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Pursuing Majorana zero modes (MZMs) in condensed matter 
physics is gaining wide range interest1–9. While bearing some 
resemblance to their high-energy counterparts, condensed 

matter MZMs are significantly different as they are expected to pos-
sess non-Abelian exchange statistics, which renders them potential 
candidates for topologically protected qubits2,10–15. One of the most 
promising platforms for the formation of MZMs is a one-dimen-
sional helical system coupled to an s-wave superconductor16,17. In 
a helical system, electrons moving in opposite directions possess 
opposite spins (spin degeneracy is lifted), while the two original spin 
species are still present. Their coupling to an s-wave superconduc-
tor induces topological, ‘spinless’, p-wave pairing. At the two ends 
of the induced superconductor, two localized MZMs are expected 
to form. Even more interesting are the generalized parafermions, 
which are expected to emerge when coupling a conventional super-
conductor to helical modes in the fractional quantum Hall effect 
(QHE) regime18–20.

Most of the present attempts to form helical modes concentrate 
in materials with strong spin–orbit coupling5–9,21–25. While signa-
tures of localized MZMs appear, the helical nature of the underly-
ing modes is not confirmed. Recently, the presence of helical edge 
modes was reported in small (of edge length ~350 nm) two-dimen-
sional topological insulators21–23, as well as in a twisted bilayer gra-
phene in the integer QHE regime (of size ~15 µ m)26. Another work 
attempted to form helical modes by doping with magnetic impurity 
quantum wells and electrostatically inducing ferromagnetic tran-
sitions27. However, in these works spin protection from backscat-
tering was not reported and strong intermode mixing limited the 
propagation length. Moreover, the formation of fractional helical 
modes has not been reported yet.

We developed a new platform that enables formation of robust 
and highly controllable helical modes in the QHE effect regime. 
The platform is based on a two-dimensional electron gas (2DEG) 
embedded in a double quantum well (DQW), which hosts two elec-
tronic sub-bands. By a proper electrostatic gating of two adjacent 

half-planes of the 2DEG, spin-split Landau levels (LLs), belonging 
to the different sub-bands, cross each other at the interface between 
the two half-planes, forming counter-propagating edge modes in 
the same lateral position. When the intersecting LLs are of opposite 
spins, the formed counter-propagating modes are helical.

One should note the difficulty in obtaining counter-propa-
gating edge states with opposite spins in the QHE regime (see 
Supplementary Information - 1; SI1). Several works dating back 
to 1988 have demonstrated same-spin counter-propagating edge 
profile by utilizing a series of alternating filling factors28. In such 

Robust integer and fractional helical modes in the 
quantum Hall effect
Yuval Ronen, Yonatan Cohen   , Daniel Banitt, Moty Heiblum* and Vladimir Umansky

Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an 
important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topologi-
cal superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, 
yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, 
these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form 
protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed 
double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall 
effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge 
modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over 
large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction 
of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

a

c

b(2,0) (1,1)

(2,0) (1,1)

SB1

SB2

Helical edge modes

Fig. 1 | Schematic illustration of the concept of creating helical edge 
modes in a double-layer QHE system. Two 2DEGs are shown, one in blue 
denoted by SB1, and one in red denoted by SB2. Each 2DEG has its own 
filling factor, v1 and v2, respectively. The generalized filling is denoted  
v =  (v1, v2). a, Scenario of v =  (2, 0), with two edge modes propagating at 
the edge of SB1. b, Scenario of v =  (1, 1), with one edge mode propagating  
at the edge of SB1 and one at the edge of SB2. c, The left half-plane is in  
v =  (2, 0) and the right half-plane is in v =  (1, 1). This creates counter-
propagating edge modes with opposite spins at the interface between  
the two half-planes (see inset).
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realizations helical state scenarios are not accessible. In this work we 
demonstrate complete control over individual edge mode spins, in 
both the integer and the fractional regime.

