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The discovery of the quantum spin Hall effect1–3 in HgTe quan-
tum wells4 was the first landmark in the physics of topological 
materials. Such quantum wells boast an inverted band struc-

ture for well widths dQW larger than a critical thickness dc = 6.3 nm. 
The quantum spin Hall phase was subsequently also observed in 
other material systems such as InAs/GaSb double quantum wells5 
and in monolayers of WTe2 and bismuthene6,7. The defining prop-
erty of this state is the emergence of topologically protected helical 
edge channels, while the bulk is insulating. Non-local edge trans-
port and spin polarization of these edge channels has already been 
demonstrated in HgTe quantum wells8,9. Here, we investigate the 
open question of how helical edge states interact with each other.

A quantum point contact (QPC) can be used to guide edge 
channels from opposite boundaries of the sample into a constric-
tion. Such a device allows for studies of charge and spin transfer 
mechanisms, for example, by adjusting the overlap of the edge 
states10–20. Besides the general interest in the study of transport 
processes in such a device, the appropriate model to describe the 
essential physics and to capture interaction effects of helical edge 
states is still unclear.

We present the realization of a QPC based on HgTe quantum 
wells, as evidenced by the observation of the expected conductance 
steps in integer values of G0. Our lithographic process allows the 
fabrication of sophisticated nanostructures based on topological 
materials without lowering the material quality. Depending on the 
QPC width WQPC and quantum well thickness dQW, we observe a 
fractional plateau at 0.5G0 in the absence of an applied magnetic 
field. We label this phenomenon the 0.5 anomaly, in analogy with 
the 0.7 anomaly frequently observed in QPCs fabricated in more 
conventional semiconductors21. Self-consistent k ⋅ p calculations 
allow us to identify the most plausible transport mechanism. Using 
the theory of helical Tomonaga–Luttinger liquids, we associate the 
experimental results with the presence of a spin gap. The bias and 
temperature dependencies of the 0.5 anomaly are in agreement with 

such a gap. Furthermore, we identify an indicator of the conven-
tional 0.7 anomaly in our devices when increasing the applied bias 
voltage. This observation is in qualitative agreement with our the-
ory and the explanation given for the 0.7 anomaly in ref. 22.

Realization of a quantum spin Hall QPC
Figure 1a,b shows a scanning electron micrograph (SEM) image of 
a HgTe QPC and a schematic of the device. A constriction is formed 
by wet chemical etching of the HgTe heterostructure23 and a top-
gate electrode is used to tune the chemical potential. The thickness 
of the HgTe layer, if not explicitly stated otherwise, is dQW = 10.5 nm. 
Details about the device fabrication are presented in the Methods 
and material parameters are provided in Supplementary Section I.

The conductance G of a representative QPC as a function of 
applied gate voltage VG is depicted in Fig. 1c. Three regimes can be 
identified. For gate voltages VG ≥ −0.75 V, we observe conventional 
QPC behaviour. Conductance plateaux develop at integer multiples 
of G0 and the quality of quantization can be improved by applying a 
small magnetic field (shown in red). For gate voltages in the range 
−0.75 V > VG > −1.2 V the QPC is in the quantum spin Hall regime. 
A long plateau around G0 is assigned to two helical edge channels. 
For still more negative gate voltages VG ≤ −1.2 V, a step-like transi-
tion from G0 to a long plateau at 0.5G0 is observed. The inset shows 
the good precision of the quantization even at zero magnetic field.

The 0.5 anomaly
The anomalous plateau at 0.5G0 is a robust signature as it is stable 
over multiple thermal cycles and we have reproduced it in sev-
eral devices. An overview of various devices is presented in Fig. 2.  
The 0.5 anomaly can be identified in devices numbered II to V, 
which have a constriction width approximately between 100 and 
200 nm (Fig. 2b,c). For wider constrictions, such as that in QPC-I 
(WQPC ≈ 250 nm, Fig. 2a), the conductance drops below G0 but 
does not reach 0.5G0. This behaviour suggests that an interaction 

Interacting topological edge channels
Jonas Strunz   1,2,5*, Jonas Wiedenmann1,2,5, Christoph Fleckenstein3,5, Lukas Lunczer1,2, 
Wouter Beugeling1,2, Valentin L. Müller1,2, Pragya Shekhar1,2, Niccolò Traverso Ziani3,4, 
Saquib Shamim   1,2, Johannes Kleinlein   1,2, Hartmut Buhmann1,2, Björn Trauzettel3* and 
Laurens W. Molenkamp1,2*

