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Creation and measurement of long-lived magnetic
monopole currents in spin ice
S. R. Giblin1*, S. T. Bramwell2*, P. C. W. Holdsworth3, D. Prabhakaran4 and I. Terry5

The recent discovery of ‘magnetricity’ in spin ice raises the question of whether long-lived currents of magnetic ‘monopoles’
can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse
to a Dy2Ti2O7 spin-ice crystal at 0.36 K, we create a relaxing magnetic current that lasts for several minutes. We measure
the current by means of the electromotive force it induces in a solenoid coupled to a sensitive amplifier, and quantitatively
describe it using a chemical kinetic model of point-like charges obeying the Onsager–Wien mechanism of carrier dissociation
and recombination. We thus derive the microscopic parameters of monopole motion in spin ice and identify the distinct roles of
free and bound magnetic charges. Our results illustrate a basic capacitor effect for magnetic charge and should pave the way
for the design and realization of ‘magnetronic’ circuitry.

Since the early pioneering work of Debye, Hückel, Bjerrum
and Onsager on model electrolytes, the physics of Coulombic
systems has been elucidated in many contexts, from elec-

trolytes to dusty plasmas1,2. These systems show a rich phenomenol-
ogy and share many universal properties, which arise from the
long-ranged and algebraic nature of the Coulomb interaction. A
recent addition to this class is spin ice, where emergent magnetic
monopoles form a magnetic Coulomb gas, and in which monopole
currents have been detected.

Spin-ice materials such as Ho2Ti2O7 and Dy2Ti2O7 are
‘frustrated ferromagnets’ that form a disordered low-temperature
magnetic state3–5, in which the configurations of atomic magnetic
moments or spins map onto proton configurations in water ice.
On the basis of a well-established microscopic description6, it
was proposed that thermally excited point defects in the spin-ice
state take the form of magnetic charges or ‘monopoles’7 (see also
refs 8,9). Subsequent work found consistency with this picture10–14.
In ref. 11 we argued that spin ice should conduct charge like
a weak electrolyte (‘magnetolyte’15) and showed that Onsager’s
theory of the field dissociation or Wien effect in weak electrolytes16
applies to spin ice. We used this to demonstrate the existence of
magnetic currents and tomeasure the ‘elementary’ magnetic charge
±Q≈ 4.6µB Å−1 (ref. 11).

The model is of free (f) charges in dynamical equilibrium with
bound (b) charge pairs according to the reaction scheme:

φ= [⊕	]b=⊕f+	f (1)

where φ is the quasiparticle vacuum. According to the Onsager
theory, the application of a magnetic field affects only the forward
reaction of the right-hand equilibrium: it increases the rate of
pair dissociation but not of recombination, so the (chemical)
equilibrium constant is increased. That is, the chemical equilibrium,
equation (1), is pushed to the right, and the system is forced out
of thermodynamic equilibrium, into a steady state, so that the
linear increase in the charge-carrier density with field, 1nf(B), is
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an explicitly non-equilibrium effect. The free-charge density per Dy
ion at equilibrium, or in steady state, nfeq = nfeq+ = nfeq−, and the
consequent conductivity κ , depend on field as:

nfeq(B)
nfeq(0)

=
κ(B)
κ(0)
= 1+

b
2
+

b2

24
+··· (2)

where b is the dimensionless group b = µ0Q3B/8πk2T 2.
Equation (2) is generally valid in the limit where the association
is almost complete: nbeq� nfeq, but also applies for all nbeq/nfeq if
the left-hand equilibrium relaxes on a sufficiently fast timescale16,17.
In this case, the vacuum acts as a buffer, ensuring that on applying
a field, nbeq remains unchanged.

This description of a magnetic property by an equation of
electrolyte theory is a further universal consequence of theCoulomb
interaction: it implies that many electrical effects will have their
counterpart in magnetic systems. In this context, an elementary
property is the response of the current to an abrupt change in
external conditions, as typified by the discharge of a capacitor.
Therefore, a principal aim of the present experiment was to study
the evolution of magnetic current following the removal of a
magnetic field. Naively, this should result in the decay of both a
free current, arising from the unbound charges, and a polarization
current, arising from the bound pairs, so that there should be two
relaxation processes. This is exactly what we observe at T = 0.36K
in our experimental data, shown below.

