ α′

1

dα

(
− 1

α2ϵ
+
−2 + 2α + ln(α)

2α2

)
=

−2γ(2 + 3ϵ) + ln(1 + γ)(4 + (6 + 4γ)ϵ− ϵ ln(1 + γ))

4ϵ
.

(11.8)
Restoring the prefactors and reexpanding the answer in powers of ϵ, one obtains the result

from (11.2). The same procedure works for every integral in the aforementioned contributions.
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Now we proceed to contributions with a less straightforward way to evaluate them.

S
(3)
int,1 =

12γ2A2(ϵ)h2ϵ

g2

[−2γ + (2 + γ) ln(1 + γ)

γ3
− ϵ

1 + γ
+
ϵ(2 + γ)

γ3

(
Li2(−γ)+ ln(1 + γ)+

1

4
ln2(1 + γ)

)]
1

−

−6γ2A2(ϵ)h2ϵ

g2
2

[γ− ln(1+γ)

γ2
− ϵ

γ2

(
Li2(−γ)+

1

2
(2+γ) ln(1+γ)+

1

4
ln2(1+γ)

)]
+

+
A2(ϵ)h2ϵ

g2
(
ϵR5(γ)

3
+ϵE5(γ)

4 + 12

)
−18γ2A2(ϵ)h2ϵ

g2
5 + 8

{
2
γ3 + (γ2 + 3γ + 2) ln2(γ + 1)− (3γ + 2)γ ln(γ + 1)

γ3(γ + 1)

− ϵ

γ3(1+γ)

[
γ2(2+3γ) ln(1+γ)−2(1+γ)(2+γ) ln2(1+γ)+

5 + 8

[γ2−(1+γ)(2+γ) ln(1+γ)][2 Li2(−γ)+
1

2
ln2(1+γ)]

]
5 + 8

}
+
A2(ϵ)h2ϵ

g2
(
ϵT2(γ)

5 + 8
+ϵR6(γ)

6
+ϵE7(γ)

7 + 14

+ϵR7(γ)
9

)
+
36γ2A2(ϵ)h2ϵ

g2

10

{
−2

γ
ln(1+γ)

ln(1+γ)−γ
γ

+ϵ
ln(1+γ)

γ2

[
−(2+γ) ln(1+γ)−Li2(−γ)+Li2

(
γ

1+γ

)]}

+
A2(ϵ)h2ϵ

g2
ϵT3(γ)

10

+
96γ3A2(ϵ)h2ϵ

g2

11+ 13+ 15

{
2
−γ+(1+γ) ln(1+γ)

γ2(1+γ)2
+

ϵ

γ2(1+γ)

[ 2γ

1+γ
+2Li2(−γ)+

1

2
ln2(1+γ)

]}

+
A2(ϵ)h2ϵ

g2
ϵE6(γ)

11+ 13+ 15

. (11.9)

In the main text, we neglected the expressions for E contributions due to their irrelevance
in the final expression. Here we present the explicit expressions for them:

E5(γ) = −24γ

∫ 1+γ

1

dz(1 + γ − z)

∫
[]

u23
(uiuj)(u1(1 + γ) + u3z)(u2(1 + γ) + u3z)2

E6(γ) = 24γ2
∫ 1+γ

1

dz

∫
[]

u23z

(uiuj)(1 + γ)(u1(1 + γ) + u3z)(u2(1 + γ) + u3z)2

E7(γ) = 24γ

∫ 1+γ

1

dz(1 + γ − z)

∫
[]

u23(z − 1)

(uiuj)(u1(1 + γ) + u3z)2(u2(1 + γ) + u3z)2
. (11.10)

S
(3)
int,2 = −6γ2A2(ϵ)ϵ2h2ϵ

g2

[
−2

ϵ

ln(1+γ)

γ

[ ln(1+γ)
γ

+
ϵ

γ

(
Li2(−γ)+

1

4
ln2(1+γ)

)]]
1

+
A2(ϵ)h2ϵ

g2
ϵT1(γ)

1

+
6γ2A2(ϵ)ϵ2h2ϵ

g2

[
−2

ϵ

[ ln(1+γ)
γ

− 2

1+γ

][ ln(1+γ)
γ

+
ϵ

γ

(
Li2(−γ)+

1

4
ln2(1+γ)