Electrical currents in a quantum spin Hall insulator are confined to the boundary of the system. The charge carriers behave as 
massless relativistic particles whose spin and momentum are coupled to each other. Although the helical character of those 
states is already established by experiments, there is an open question regarding how those edge states interact with each 
other when they are brought into close spatial proximity. We employ an inverted HgTe quantum well to guide edge channels 
from opposite sides of a device into a quasi-one-dimensional constriction. Our transport measurements show that, apart from 
the expected quantization in integer steps of 2e2/h, we find an additional plateau at e2/h. We combine band structure calcula-
tions and repulsive electron–electron interaction effects captured within the Tomonaga–Luttinger liquid model and Rashba 
spin–orbit coupling to explain our observation in terms of the opening of a spin gap. These results may have direct implications 
for the study of one-dimensional helical electron quantum optics, and for understanding Majorana and para fermions.

Nature Physics | www.nature.com/naturephysics

mailto:jonas.strunz@physik.uni-wuerzburg.de
mailto:trauzettel@physik.uni-wuerzburg.de
mailto:molenkamp@physik.uni-wuerzburg.de
http://orcid.org/0000-0001-7053-0670
http://orcid.org/0000-0001-5462-7923
http://orcid.org/0000-0002-3691-1821
http://www.nature.com/naturephysics


Articles NATuRE PHysics

between the edge channels is crucial for the appearance of the 0.5 
anomaly. The conductance of e2/h implies the transmission of one 
channel while the other is reflected. We present preliminary data 
of the detection of this backscattered state in Supplementary Fig. 3.  
In that experiment, adjacent voltage probes in a Hall geometry next 
to a QPC were used to detect an emerging voltage drop, with the 
QPC entering the 0.5 anomaly regime at B = 0 T. Our measurement 
of the transversal resistance Rxy is consistent with predictions by 
Landauer–Büttiker theory for one reflected helical edge channel.

The conductance in the bulk bandgap vanishes for very narrow 
QPCs, as depicted in Fig. 2d (WQPC ≈ 25 nm). In this regime, the 
transport shows a Coulomb blockade behaviour typical for quan-
tum dots (Supplementary Fig. 2). We believe that inter-edge cou-
pling, local disorder or both are responsible for the localization. The 
suppression of conductance for narrow QPCs sets an experimental 
upper limit for the wavefunction width of the edge states. Because 
we are still able to observe a G0 plateau for WQPC ≈ 150 nm and no 
suppression of conductance inside the bandgap for WQPC ≈ 100 nm, 
we conclude that the localization of each edge channel has to be 
smaller than 50 nm, in agreement with theory20. In the QPCs with 
WQPC ≈ 100 nm, shown in Fig. 2c, a plateau at G0 is not visible 
anymore, whereas the one at 0.5G0 can still be observed (to some 
extent). We attribute this behaviour to stronger inter-edge interac-
tions in narrower QPCs in our model, as described in the section 
‘Opening of a spin gap due to Coulomb interactions’.

The 0.5 anomaly is observed at large negative gate voltages over 
a wide voltage range. The gate efficiency in our devices is known 
from reference Hall bars to be Δne/ΔVG ≈ 8–10 × 1011 cm−2 V−1, 
where ne is the electron density. Therefore, we conclude that the 

bulk density in the regime of the 0.5 anomaly is strongly p-doped 
(nh > 1 × 1012 cm−2). Bulk transport through the QPC in this regime 
is suppressed, as will be further discussed in the following. As 
shown in Fig. 1c, a magnetic field of B ⪅ 300 mT does not influence 
the 0.5 anomaly.

The QPC conductance of a thinner, but still inverted HgTe quan-
tum well (dQW = 7.0 nm > dc) with WQPC ≈ 100 nm is shown in Fig. 2e.  
By lowering the gate voltage, conventional conductance steps are 
first observed. The lowest conductance in this device is around G0, 
indicating the quantum spin Hall regime. We carefully checked 
that indeed no 0.5 anomaly is observed in thin quantum wells by 
studying several QPCs with varying WQPC, measured in a large tem-
perature (25 mK up to 10 K) and gate voltage range (Fig. 2f). These 
findings guide us to the importance of the underlying band struc-
ture to identify the mechanism for the 0.5 anomaly.