The total magnetic current density is equal to the rate of change
of magnetization −∂M/∂t , which is proportional to the measured
electromotive force. The relaxing magnetizationM is very different
from that of a conventional magnet, as the magnetic charge−∇ ·M
is quantized, point-like (to a good approximation) and deconfined,
and the magnetic current results from a flux of these point-like
Coulombic charges. Although the current is transient, the charges
have a finite mobility in exact analogy with ions in an electrolyte.
Our data may thus be analysed to confirm the Wien dissociation
and to derive quantitative microscopic information about reaction
rates and mechanisms. In this sense our experiment is equivalent
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to those pioneered by Eigen and collaborators18 on the analogous
electrical systems, whereby the relaxation of the Wien dissociation,
following an electrical field pulse, was used to determine the kinetics
of ionic association. The protocol is also reminiscent of those used
to probe non-equilibriumphenomena in glassy systems19.

The precision measurement of magnetic relaxation in spin
ice poses special challenges, owing to the low temperatures and
small magnetic fields involved, and the extremely small changes
in induction to be measured. We used a sensitive low-field
measurement technique previously developed by two of us20. A
field B≡µ0H was applied to the sample for time t0 and abruptly
removed at the start of the measurement, time t = 0 (note that
henceforth B represents the applied field). A solenoid attached
to a superconducting quantum interference device (SQUID)
susceptometer was used to measure the relaxation of magnetic
moment densityµ(t ) (see theMethods section).

Model for the magnetic relaxation
In basic electrolyte theory, and its application to spin ice, there are
several important length scales. These include the Bjerrum length21,
lT = µ0Q2/8πkT , which distinguishes free from bound charges;
the Debye length lD = ((µ0Q22cf)/kT )−1/2, which determines the
effective range of the Coulomb interaction (here, cf is the free-
charge concentration); the field length lB = kT/QB, and the lattice
constant, or effective ionic diameter a. The interplay of these
length scales, as a function of field and temperature, determines
the essential properties of the system. In spin ice, the monopoles
populate a diamond lattice with near-neighbour distance a= 4.3Å;
for convenience, we also define a length scale a′ = 2.50Å, which
is the magnitude of the projection of the corresponding vector
a onto [100], the field direction used in the present study. The
monopole charge is Q = 4.266 × 10−13 J T−1m−1 and the best
numerical estimate for the chemical potential in the ‘spin-ice
Coulomb gas’7,10, constructed from the dipolar spin-ice model6, is
νf/kB =−4.45K (ref. 22). The length scales lT , lD and lB are fully
determined by these parameters.

Neglecting screening, the linear Wien effect reflects the relative
magnitude of lT and lB. At a charge separation r > lT , the thermal
energy kT is sufficient to overcome the Coulomb interaction,
µ0Q2/4πr (ref. 16), whereas for r < lB free diffusive motion of
monopoles remains possible. The universal dimensionless number
of Onsager’s theory is simply the ratio b= lT/lB. In analogy with
electrolytes23, we expect that the density of bound and free charges
at a distance r from a test charge of opposite sign placed at the
origin should be maximal at the nearest-neighbour distance a and
the association distance lT , respectively. This is because the pair
distribution function decreases monotonically with distance along
any given direction (Fig. 1).

The Debye screening can be neglected in the formation of bound
pairs as long as the Debye length is greater than the Bjerrum length,
which is the case at low temperature. For T > 1K, lD is very short,
only exceeding two lattice spacings for T < 0.9K. At T ≈ 0.65K,
which marks the onset of slow dynamics24, lD becomes greater than
lT , rapidly becoming very long at lower temperatures, which allows
for a clear separation of length scales, lD� lT�a. This condition of
length-scale separation is achieved only at the lowest temperature
used in the present study, T = 0.36 K, where we have lD ≈ 200Å,
lT = 18.3Å, a= 4.3Å.