)]
2 + 4

+
ϵA2(ϵ)h2ϵ

g2
(
R3(γ)+R4(γ)

2 + 4

)
+
ϵA2(ϵ)h2ϵ

g2
(
R8(γ)

3
+E4(γ)

5

)
+
48γ3A2(ϵ)ϵ2h2ϵ

g2(1+γ)

[
− 2

ϵγ2

[
ln(1+γ)+ϵ

[
Li2 (−γ)+

1

4
ln2(1+γ)

]]
+

2(1−ϵ)
ϵγ(1+γ)

5

]
.

(11.11)
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Here we define E4:

E4(γ) = −48γ2
∫ 1+γ

1

dz

∫
[]

u23z

(uiuj)(1 + γ)(u1(1 + γ) + u3z)(u2(1 + γ) + u3z)2
. (11.12)

S
(3)
int,3 =

3γ2A2(ϵ)ϵ2h2ϵ

g2ϵ(1+γ)

[
−2

ϵ

(6 ln(1+γ)
γ

−5
)
+
6ϵ

γ

(
Li2(−γ)+

1

4
ln2(1+γ)

)
+5ϵ−

1 + 3

− 6

1+2γ

(π2

6
− ln2(1+γ)−2 Li2(−γ)

)
+

5

1+γ

(π2

6
−Li2(−γ)

)]
1 + 3

+

+
3γ2A2(ϵ)ϵ2h2ϵ

g2ϵ(1+γ)

[
−2(1−ϵ)

ϵ

]
+ϵR1(γ)

2

−

−6γ3A2(ϵ)ϵ2h2ϵ

g2ϵ(1+γ)

[
−2

ϵ

γ− ln(1+γ)

γ2
+

2

γ2

(
Li2(−γ)+

1

4
ln2(1+γ)+γ

)]
+ϵR4(γ)

4

−

−24γ3A2(ϵ)ϵ2h2ϵ

g2ϵ(1+γ)

[
− 2

ϵγ2
ln(1+γ)+ϵ

(
Li2(−γ)+

1

4
ln2(1+γ)

)
+

2(1−ϵ)
ϵγ(1+γ)

]
+ϵE3(γ)

5

. (11.13)

E3 is given by the expression:

E3(γ) = 24γ2
∫ 1+γ

1

dz

∫
[]

u23z

(uiuj)(1 + γ)(u1(1 + γ) + u3z)(u2(1 + γ) + u3z)2
. (11.14)

S
(3)
int,4 = −3γ2A2(ϵ)ϵ2h2ϵ

4g2(1+2γ)

(
π2

6
− ln2(1+γ)−2 Li2(−γ)

)
1

+2ϵE1(γ)
2 + 3

+ ϵE2(γ)
4

. (11.15)

We conclude a series of definitions with E1 and E2:

E1(γ) = 12γ

∫ 1+γ

1

dz(1 + γ − z)

∫
[]

u23
(uiuj)(u1(1 + γ) + u3z)(u2(1 + γ) + u3z)2

E2(γ) = −24γ

∫ 1+γ

1

dz(1 + γ − z)

∫
[]

u23(z − 1)

(uiuj)(u1(1 + γ) + u3z)2(u2(1 + γ) + u3z)2
. (11.16)

The method of calculating these contributions requires Feynman parametrization, which
is how we deal with non-factorizable momenta integration. We consider a contribution number
5 + 8 in (6.4.4). This contribution is simplified by the relation similar to (6.4.6):

2− γxDt(x) = D−1(x)
(
D(x) +Dt(x)

)
. (11.17)
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The Feynman parametrization simplifies integration by introducing additional integrations:

1

Aα1
1 · · ·Aαn

n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)

∫ 1

0

du1 · · ·
∫ 1

0

dun
δ (1−

∑n
k=1 uk) u

α1−1
1 · · ·uαn−1

n

(
∑n

k=1 ukAk)
∑n

k=1 αk
(11.18)

When working with the loops we have here, one first simplifies the products of propa-
gators on the same momentum, using (11.18). Here, for example, we use:

Dp(x)D
t
p(x)

(
Dp(x) +Dt

p(x)
)
=

∫
dz

γ

2

(p2 + h2 + xz)3
. (11.19)

The next step is to introduce a global Feynman parametrization with three parameters:

1

(p+ q)2 + 1 + (1 + γ)y

1

(p2 + 1 + x)3
1

q2 + 1 + x+ y
=

=
Γ(5)

Γ(2)

∫
[]

u22
(u1((p+ q)2 + 1 + (1 + γ)y) + u2(p2 + 1 + x) + u3(q2 + 1 + x+ y))5

, (11.20)

where we used the notation
∫
[] =

(∏
i

∫ 1

0
dui
)
δ(1−

∑
i ui) and made the integration dimension-

less by factoring out h. The integration over momentum would always be the same: we start
with the momentum shift p → p− q u3

u1+u3
, and then we perform the integration:

∫
p,q

1

(ap2 + bq2 + c)α
=

A2(ϵ)ϵ2

4Γ2(1− ϵ/2)

Γ(α− 2− ϵ)

Γ(α)

1

(ab)1+ϵ/2cα−2−ϵ
. (11.21)

Now we are ready to perform integration over frequencies, which can be done exactly. What
we are left with is an integral over Feynman variables. In this example we have an integral:

1

γ

∫ 1+γ

1

dz

∫
[]

u22
(uiuj)1+ϵ/2(u1 + u2z)(u1 + u3(1 + γ))2

, (11.22)

where uiuj = u1u2+u2u3+u1u3. There is also a numerical prefactor, which is always the same
in ϵ expansion and is equal to −ϵA2(ϵ)/4, and higher-order terms are irrelevant to the final
answer. We use a change of variables, that satisfies the condition under δ-function:

u1 =
u

1 + s
, u2 =

s

1 + s
, u3 =

1− u

1 + s
, J =

1

(1 + s)3
, u ∈ [0, 1], s ∈ [0,∞]. (11.23)

We can arbitrarily permute ui in this substitution for the convenience of integration. Under
that substitution:

uiuj =
s+ u(1− u)

(1 + s)2
. (11.24)

But how does one identify the contribution, which corresponds to the second-order pole in ϵ?
We propose this method: first, one chooses a configuration of ui for the substitution (11.23),
that is the most divergent as s→ ∞. This divergence is regularized by ϵ, therefore, the integral
will have a pole in ϵ. In this example, the parametrization coincides with (11.23). Since the
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integrand is a rational function, we can explicitly extract the most divergent term:

u22
(u1 + u2z)

=
u2
z

− u1
z2

+
u21

z2(u1 + u2z)
. (11.25)

The first and the second functions on the right-hand side produce poles in ϵ and the integral
amounts to the hypergeometric function, which could be expanded in ϵ up to the necessary
order, like we did in (6.2.3). The integral with the third fraction is convergent for ϵ = 0. It is a
universal statement that for the integrals we are to calculate, this procedure always produces
the correct pole terms, and the residue is always convergent. In principle, the integral over u
could be divergent, but it is not the case because it is regularized by 1 + γ > 0.

The capital-letter-denoted contributions in the main text are nothing but integrals with
residues of these expansions. Their analysis is not as straightforward as it was for ϵ−2 contri-
butions. Nevertheless, we obtained their asymptotics, as γ → −1, using both numerical and
analytical methods. Below, we present the expressions for them:

R1(γ) =

(
3 (−1 + ln(1 + γ)− ln 4)

1 + γ
+

1

4

(
15 + 4π2 + 48 ln 2− 24 ln 4− 6 ln(1 + γ)− 12 ln 4 ln(1 + γ)

))
,

R2(γ) =

(
1

1 + γ

(
6− π2 + 12 ln 2 + 6 ln2 2− 6 ln 2 ln 4− 6 ln(1 + γ) + 6 ln 4 ln(1 + γ)− 6 ln2(1 + γ)

)
+
1

2

(
−12 + π2 − 48 ln 2− 6 ln2 2 + 6 ln 4 + 12 ln 2 ln 4 + 12 ln(1 + γ)− 12 ln 2 ln(1 + γ)