Band structure calculations
Using k ⋅ p theory based on the eight-band Kane model, we first cal-
culated the bulk band structure of an infinitely wide slab of quan-
tum well material (black curves, Fig. 3a–c)24. A more elaborated 
calculation (using a finite width of WQPC = 150 nm) for the system 
allows us to gain information about the situation inside the QPC 
constriction (coloured dots in the plots).

The band structure of a quantum well with dQW = 7 nm  
(Fig. 3a) shows the inverted bandgap between the |H1±〉 and 
|E1±〉 sub-bands as conduction and valence band, respectively. 
Importantly, the crossing point of the edge channels (Dirac point) 
lies in the bulk bandgap. In contrast, the order of bands in the 
10.5 nm wide quantum well is rather different (Fig. 3b). In this 
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case, the bandgap is between the first |H1±〉 and second |H2±〉 
heavy hole sub-band. The |E1±〉 sub-band—still responsible for the 
band inversion—lies energetically below the |H2±〉 state. Then, the 
Dirac point is buried deeply in the valence band and the edge states 
hybridize with the bulk states if they spatially overlap25. However, at 
the indicated position of the chemical potential in Fig. 3c (dashed 
line), the edge states are well localized at the sample edge while the 
bulk density is already dominated by holes. The corresponding 
edge wavefunction has a width of ~10 nm. This value is in qualita-
tive agreement with our observation of unperturbed edge channel 
transport for QPC widths WQPC ≥ 100 nm.

The position of the Dirac point in the valence band and the flat 
heavy hole bands have several implications for carrier transport. 
First, lowering the gate voltage in wider quantum wells pushes the 
chemical potential into the heavy hole |H2±〉 bulk sub-bands, where 
the valence band structure exhibits a camel back-like shape. As a 
consequence, the Fermi level is pinned at the flat valence band edge. 
Second, the large Fermi momentum mismatch between valence 
and conduction bands suppresses inter-band transitions and thus 
also suppresses bulk transport in the p regime. In addition, the 
separation in momentum space between the edge and bulk states 
allows their coexistence without hybridization. These arguments 
explain the range in gate voltage of the quantum spin Hall plateau 
at G0, which is longer than the ‘conventional’ steps, as well as the 
suppression of bulk conductance when entering the valence band. 
Furthermore, the application of a large negative gate voltage induces 
a strong Rashba effect. Self-consistent k ⋅ p calculations allow us to 
include the applied electric field, and the resulting band structure 
is shown in Fig. 3c24. The dispersion of the bulk bands shows the 
typical Rashba splitting, while the dispersion of the edge states is not 
affected. The Rashba coupling does induce an energy dependence 
of the spin-momentum locking in the edge states, as indicated by 
the tilted arrows26,27. However, the emergence of a gapless generic 

helical spectrum cannot explain a 0.5 anomaly. Hence, we have to 
take interactions into account.

Opening of a spin gap due to Coulomb interactions
It is well known that the combination of Rashba spin–orbit coupling 
and electron–electron interactions at the helical edge can, in prin-
ciple, give rise to backscattering (Supplementary Section III)28,29. 
When both edge channels interact with each other, a variety of 
two-particle scattering terms are allowed12,13,18,30. In general, how-
ever, most of these terms are either not relevant in a renormaliza-
tion group sense, or do not apply to the constraints set by the band 
structure in our set-up.

As indicated by the k ⋅ p calculations, the inverted quantum 
wells with d = 10.5 nm have a Fermi wavevector of kF ≈ 0.1 nm−1. 
Backscattering processes, which do not preserve the number of 
right- and left-moving edge channels, hence oscillate as a function 
of space over a scale of k�1

F
I

. Because the length of the QPC is of the 
order of L ≈ 100 nm, net effects of these terms should average out.