The neglect of screening is strictly valid only if lD> lB: otherwise
a modified theory involving lD is applicable25,26. This condition is
not satisfied for the very small field values used in our experiments;
for example lB = 1,100 Å at B= 0.0001 T and T = 0.36K, yet the
unscreenedWien effect (equation (2)) accurately describes our data
and lD does not seem to be a relevant length scale. It is possible that
on larger timescales than those studied here, one could observe a
crossover to themodified theory in which lD appears.
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Coulomb potential
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r = a

r =   lT
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distribution
function

~kT
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Figure 1 |Distance dependence of magnetic monopole interactions in spin
ice. Charges of opposite sign are bound in pairs by the Coulomb potential
(∼ 1/r) if their separation r is less than the association distance r= lT .
a, Pair distribution function n(r). The density of bound pairs, at distance r
along a chosen axis, is maximal at their shortest possible separation, r= a
(an effective hard-core repulsion), whereas that of free charges is maximal
at r= lT , just outside the association volume (vertical thick green lines).
b, Thermal fluctuations liberate the charges from their mutual Coulomb
interaction and so produce free charges in a narrow energy band of width
∼ kT near to zero energy.

The magnetic moment density, µ, may be considered to be
made up of contributions from bound and free monopoles,
µ = µb + µf. We make the assumption, justified a posteriori,
that any perturbation away from the true equilibrium of zero
field is sufficiently small for the system to be treated with
chemical thermodynamics. From here we have derived (see the
Methods section) a relationship between µf and the field-induced
change in free-particle concentration through the change in
Wien equilibrium:

µf
eq(B)= (QlT )1nfeq(B) (3)

The superscript eq denotes equilibrium or steady-state quantities:
nfeq is the free-charge concentration in zero field and nfeq+1nfeq(B)
is its steady-state value in applied field B. Equation (3) is a striking
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Figure 2 |An effective capacitor discharge for magnetic monopoles in spin ice. Observed magnetic moment change for various experimental conditions
compared to the prediction of a chemical kinetic model of charge generation and dissociation (red lines) of magnetic monopole currents. The graphs show
the measured magnetic moment NDy1µ(t) of a crystal of spin ice, Dy2Ti2O7, following the application and removal of a field (B, applied along the [100]
crystallographic axis) for a finite period of time (t0). Here, NDy is the number of Dy ions in the sample and µ is the magnetic moment density per Dy ion. a,
10-s field pulses of varying magnitude. b, Fixed-amplitude (0.5 mT) pulses of varying duration. The curves are offset for clarity. Using the chemical kinetic
model described in the text, the data have been fitted to produce parameters kOr=0.099±0.009 s−1, kD=0.000134±0.00001 s−1, Tb= 3.33±0.05 K,
Tf=4.52±0.10 K (here, quoted standard errors are computed from the best-fit parameters for the nine data sets). Note that, although1µ(t) is measured
on an absolute scale, the measuring technique does not locate its zero, which has therefore been fitted as a parameter for each curve. The experimental
resolution is smaller than the symbol size.

result, as it shows that all pairs that unbind as a result of the
presence of the field are oriented along the field direction and
that they contribute to the total moment as if separated by the
escape distance lT , even in the steady state. The form of the
pair distribution function for free charges ensures that unbound
charges seem to accumulate in correlated dipoles of moment
QlT (Fig. 1b). Furthermore, using equation (2) it follows that
the Wien effect can be rewritten to lowest order in field in an
experimentally accessible form:

µf
eq(B)=

1
2
(QlT )bnfeq (4)

This formalism predicts a linear magnetic response at low
temperature, which is quite different from that of a conventional
Ising ferromagnet, or a cooperative paramagnet such as the nearest-
neighbour model for spin ice. In the former, one expects a gapped
excitation spectrum and an exponentially small magnetic response,
whereas for the latter one expects a modified Curie law22. Here
we have a gapped response, as nf(T ) falls exponentially to zero
at low temperature, but the effective moments are composite
dipoles of moment QlT , scaled up from the magnetic moments
on the dysprosium ions by a factor (lT/a). This is a combined
effect of the deconfinement of the magnetic monopoles and the
appearance of lT as the natural length scale over which charge
inhomogeneities develop.