−12 ln 4 ln(1 + γ) + 12 ln2(1 + γ)
)
+ 2.28− 1.72 ln(1 + γ)− 1.84 ln2(1 + γ)

)
,

R3(γ) =
(
3 ln3(1 + γ) + 8.10 + 22.6 ln(1 + γ)− 4.158 ln2(1 + γ)

)
,

R4(γ) =

(
3
(
4 ln2(1 + γ)− 4 ln 2 ln(1 + γ) + 2 ln2 2 + π2

)
1 + γ

+
(
−24− 2π2 − 12 ln 2 + 6 ln2 2− 3 ln2 4 + 24 ln(1 + γ)− 12 ln 2 ln(1 + γ)

+12 ln 4 ln(1 + γ)− 6 ln2(1 + γ)
))
,

R5(γ) = (−1.30 + 0.92 ln(1 + γ)) ,

R6(γ) =
(
+9.5 + 9.04 ln(1 + γ) + 1.84 ln2(1 + γ)

)
,

R7(γ) +R8(γ) =

(
3(ln(1 + γ)− 1)

1 + γ
+#+# ln(1 + γ) + # ln2(1 + γ)

)
,

T1(γ) =
(
−26.00− 22.50 ln(1 + γ)− 1.0 ln3(1 + γ)

)
,

T2(γ) =

(
3(6 ln2(1 + γ) + 12 ln(1 + γ) + 6 + π2)

1 + γ

−3
(
24 + 2π2 − 6 ln(1 + γ) + 2π2 ln(1 + γ) + 6 ln2(1 + γ) + 3 ln3(1 + γ) + 6ζ(3)

))
,

T3(γ) =
(
53.70 + 33.79 ln(1 + γ) + 1.50 ln3(1 + γ)

)
. (11.26)

This result has several notable features. First, we are able to analytically obtain terms that
diverge as fast or faster than (1 + γ)−1, which allows us to exactly show that in (8.5) there is
no such divergence. As for terms that diverge as ln3(1 + γ), which is of the most significant
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interest due to its relevance for the ZBA correction, we are able to obtain these constants
numerically with high precision. That allows us to conclude their presence in the RG equation
(7.12). Coefficients with a decimal point were obtained numerically, in contribution R7 + R8,
the accuracy is insufficient to determine numbers. Our next goal is to find an analytical way to
extract these logarithmic divergences, but that is the subject of future work.

37



12 Conclusion

Using perturbation theory within the framework of the class C Finkelstein NLσM model,
we computed the two-loop correction to the disorder-averaged LDoS. We derived a general
expression for this correction valid for arbitrary energies and temperatures and subsequently
analyzed the asymptotic behavior in the limits E → 0 and T → 0 . An analytical form of the
correction was obtained in ϵ-regularization, and numerical evaluations were performed in the
limit, γ → −1, which corresponds to the Coulomb interaction in class A. While this limit has
no direct physical realization in class C—where repulsive interactions imply γ > 0—it serves as
a useful benchmark for comparing the structure of divergences. Using a minimal subtraction
scheme, we derived RG equations for LDoS.

The presence of terms proportional to ln3(1+γ) indicates a parametric region of energies,
defined by the inequality (9.3), where the two-loop correction dominates over the previously
established one-loop result. Consequently, the asymptotic behavior of the LDoS at low energies
is altered, leading to a correction of the previously known double-log-squared dependence.

Some asymptotic expressions were obtained numerically using the least squares method.
Future research could involve developing an analytical approach, possibly employing a Mellin-
Barnes transform, to systematically capture logarithmically divergent terms.

Furthermore, as demonstrated in [25], introducing a Zeeman term in the action induces a
crossover from class C to class A, where systems exhibit the quantum Hall effect. The magnetic
field makes certain modes in Nambu space massive, thus constraining the W -matrix structure
primarily to components proportional to s0 and s3. This simplification allows for a straightfor-
ward calculation of the ZBA correction by slightly adjusting the summation over Nambu space
indices. Notably, similar divergent terms proportional to ln3(1+γ) could emerge in class A com-
putations, indicating qualitative parallels between the corrections in both symmetry classes. A
detailed investigation of these parallels is necessary and will be addressed in future work.
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