Following those arguments and assuming (weak) repulsive elec-
tron–electron interactions, we show in Supplementary Section III 
that the most relevant two-particle scattering term is

HS ¼ gs

Z L

0
dx½χ̂yR;þðxÞχ̂L;þðxÞχ̂

y
L;�ðxÞχ̂R;�ðxÞ þ h:c: ð1Þ

where χ̂ν;± ðxÞ
I

, with ν ∈ R, L being the right- (R) and left- (L) mov-
ing Fermi field operators of the upper (+) or lower (−) edge, respec-
tively. Because the spin degree of freedom and the direction of 
motion are pinned in each helical liquid, we only indicate the direc-
tion of motion in equation (1) and drop the spin degree of freedom 
for ease of notation. Evidently, HS describes a backscattering process 
between the (+) and (−) edges preserving the number of right and 
left movers (see Fig. 3d for a schematic).
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In our minimal model, introduced in Supplementary Section III, 
equation (1) appears due to the combination of Rashba spin–orbit 
coupling and electron–electron interactions with broken SU(2) 
symmetry of the spin degree of freedom. The coupling constant

gs ¼ sin2ðγÞ g2? � g4?
2

ð2Þ

is directly related to the magnitude of the Rashba coupling strength 
α via γ = arctan(α/(ħvF)), as well as to the electron–electron inter-
action processes across the edges, parametrized by g2⊥ and g4⊥. 
In the presence of strong spin–orbit coupling, SU(2) invariance 
is broken at the single-particle level. Hence, it makes sense that 
it remains to be broken in the presence of interactions, which 
implies that g2⊥ ≠ g4⊥.

The Fermi level pinning in the samples with quantum well thick-
ness of 10.5 nm hence allows the coupling constant gs to grow with 
increasing electric field and thus Rashba coupling. This indicates 
the importance of the camel back in the band structure shown in 
Fig. 3c for the development of a sufficiently large gs.

Using bosonization techniques, we can demonstrate that  
equation (1) acts as a gap to the spin sector31. The effective 
Hamiltonian is

Heff ¼
1
2π

Z L

0
dx

X

ν¼σ;ρ

uν
Kν

∂xϕν
� 2þuνKν ∂xθνð Þ2

 
þ ~gs cosð2

ffiffiffi
2

p
θσÞ

ð3Þ

where ϕν(x) and θν(x) (ν ∈ ρ, σ) describe bosonic fields acting on the 
spin (σ) and charge sector (ρ), ~gs

I
 is a rescaled version of gs, uν repre-

sent the normalized velocities and Kν are the Tomonaga–Luttinger 
interaction parameters ranging between 0 ≤ Kρ ≤ 1 and 1 ≤ Kσ ≤ 1/Kρ 
for a repulsively interacting system. We have dropped the explicit 
spatial dependence of the bosonic fields for ease of notation. The 
last term in equation (3)—proportional to ~gs

I
—corresponds to a gap 

in the σ sector of the otherwise free bosonic theory.

Experimental consequences of a spin gap
Usually, spin gaps are not detectable in charge transport experi-
ments of purely one-dimensional (1D) systems. However, the strong 
localization of the single-particle wavefunctions at the edges of the 
QPC implies that, in the present case, the system is by no means a 
single 1D system, but has to be treated as two spatially separated 1D 
systems, coupled by Coulomb interactions.

Thus, we have to use two distinct current operators 
j±(x) ≈ ∂t(ϕρ(x) ∓ θσ(x)) for the two edges (±). A voltage bias cou-
ples to each helical edge state separately. This assumption leads to 
a reduced conductance of G = 0.5G0 in the presence of the spin gap 
(see also Fig. 3e). In the absence of the spin gap, we instead find 
G = G0 (Supplementary Section III).

As is observable in Fig. 2, the fluctuations on top of the 0.5 anom-
aly plateau are considerably smaller than in the quantum spin Hall 
regime, where both helical channels are transmitted. In the presence 
of equation (1), our renormalization group analysis (Supplementary 
Section III) indeed predicts a reduced sensitivity to impurity back-
scattering, consistent with this observation. Moreover, we note that 
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the proposed mechanism is not affected by magnetic fields, also 
consistent with the experiment.

The absence of the 0.5 anomaly in thinner quantum wells can 
be understood through the lack of Fermi level pinning. In thicker 
quantum wells (10.5 nm), the application of a strong electric field 
allows us to generate a sufficiently large Rashba field without sub-
stantially affecting the electron density of the edge states. The reason 
for this is that the camel back of the valence band has a large density 
of states at the Fermi energy that gives rise to Fermi level pinning 
(see the horizontal dashed line in Fig. 3c). In contrast, in thinner 
quantum wells (7 nm), the camel back is far away (in energy) from 
the Fermi level (see the horizontal dashed line in Fig. 3a). Hence, 
in that case, we are not able to apply strong electric fields without 
substantially affecting the electron density of the edge states. We 
argue that the resulting Rashba field, acting on the edge states in 
the transport regime with conductance 2e2/h, is too small to observe 
the 0.5 anomaly.