In addition to the free particles, the bound pairs will also
contribute to the response to the perturbing field B: the bound-pair
concentration does not change to first order in the field, but the
field-induced reorientation or polarization of bound pairs will
produce a magnetic moment µb that is linear with the field,
analogous to the dielectric response of a polar fluid. This moment
is the thermal average of the contributions of dipole moments of
magnitude∼Qr between r=a and r= lT (see Fig. 1).We introduce
1ñb= [nbcos(θ)], where θ is the angle made by a bound pair with

the field direction and where [....] is the configurational average
over all pairs. In steady state 1ñ eq

b = nbeq〈cos(θ)〉, where 〈...〉 is a
thermal average. In the Methods section, we argue that, as most
pairs are separated by distances close to the nearest-neighbour
distance, the moment arising from reoriented bound pairs is, to
within a factor of order unity:

µb
eq(B)= (Qa′)1ñ eq

b (5)

where

1ñeqb ≈ (Qa′B/kT )nbeq (6)

The moments µf
eq (equation (3)) and µb

eq (equation (5)) are
steady-state contributions to the total magnetic moment. Their
independent relaxation would give rise to two exponential decays.
However, they are not independent: 1ñb(t ) is fuelled by the
rebinding of free charges from the excess 1nf(t ). As excess free
particles are aligned with the field, such a recombination process
changes both the bound-particle concentration and the orientation
anisotropy of the bound pairs. Similarly, as there is a build up
of orientated bound pairs, if there is further dissociation of pairs
this process will be weighted in favour of oriented pairs. We
therefore propose that the two species are connected by the chemical
equilibria of equation (1), from which we deduce the following
linearized rate equations:

d1nf(t )
dt

= kD1ñb(t )−2K−1kDnfeq1nf(t ) (7)

d1ñb(t )
dt

=−(kOr+kD)1ñb(t )+2K−1kDnfeq1nf(t ) (8)

Here kOr is the rate constant for orientation of dipoles, which we
expect to be a rapid process with its scale fixed by creation and
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annihilation of bound pairs from the vacuum; kD is the rate constant
for dissociation of bound charges, which we expect to be slow in
comparison; K = (nfeq)2/nbeq is the equilibrium constant of the
dissociation–recombination reaction.

Using the equilibrium values as boundary conditions, the total
magnetic moment µ(t )=µb(t )+µf(t ) was calculated, starting at
t = −t0, by numerically solving the linearized rate equations to
first order in field with dynamic variables µb(t ) and µf(t ) given by
expressions equivalent to equations (3)–(6).

Experimental test of the kinetic model
Our experimental data revealed a two-timescale, approximately
exponential, decay that was particularly distinct at T = 0.36K
and 0.55 K, at short ‘charging’ times t0, but essentially merged
into a single-exponential relaxation by T = 0.7K. By T = 1K, no
relaxation was observed, indicating that all response had become
too rapid to be observed in the experimental time window. At
T =0.36K, the timescale of the faster relaxation was about 10 s, and
that of the slower one was several hundred seconds.

At T = 0.36K, experimental relaxation data sets 1µ(t ) were
collected for nine combinations of field-pulse parameters {t0,B}.
We found that these nine data sets could be fitted to the numerical
solution of equations (7) and (8) using, within experimental error,
a single set of parameters {kD,kOr,nbeq ≡ e−Tb/T ,nfeq ≡ e−Tf/T }. The
result is shown in Fig. 2, where one can see that the kinetic model
clearly provides an excellent description of the experimental data at
T = 0.36K, giving strong support to our physical interpretation of
the observed relaxation. The coupling of the relaxations of free and
bound charge is necessary to produce fits of this quality. To confirm
this, we compared the kinetic model with the alternative model,
which has two exponential contributions relaxing independently:
1µ=

∑
iµi(Ti)e−νit (1−e−νit0) (here i=b,f). Each data set was fitted

independently by the two models and the average best parameters
for each model were used to generate relaxation curves. In contrast
to the kinetic model, the two-exponential fit fails to describe the
t0-dependent data: that is, there is no single set of parameters that
can describe the whole experimental data set (Fig. 3b).

The parameter Tf=4.52±0.10K extracted from the experiment
is approximately the free-charge creation energy. It implies a
chemical potential in the spin-ice Coulomb gas of νf = 4.7(1) K
(because exp(−Tf/T )= (1/2)exp(−νf/T )), in excellent agreement
with the numerical estimate, 4.45K (ref. 22). The rate constant
kR =K−1kD = 1.04×103 s−1 is that for free-charge recombination,
and may be used to estimate a hopping frequency for magnetic
monopoles, 1.8× 103 s−1, (see Table 1 and the Methods section) .
This estimate is consistent with the relaxation frequency deduced
from high-temperature a.c.-susceptibility τ−1 ∼ 103 s−1, and is
close to the muon relaxation rate at 0.35 K (∼ 104 s−1; ref. 11).
Thus, as far as the free charges are concerned, our results are in
excellent agreement with expectations based on theory and other
experiments. Furthermore, the timescale (2nfkR)−1 may be simply
interpreted as the monopole lifetime, which we identify as about
150 s at T = 0.36K. It should be noted that whereas the rate of
monopole hopping∼ kR is relatively fast, the rate of recombination
kRnf2 is extremely slow, as recombination events are relatively rare:
such behaviour is akin to an electrolyte, where ionic recombination
ismany orders ofmagnitude slower than local ionicmotion.

