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We study stability of the Sachdev-Ye-Kitaev (SYK4) model with a large but finite number of fermions N
with respect to a perturbation, quadratic in fermionic operators. We develop analytic perturbation theory in
the amplitude of the SYK2 perturbation and demonstrate stability of the SYK4 infrared asymptotic behavior
characterized by a Green function GðτÞ ∝ 1=τ3=2, with respect to weak perturbation. This result is
supported by exact numerical diagonalization. Our results open the way to build a theory of non-Fermi-
liquid states of strongly interacting fermions.
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The wealth of available data on various strongly corre-
lated electronic materials [1,2] calls for the development of
a general theory of the non-Fermi-liquid ground state(s)
of an interacting many-body fermionic system. Still, no
general theoretical scheme leading to such a behavior in the
zero-temperature limit is known (for a recent review see
Ref. [3]). Mathematically, the complexity of the problem is
due to the absence of any general method to calculate non-
Gaussian functional integrals that appear in the theory of
strongly interacting fermions.
A new and fresh view on this old problem is provided

by the recently proposed [4–6] Sachdev-Ye-Kitaev (SYK)
model of interacting fermions. It has attracted a lot of
attention recently as a possible boundary theory of a two-
dimensional gravitational bulk [5,7,8]. The original SYK
model contains N ≫ 1 Majorana fermions, with the
Hamiltonian consisting of a sum of all possible 4-fermion
terms with randommatrix elements Jijkl ∼ J=N3=2 [note that
the free (quadratic) term ismissing in the SYKHamiltonian].
This model can be considered a nonlinear generalization of
usual random-matrix Hamiltonians [9]. Furthermore, SYKq

models with arbitrary q ¼ 2k, were introduced and studied
[8]. These models provide the most straightforward way to
enhance the role of interaction between fermions, avoiding
formation of any simply ordered structures that lead—
usually, but not always [3]—to a breakdown of some evident
symmetry of the Hamiltonian.
The SYK model is analytically tractable in the large-N

limit and shows two different types of asymptotic behavior
for the fermionic Green function GðτÞ. In the intermediate
time range 1=J ≪ τ ≪ tc, with tc ∼ N=J, the self-
consistent approximation for interaction self-energy is valid
and GðτÞ ∝ τ−1=2. For even larger times τ ≫ tc, it was

found in Ref. [10] that fluctuations, beyond the self-
consistent treatment, change the behavior of the Green
function to GðτÞ ∝ τ−3=2 (we treat exponentially large
ergodic timescale ∝ 2N=2 as being infinite). Both these
types of behavior are crucially different from the standard
Fermi-liquid scaling GðτÞ ∝ 1=τ, which corresponds to the
nonzero finite density of low-energy states. In other terms,
low-energy excitations of the SYK model are not described
by any kind of quasiparticles.
For the reasons described above, the SYK model seems

to be a very promising starting point to approach a theory
of non-Fermi-liquid ground state. A few problems arise,
however: (i) the absence of a quadratic term in the
Hamiltonian makes pure SYK Hamiltonian unrealistic
for electronic systems; (ii) the original SYKmodel contains
Majorana fermions, which are quite scarce in nature (see,
however, the few relevant proposals in Refs. [11–13]); and
(iii) the most interesting properties of a non-Fermi-liquid
state are those related to transport phenomena, while SYK
is a random-matrix-type model without spatial coordinates.
Quite a number of recent publications address the issues
listed above [14–17]. Phase transitions controlled by the
ratio of numbers of fermions in two SYK-like subsystems
were studied in Refs. [14,18].
The generalization of the SYK model for complex

fermions was developed in Refs. [15,17]. A sequence of
SYK “quantum dots” connected by weak (quadratic) tunnel-
ling was considered in Refs. [16,17], making it possible to
define and study transport quantities like resistance, thermal
resistance, etc.; see also a very recent, extensive study in the
same direction [19]. A somewhat different direction was
explored in Refs. [20,21], where a “dispersive SYK model”
was introduced and studied in a way similar to Ref. [17].
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All these studies are restricted by the use of self-consistent
(N → ∞) approximation, with the exception provided by
Ref. [22], where some renormalization group procedure
based upon expansion over smallq − 2 ≪ 1was formulated.
Numerical analysis of the finite-range generalization of the
SYKmodelwith quadratic termswas performed inRef. [23],
and analogies with many-body localization were discussed.
However, all (known to us) studies of stability of SYK

behavior with respect to quadratic perturbations, indicate its
runaway instability. As it was shown in Refs. [14,16,17,19]
in the framework of the self-consistent approximation, the
scaling dimension of the SYK2 perturbation is negativewhen
estimated within the conformal limit, corresponding to the
timescales 1=J ≪ τ ≪ tc. References [17,19] demonstrate
an interesting non-Fermi-liquid behavior in the intermediate
temperature regionT� < T ≪ J, but still obtainFermi-liquid
behavior in the lowest T range below T�.
In the present Letter we reconsider the problem of the