Figure 1 illustrates schematically the formation of helical edge 
modes in the two sub-bands of the quantum Hall system. The sub-
bands, denoted by SB1 and SB2, are depicted as two two-dimentional 
sheets (blue for SB1 and red for SB2). Each sub-band splits into dis-
crete LLs at high magnetic field, with individual filling factors, v1 in 
SB1 and v2 in SB2, and a generalized defined filling factor v =  (v1, v2).  
Figure 1a,b describes the scenarios of v =  (2, 0) and v =  (1, 1), 
respectively. When these two configurations are placed one next 

to the other, as shown in Fig. 1c, counter-propagating chiral edge 
modes, with opposite spins, propagate along the interface (spin 
down in SB1, blue, and spin up in SB2, red), manifesting integer  
helical edge modes.

Figure 2a shows a schematic illustration of the heterostructure 
used to implement the two-sub-band system. A 40 nm thick GaAs 
layer, clad on the top and bottom by AlGaAs layers, forms the quan-
tum well structure. A thin AlAs barrier, 3 nm thick, is inserted in the 
middle of the GaAs layer to form a DQW potential landscape. The 
total areal density at zero gate voltage is n =  2.7 ×  1011 cm−2 and the 
low-temperature mobility is μ  =  0.6 ×  106 cm2 V−1 s−1. Modulation 
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Fig. 2 | MBE growth sequence, lithographic patterning and actual fan diagram. a, Growth sequence of the DQW heterostructure. The lower and upper 
GaAs quantum wells are coloured in blue and red, respectively. Each well is about 20 nm wide with a 3 nm AlAs barrier separating them. b, NextNano3 
simulation of the potential landscape and the SBs’ energies as well as charge distributions at zero magnetic field. The simulation was done with a total 
density of 2.2 ×  1011 cm−2, which is in the range of densities and magnetic field relevant to filling factors v =  1–4. Densities in the two sub-bands are about 
1.5 and 0.7 ×  1011 cm−2 in SB1 and SB2, respectively. c, False-colour SEM image of the device. The mesa is 800 µ m long and 200 µ m wide with a narrower 
region of 7 µ m in the center, where the left and right top gates interface. The inset shows a zoom on the interface between the left and right top gates 
where the helical edge modes are designed to emerge (scale bar 2 µ m). Note that the four top gates allow the configurations to be changed with the gates’ 
voltage and thus also increase the propagation length of the counter-propagating modes. d, Ideal energy fan diagram for the two-layer 2DEG. The energies 
of the LLs of SB1 (blue) and SB2 (red) are plotted as a function of magnetic field. e, Measurement of the longitudinal resistance, RXX, of the right half of the 
device as a function of magnetic field and gate voltage VRG. The circles mark regions of LLs crossings with either opposite spins (green circles) or same 
spins (red circles). Measurements were made at a base temperature of 15 mK.
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doping, predominantly at the lower side of the DQW, leads to a 
tilted potential in the well (self-consistent simulation in Fig. 2b). 
A top-view scanning electron microscopy (SEM) image in Fig. 2c 
shows a fabricated structure with its top gates, dividing the surface 
into two adjacent half-planes. All measurements were made at a 
base temperature of 15 mK using a standard lock-in technique at 
a frequency of 37 Hz. Each line, located on the cold finger of the 
cryostat and cooled to base temperature, was filtered by a cascade of 
three pi-filters followed by an RC filter.