The second temperature scale extracted from the experiment,
Tb = 3.33± 0.05K, is particularly notable, as it is considerably
less than the energy, 1E ≈ −2νf + V (a) = 5.83K, necessary to
produce a nearest-neighbour bound pair of monopoles in the
low-temperature limit for the spin-ice Coulomb gas22. To make an
accurate estimate for the bound-pair concentration, one needs to
take into account the basin of attraction offered by the long-range
Coulomb interaction, which renormalizes this energy scale by an
association coefficient. The dominant contribution comes from
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Figure 3 |Demonstration of the requirement for the chemical kinetic
model at T= 360mK and its breakdown at higher temperature.
a, Temperature-dependent magnetic relaxation measured in this work, with
single-exponential fits to the data (black lines): the single-exponential
description, although reasonable at higher temperature, breaks down at
360 mK . b, The full data set at 360 mK can be fitted by a single set of
parameters using the kinetic model, but not using a model of two
independent exponential relaxations (the figure shows two representative
fits). c, As the temperature is raised to 0.55 K the data cannot be fitted to a
single set of parameters, even using the kinetic model. All data shown have
an applied field of 0.5 mT with the temperature and charging time (t0)
shown on each graph.

the four nearest-neighbour sites16, so that the energy scale is
reduced to Tb

eff
∼ 5K, which is still considerably larger than the

3.33 K estimated experimentally and larger than Tf, which fixes
the free-particle density.

Thus, the experimental Tb implies that nb � nf, which is
the opposite limit to the dipolar spin-ice model. Although the
validity of the Wien formula does not depend on this, the coupled
kinetics of two competing phenomena and the substantial decay
of µ(t ) at short timescales are convincingly modelled with a high
concentration of bound pairs. The large bound-pair concentration
deduced from the experiment could be due to non-equilibrium
effects: as observed numerically in thermal quenches27, the kinetic
constraints imposed by the classical ‘Dirac strings’ connecting the
particles in the spin-ice Coulomb gas ensure that monopole pairs
are often unable to annihilate and are blocked in deep metastable
states at low temperature. Furthermore, the measured rate of their
reorientation (0.07 s−1) is surprisingly slow, as one might have
expected it to be closer to the hopping rate of 2×103 s−1, and the
slow rate seems compatible with the existence of such states. The
discrepancy could also come from corrections to spin-ice Coulomb
gas physics, such as the small bandwidth expected for the Pauling
states6, the inclusion of further neighbour exchange interactions28
or from small impurity concentrations.

At T = 0.55 and 0.7 K, the above arguments, based on
well-separated length scales, lD, lT and a, break down. This is
consistent with the measured data, which could not be fitted
to the kinetic model at T > 0.36K. Figure 3a illustrates data
as a function of temperature for identical conditions (t0 = 10 s,
B= 0.0005 T). In the time window of the experiment, the response
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Table 1 | Estimated parameters at T=0.36 K.

Description Symbol Measured Expected

Dissociation rate constant kD 1.3(1)× 10−4 s−1

Recombination rate constant kR 1.04× 103 s−1

Pair-orientation rate constant kOr 9.9(9)× 10−2 s−1

Mean monopole hop rate ∼ckR(a/lT);c≈ 7.7 1.8× 103 s−1
∼103 s−1 (refs 10,24)

Mean monopole lifetime ∼(2kRnf)−1
∼150 s

Dissociation equilibrium constant K= kD/kR= nf
2/nb 1.25× 10−7

Bound-pair density per Dy nb= e−Tb/T 1.0(1)× 10−4
∼10−6 (this work)

Free-charge density per Dy nf= e−Tf/T 4(1)× 10−6 2× 10−6 (ref. 10)