The bias and temperature dependence of the conductance, 
depicted in Fig. 4, helps us to quantify the observed energy scales. 
As shown in Fig. 4a, the 0.5 anomaly is observable up to tempera-
tures of 1.4 K. For higher temperatures (T ≥ 4 K), the quantization 
is lost and the conductance increases with increasing temperatures. 
The range 2–4 K as the upper limit to which the quantized plateau 
is observed sets an energy scale of the spin gap of ΔE ≈ 150–300 eV. 
This energy scale is in good agreement with the bias dependence 

shown in Fig. 4b. There, the low a.c. bias has been superimposed 
by a d.c. bias voltage Vdc. The gate voltage regime in which the 
0.5 anomaly can be observed opens around VG = −1.6 V. We are 
able to observe the 0.5 anomaly up to eVdc ≈ 200–400 eV (Fig. 4c), 
depending on the gate voltage. A similar estimate can be made 
for the energy scale set by the length of the QPC, ħvF/LGate ≈ 200–
300 μeV (with LGate ≈ 200–300 nm and vF ≈ 1 × 105 m s−1, estimated 
from the helical dispersion). The agreement of the magnitudes of 
all energy and temperature scales is remarkable. We conclude that 
they set the typical energy scale required for the development of 
the 0.5 anomaly.

Increasing the applied bias voltage further, the conductance 
increases beyond the 0.5 anomaly and a second step-like plateau is 
visible around ~0.8G0 (Fig. 4c). We conjecture that this feature is 
related to the 0.7 anomaly commonly observed in conventional QPCs. 
The emergence of this conventional 0.7-like signature is in qualita-
tive agreement with the explanation given in refs. 22,32,33 for GaAs 
based structures. Depending on the device, we are also sometimes 
able to identify a 0.7 feature as a function of gate voltage (Fig. 2b).  
Increasing the bias even further closes the interaction induced gap 
and the conduction saturates at G0, indicating that two unperturbed 
edge channels are now perfectly transmitted through the QPC over 
a large range of gate voltage (Fig. 4c,d).

Several other mechanisms might explain the 0.5 anomaly 
in QPCs or nanowires. These mechanisms include helical edge 
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reconstruction34, the formation of a Wigner crystal35 or hyperfine 
interactions36. However, given the importance of the camel back in 
the valence band for our observation of the 0.5 anomaly, we believe 
that the mechanism presented here is the most plausible one. At 
the same time, we note (and discuss this more extensively in the 
Supplementary Information) it is possible to imagine another rel-
evant mechanism, in particular the helical edge reconstruction 
proposed in ref. 34, that shares many common ingredients with our 
mechanism—like strong spin–orbit coupling, electron–electron 
interactions and confinement. Hence, it is likely that the two mech-
anisms are related to each other.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41567-
019-0692-4.
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Methods
Device fabrication and measurement technique. The QPCs were fabricated by 
a combination of electron-beam lithography and wet chemical etching on HgTe 
quantum well structures with a well width of either dQW = 7.0 nm or dQW = 10.5 nm. 
The layer stack was grown lattice matched on a Cd0.96Zn0.04Te substrate by 
molecular-beam epitaxy. The quantum well was sandwiched between Hg0.3Cd0.7Te 
barriers, and the bottom barrier was iodine-doped 70 nm below the quantum 
well (inset, Fig. 1b). The lithographic width of the QPCs ranged between 25 and 
250 nm, and the length of the constriction was kept constant at LQPC ≈ 500 nm  
(Fig. 1a). To control the charge carrier density within the QPC, a HfO2 insulator 
layer and a Ti/Au gate electrode were deposited to cover the centre of the QPC 
(Fig. 1a and schematic in Fig. 1b). Evaporated AuGe/Au layers were used to contact 
the quantum well electrically, ~80 μm away from the QPC.

Standard four-probe low-frequency lock-in techniques were used for the 
transport measurements at either 1.4 K or 25 mK base temperature.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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