The fundamental difficulty in realizing the proposed configura-
tion is illustrated schematically in Fig. 2d, where a naive illustration 
of the energy dependence of the LLs (in SB1 and in SB2) is plotted 
as function of magnetic field. Two different generalized fillings, 
e.g. (2, 0) and (1, 1), each in a different half-plane, cannot coex-
ist in a single magnetic field. However, in practice the situation is 
different. As the energies of different LLs (in different sub-bands) 
cross, charge must redistribute between the sub-bands29,30. The 
charge redistribution leads to bending of the linear-like evolution  

of the LLs’ fan diagram, allowing, under a proper design, for two 
generalized fillings (with equal sums of the individual fillings on 
both sides) to take place at the same magnetic field (Fig. 2e). Note 
that charge transfer costs an additional energy since it leads to 
built-in electric field that charges the mutual capacitance between 
the two regions of the DQW where the different LLs reside—thus 
partly opposing the charge transfer29,30. A narrower DQW is desir-
able for a larger charge transfer, and thus a more pronounced bend-
ing of the LLs with magnetic field away from the linear evolution.

The fan diagram of the longitudinal resistance (which follows 
the actual evolution of the LLs) is plotted in Fig. 2e. As the top gate 
voltage rises above − 0.15 V, LLs gradually fill, and charge transfers 
from SB1 to SB2 (as LLs cross). LLs in SB1 lose carriers, thus shifting 
to lower magnetic fields (having a negative slope around the cross-
ing regions). In the present configuration, there are multiple filling 
fractions between v =  2 and v =  1; hence, the charge transfer near the 
crossings of LLs is not large enough to allow a gate-controlled tran-
sition (2, 0) →  (1, 1), yet a transition (4, 0) →  (3, 1) can be achieved 
(Fig. 3a). With B =  2.075 T and VLG =  − 0.158 V, the filling factor in 
the left half-plane is v =  (4, 0), while scanning VRG along the black 
arrow varies the filling on the right, (3, 0) →  (4, 0) →  (3, 1) (Fig. 3b).

A current of 1 nA is injected at S1 and its reflected part, IS1→D1, is 
plotted in Fig. 3c (upper panel). With the left half-plane at (4, 0), 
and the right half-plane tuned to (3, 0) or (4, 0), all the injected edge 
modes circulate the outer perimeter of the two-dimensional plane, 
arriving at D2, while IS1→D1 =  0. When the right half-plane is tuned 
to (3, 1), three edge modes arrive at D2 while a helical mode flows 
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across the interface. One edge mode (LL in SB2, red line in right-
hand figure of Fig. 3b) is fully reflected to D1, with IS1→D1 =  0.25 nA. 
Similarly, injecting current at S2 and measuring IS2→D2 leads to a 
complementary result (Fig. 3c, lower panel). These observations 
agree with ballistic propagation of helical modes without intermode 
scattering (Fig. 3c, green shaded region).

The transition (4, 0) →  (3, 1) is evidently only one example where 
interlayer charge transfer is sufficiently large to allow the formation 
of helical modes. Figure 2e shows four such transitions(n, 0) →   
(n −  1, 1) with n =  3, 4, 5, 6, which allow gate-controlled transitions 
(open circles). Transitions with an even n, such as (4, 0) →  (3, 1)  
and (6, 0) →  (5, 1) (green circles), lead to helical modes. Same-

spin counter-propagating modes are born with the transitions  
(3, 0) →  (2, 1) or (5, 0) →  (4, 1) (red circles).

In Fig. 4 measurement results of IS1→D1 are plotted for the four 
transitions in devices with three different counter-propagation 
lengths, LCP =  7 µ m, 150 µ m and 300 µ m. A clear difference is 
observed between same-spin transitions (odd, 0) →  (even, 1) and 
opposite-spin transitions (even, 0) →  (odd, 1). In the former case, 
as LCP increases beyond 7 µ m a reduction in IS1→D1 is observed. The 
reduction in IS1→D1 is fully compensated by an increase in IS1→D2 (see 
Supplementary Information, section S1), proving that intermode 
equilibration takes place (due to tunnelling), with equilibration 
length of about 1 mm (with no bulk current). In contrast, when 
helical modes are formed, no reduction in IS1→D1 is observed, even 
for LCP =  300 µ m—demonstrating spin protection. (Additional mea-
surements can be found in SI2.)