Single standard-deviation errors on directly estimated quantities are given in brackets.
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Figure 4 |A near-perfect symmetry between electricity and magnetism illustrated by data collapse onto Onsager’s universal curve for theWien effect16.
a, Results of the present experiment as a function of the Onsager dimensionless field b represented by plotting the quantity κ(B)/κ(0)= 1+µf

eq/QlTnf,
where µf

eq is extrapolated from the measured magnetic relaxation data, and nf= e−Tf/T , with Tf close to the free-charge chemical potential νf/kB≈−4.5 K
given by theory22 (sensitivity of the fit to Tf is illustrated). b, Our data (red squares) on logarithmic scales, compared to the relative electrical conductivity
of acetic acid at T= 298 K (ref. 31; green circles) and relative muon relaxation rate of spin ice11 at T=0.1 K (there are no fitting parameters).

is peaked at T = 0.55K, indicating a crossover in behaviour
around this temperature, as previously observed24. Moreover,
Fig. 3c demonstrates that the kinetic model cannot describe the
T =0.55K data with a single set of parameters.

The tendency to a single-exponential decay at higher tempera-
ture agrees with previous observations24 and is evidence that the
system crosses over to a fully dissociated but strongly screened
Coulomb gas10 that exhibits only a free-current contribution to
µ(t ). The description of spin ice as a weak magnetolyte thus
seems to be valid at T < 0.5K. In the crossover regime between
weak magnetolyte and strong magnetolyte, bulk measurements
reveal various degrees of dynamical freezing in Dy2Ti2O7 between
0.7 and 0.3 K (refs 24,29,30). Our results provide evidence that
these non-equilibrium phenomena are direct consequences of the
analogy with weak electrolytes: the linear increase in free-charge
density leads to a linear magnetic response that can be accounted
for only through non-equilibrium physics16.

Universal data collapse
The present experimental data may be used to make a stringent
test of the Wien effect, which is almost independent of any
interpretation attached to the kinetic fits of Fig. 2. The steady-state
moment µf

eq(B) at T = 0.36K can be estimated from the fits to
equations (7) and (8) as the asymptotic value of µf at large time.

It can then be used to test equation (4), which is directly derived
from theWien effect, by plotting 1+µf

eq/QlTnf versus the Onsager
dimensionless parameter b, where we expect data collapse onto
the function f (b) = 1+ b/2+ b2/12+ ... (equation (2)). Here,
nf may either be considered a fitting parameter or else fixed to
the theoretical value, nf = (1/2)exp(νf/kBT ), using the numerical
estimate for the chemical potential, νf/kB = −4.45K (ref. 22).
The result is shown in Fig. 4a, where it can be seen that there is
excellent agreement with the Onsager prediction, indicating that
the phenomenology presented here and in ref. 11 is correct. In
particular, the unequivocal appearance of the Bjerrum length, lT ,
as the length scale on which charge inhomogeneities appear in the
experiment is very strong evidence that important particle–particle
correlations occur in the spin-ice Coulomb gas and that it is the
Coulomb interaction that sets the scale for them.

A more comprehensive data collapse onto Onsager’s universal
curve is illustrated in Fig. 4b, which plots the relative muon
relaxation rate of spin ice11 and the relative electrical conductivity
of acetic acid as reported by Gledhill and Patterson31, as well
as the points extracted from the present data and analysis. The
collapse of data over a broad range of experimental systems,
techniques and parameter ranges is very striking and unequivocally
demonstrates the universal applicability of Onsager’s result to both
electricity and magnetricity.
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In the spirit of this equivalence, the present experiment may also

be interpreted as a demonstration of a capacitor effect for magnetic
charges in spin ice. Excess charge is stored in the spin-ice sample
under the action of an applied potential, which may be released on
a slow timescale by removal of the potential. In the future it will be
interesting to see if other basic ‘magnetronic’ effects can be similarly
identified, whichmay be combined tomake a functional device.

At a more fundamental level, we have demonstrated how,
at low temperatures, spin ice behaves very differently from an
idealized polarizable fluid or paramagnet, which would exhibit an
exponential relaxation with a single, fast timescale, or from a spin
glass that has a hierarchy of decays19,32. In spin ice the basic rate
in the system—the monopole hop rate—is always relatively fast,
whereas the bulk relaxation is relatively slow, on account of the
diminishing monopole population. The key length scales in the
system, lD and lT, diverge only at zero temperature, so under no
realizable conditions is there a truly divergent timescale.