We turn to the fractional regime and concentrate on RXX in the 
B–VRG plane around the (2, 0) →  (1, 1) transition (Fig. 5a). The 
red and yellow dots, which stand for (4/3, 0) and (1, 1/3), respec-
tively, allow an intersection of counter-propagating edge modes 
with opposite spins, each with filling v =  1/3 (Fig. 5b). Indeed in 
the appropriate range of VRG, the currents IS1→D1 and IS2→D2 are both 
found to be 0.25 nA (Fig. 5c, green regions). Note that while IS2→D2 
is not affected by the propagation length, IS1→D1decreases slightly as 
the propagation length increases. Since a corresponding increase in 
IS1→D2 is not observed, the missing current evidently flows through 
the bulk of the right half-plane due to a finite RXX (see SI3).

Finally, by directly contacting the helical modes, establish-
ing thus a common Fermi energy in the two counter-propagating 
modes (Fig. 6a), four-terminal measurements can be made (Fig. 
6b). Current I is injected in contact 3 while contacts 1, 2 and 6 are 
grounded. The ratio between the potential difference between con-
tacts 4 and 5, V45, and the current I is the appropriate trans-resis-
tance. The resistance V45/I is plotted as a function of the magnetic 
field in Fig. 6d, for VLG =  − 0.158 V and VRG =  − 0.09 V (denoted by 
the white dashed lines in Fig. 6c). At low and high magnetic fields, 
with the transitions (4, 0) →  (4, 1) and (3, 0) →  (3, 1), only a single 
chiral channel carries the current along the interface between the 
two regions; hence, V45 =  0. However, in the helical regime, for the 
transition (4, 0) →  (3, 1), two counter-propagating edge modes carry 
the currents between the contacts and ∕ =V I

R
45 4

Q , where =RQ
h
e2 , 

in a good agreement with the expected trans-resistance.
The embedded 2DEG in GaAs–AlGaAs heterostructures has 

not played a significant role thus far in the emergent field of 
topological insulators and topological superconductors (aside, of 
course, from the illustrious QHE). This is a direct result of the very 
weak spin–orbit coupling in GaAs and the difficulties in inducing 
superconductivity in the buried 2DEG. Yet, the advantage of high-
mobility electrons, the ease of processing complex structures and 
the well-established robust QHE states (integer and fractional) 
make this material system highly attractive. Here, by employ-
ing a DQW in the integer and fractional QHE regime, robust 
and strongly protected ballistic helical-like modes are formed. 
Moreover, the spin protection provided by the helical modes is 
shown to increase the ballistic propagation length (without inter-
mixing) significantly.

In addition to inducing superconductivity in the two-dimen-
sional electrons, and thus forming Majorana quasiparticles or para-
fermions, this versatile implementation also lends itself to hosting 
non-Abelian quasiparticles in topological defects, which do not 
require induced superconductivity31. Moreover, this platform can 
serve as a versatile playground for investigating compounded QH 
edge modes and arbitrarily tune the intermode interaction. For 
example, the spontaneous emergent of counter-propagating QH 
edge modes, such as hole-conjugate states (e.g. v =  2/3, polarized 
and unpolarized, see SI4), can be artificially created by intersecting 
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v =  1 and v =  − 1/3 states in a highly controlled fashion, thus allow-
ing testing of the transition from the—never observed—upstream 
current mode to an upstream neutral mode32–34.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0035-2.
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of 5/20 nm Ti/Au top gates. The top gates, each defining a half-plane  
of the 2DEG, are separated by a gap of 80 nm. Finally, the HfO2 is etched  
in small regions of the contacts, connected to the bonding pads  
by 5/120 nm Ti/Au leads.

Methods
Sample fabrication. An etch-defined Hall bar with NiGeAu ohmic contacts  
was fabricated using e-beam lithography. This was followed by an atomic  
layer deposition of HfO2, e-beam lithography and e-gun evaporation  
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