Our results finally illustrate a tractable solution to a non-
equilibrium dynamical many-body problem of great complexity. It
may be relevant to solving other problems in the non-equilibrium
behaviour of spin ice27, that of other exotic magnets33–35 and
artificial spin-ice systems36–38. The spin-ice monopole system seems
to be a practical example of a nearly ideal Coulomb lattice
gas with perfectly symmetric charges that are confined to the
sample. It might therefore give a useful new angle on the rich
and subtle physics of the analogous electrical system23,39 and
Coulomb fluids in general1.

Methods
Equation (3) is derived as follows (see also ref. 11). At constant temperature,
the total differential of the Gibbs energy for the dissociation equilibrium
is dG=−µf

eqdB−Adξ,, where ξ = nf is the extent of reaction and
A= kT lnK − kT ln(nf2/nb) is the affinity (assuming activity coefficients are
unity). It follows that (∂µf

eq/∂nf)B= (∂A/∂B)nf = kT (∂ lnK/∂B)nf = kTb/B=QlT
to leading order in b (using Onsager’s formula, equation (2) main text). Integration
of this equation gives equation (3). In principle the above analysis is valid only at
equilibrium, but assuming linear response theory to hold then the above expression
should be applicable to the kinetic terms in equations (7) and (8) (main text).

Equations (5), (6) are defined as follows. The structured monopole vacuum is
made up of ionic magnetic moments or spins, µDy (ref. 15). A single spin flip creates
a bound pair of charges with an emergent dipole moment of magnitudeQa= 2µDy.
The spins can be divided into two classes, where flipping out of the vacuum
creates a monopole pair oriented either with or against the field. Considering only
nearest-neighbour pairs and working to first order in monopole concentration,
the partition function for an N moment vacuum plus excitations can be written:
Z = [1+exp(−Tb/T )exp(2βµzB)]N/2[1+exp(−Tb/T )exp(−2βµzB)]N/2, where
µz =µDy/

√
3 is the projection of the moment along the field axis and where Tb

represents the effective single-spin-flip energy scale once the effect of long-range
interactions has been taken into account. Defining the average magnetic moment
density from bound charges as µb

eq
=−(1/N )∂G/∂B, where G is the magnetic

Gibbs free energy, one finds µb
eq
= 2µzδnb, where δnb is the contribution to1ñeqb

coming from nearest-neighbour bound pairs. Expanding to first order in magnetic
field and noting that nbeq = exp(−Tb/T ), one finds the Curie law result for
emergent bound-pair dipoles, δnb= (2µzB/kT )nbeq. Inserting the magnetic charge
and approximating δnb by1ñeqb , we arrive at equations (5), (6).

The Dy2Ti2O7 crystal used in these experiments was grown at Oxford
University using an optical floating-zone furnace40. The mass of the sample was
33mg and it was cut approximately in a cuboid with dimensions 3×1.5×1.5mm.
The sample used here was not used in previous experiments11. Bulk magnetic
measurements were carried out at Durham University using an Oxford
Instruments Helium 3 system modified to include a quantum design d.c. SQUID
with a first-order gradiometer pickup coil configuration, which enabled moment
changes of 1×10−12 J T−1 to be detected20. Our experiment involved zero-field
cooling the crystal and applying a field B=µ0H along the [100] crystallographic
axis. The ramping rate was directly observed using an oscilloscope with both
the charging and discharging time taking 0.5 s. The electromotive force induced
in a solenoid with eight turns was converted to a potential by a SQUID device
that integrated the signal to return changes in flux 1Φ(t ). These were expressed,
through a calibration procedure, as changes in sample moment1µ(t ). As a result
of the integration, each data set (i) had an unknown offset1µ0(i) that needed to be
treated as an unknown parameter in the data analysis.

The expression for monopole hopping rate ν0 quoted in Table 1 was derived
as follows. We approximate the diffusion constant D= (1/6)a2ν0 and write the

mobility u=DQ/kT . Using Onsager’s analysis16, our recombination rate may be
written kR = 8πkT (u/Q)lT /VDy, where VDy is the volume per dysprosium ion.
These equations may be solved to give the quoted result.
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