SYK4 stability with respect to quadratic perturbations,
going beyond the saddle-point approximation. We study
fermionic Green function in the region τ ≫ tc by means of
perturbation theory in the amplitude of SYK2 terms, using
the infrared asymptotic solution [8,10] as a starting point.
We show analytically that a weak SYK2 perturbation does
not change the GðτÞ ∝ 1=τ3=2 asymptotics of the Green
function, but simply renormalizes the coefficient. This
result proves the existence of a domain of stability, with
a nonzero area in the parameter space of Hamiltonians,
where a non-Fermi liquid is realized as a ground state. We
also performed a numerical analysis of the Green function
of the mixed SYK4 þ SYK2 model to support our ana-
lytic study.
The model and basic equations.—We consider the model

defined by the following Hamiltonian:

H ¼ 1

4!

X
i;j;k;l

Ji;j;k;lχiχjχkχl þ
i
2!

X
Γi;jχiχj ð1Þ

where χi are Majorana fermions and all indices run from 1
to N. The matrix elements Ji;j;k;l and Γi;j are fully
antisymmetric, and independent randomGaussian variables
with zero mean and the variances hJ2i;j;k;li ¼ ð3!J2=N3Þ,
hΓ2

i;ji ¼ ðΓ2=NÞ. The functional integral representation of
this theory is described by the action S ¼ −ðN=2ÞðS1 þ S2Þ
with two contributions [8,10]:

S1 ¼ tr logð∂τ − Σττ0 Þ þ
Z

dτdτ0
�
J2

4
G4

ττ0 − Σττ0Gτ0τ

�
;

and

S2 ¼
Z

dτdτ0
Γ2

2
G2

ττ0 : ð2Þ

In the limit N ≫ 1, the mean-field analysis is appropriate
and the corresponding saddle-point equations read as
follows:

∂τGττ0 −
Z

dτ00Σττ00Gτ00τ0 ¼ δðτ − τ0Þ; ð3Þ

Σττ0 ¼ J2G3
ττ0 þ Γ2Gττ0 : ð4Þ

We are going to study corrections to the SYK model
Green function GðτÞ, assuming the dimensionless param-
eter γ ¼ Γ=J to be small. Within applicability range of the
saddle-point Eqs. (3) and (4), the scaling dimension of the

perturbation is negative, Δγ ¼ − 1
2
. As a result, Gð0Þ

SYKðτÞ ∝
ðJτÞ−1=2 (the mean-field solution at γ ¼ 0) is unstable with
respect to the perturbation: at τ ≥ τ� ∼ 1=Jγ2 it is replaced
by the usual Fermi-liquid behaviorGðτÞ ∝ ðJγτÞ−1. On the
other hand, at sufficiently long times t ≫ tc, soft repar-
ametrization modes [5,6,8] become relevant and the Green
function of the pure SYK4 model acquires different
scaling [10]

GðτÞ ¼ 1

ð4πÞ1=4
1ffiffiffiffiffiffi
Jtc

p
�
tc
τ

�3
2 ≡ Γ4ð1

4
Þffiffiffiffiffiffiffiffiffiffi

2MJ
p

π5=4

�
M
τ

�3
2

: ð5Þ

For the reasons that become clear soon, we introduced a
new notation, M ¼ πtc=Γ4ð1

4
Þ, where ΓðxÞ is the Euler

gamma function.
For a sufficiently weak perturbation γ ≪ 1=

ffiffiffiffi
N

p
, the

crossover timescale τ� becomes larger than tc and loses its
relevance: the analysis of the SYK solution stability should
now be performed using the asymptotic behavior [Eq. (5)]
as a starting point. Before we develop this analysis, a brief
reminder on the origin of the result [Eq. (5)] is in order.
The saddle-point solution of Eqs. (3) and (4) at Γ ¼ 0 is

invariant with respect to the reparametrization of time,
τ → fðτÞ, which is an approximate symmetry of the full
action S1, see Refs. [4–6]. Fluctuations around the saddle
point can be accounted for by a kind of “sigma-model”
defined on the manifold of functions ϕðτÞ, defined via the
relation df=dt ¼ eϕðtÞ. This field theory has a very simple
action [10]:

Sϕ ¼ M
2

Z
ðϕ0Þ2dτ: ð6Þ

The asymptotic behavior [Eq. (5)] of the Fermionic Green
function Gττ0 ¼ ð1=NÞPiχiðτÞχiðτ0Þ can then be obtained
by the averaging of the functional

Gττ0 ½ϕðτÞ� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2J

ffiffiffi
π

pp sgnðτ − τ0Þ eϕðτÞ=4eϕðτ0Þ=4

j R τ
τ0 e

ϕðτ̃Þdτ̃j1=2 ; ð7Þ

with the action [Eq. (6)] being applicable in the long
time limit τ ≫ tc. For actual calculations of functional
integrals like Eq. (7) with the action [Eq. (6)], we follow
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Refs. [10,24] where a very useful reduction to the Liouville
quantum mechanics [25–28] was employed (see also
Refs. [29–31]).
There are various results in the literature [8,10] concerning

the determination of the important parameterM ¼ MðN; JÞ
which enters the action [Eq. (6)]. We prefer to employ the
relation between results for the full density of states of the
SYK4 model obtained (i) via an asymptotic low-energy
theory, expressed in terms of M: ρðϵÞ ∝ sinh ð2π ffiffiffiffiffiffiffiffiffi

2Mϵ
p Þ

[24], and (ii) by the method of generalized orthogonal
polynomials [32]: ρðϵÞ ∝ sinh ½ð2π ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffi

ϵ=ϵN
p Þ=ðln 1=ηNÞ�,

whereηN¼1−ð32=NÞþOð1=N2Þ and ϵ̄N ¼ ðJN=16
ffiffiffi
2

p Þþ
Oð1Þ (at a finite N, the expressions are given in Ref. [32]).
Comparison of two approaches yields

M ¼ mðNÞ
32

ffiffiffi
2

p N
J
; ð8Þ

where interpolating functionmðNÞ approaches 1 in the limit
N ¼ ∞. Note that convergence ofmðNÞ upon the increase of
N is very slow; in particular, mð32Þ ≈ 0.54. Note also the
numerical factor ∼0.02 in the RHS of Eq. (8), which makes
M much smaller than N=J. Fortunately, the actual timescale
that enters Green functions GðτÞ is tc ¼ MΓ4ð1

4
Þ=π ≈

55M ≈ 1.2NmðNÞ=J; it will be important below for the
comparison with numerical data at a large but finiteN ¼ 32.
Perturbation theory.—First-order correction to the

Green function GðτÞ due to the quadractic term S2 in
the action can be found (see the Supplemental Material [33]
for more details) in a straightforward way as follows
[notation h::i0 means the average over ϕ field with the
action Sϕ, see Eq. (6)]:

δGðτÞ ¼ −hGτ;0½ϕ�S2½ϕ�i0 þ hGτ;0i0hS2i0 ð9Þ

Substituting here Eq. (2), we find that the first term of
Eq. (9) contains an average [over ϕðτÞ fluctuations] of the
product of three functionals like Eq. (7), with the time
arguments 0; τ, and τ1, τ2, where further integration over
τ1;2 is implied. Functional integration over ϕðτÞ with the
action [Eq. (6)] should be performed separately in six
different time regions with the following order of time
arguments:

1 2 3 4 5 6

τ2, τ1, 0, τ τ2, 0, τ1, τ τ2, 0, τ, τ1 0, τ2, τ1, τ 0, τ2, τ, τ1 0, τ, τ2, τ1

Domains 1 and 6 have a trivial structure and their
contributions are canceled completely by the second term
in Eq. (9). Combining other contributions with the corre-
sponding parts of the second term in Eq. (9), we find

δGðτÞ ¼ N
ffiffiffiffiffiffiffi
MJ

p

4π5=4
γ2
�X5
i¼2

fi

�
τ

2M

�
− fZ

�
τ

2M

��
; ð10Þ

where functions fiðxÞ (for i ¼ 2, 3, 4, 5) and fZðxÞ are
defined and calculated in the Supplemental Material [33].
In total, in the long-time limit τ ≫ M we have the
following:

δGðτÞ ¼ cN
ffiffiffiffiffiffiffi
MJ

p
γ2ðτ=MÞ−3

2; ð11Þ

with c ≈ 108. Comparing with Eq. (5), we find
δG=G ≈ 3.7JMNγ2. As a result

δG=G ≈ 0.081mðNÞN2γ2; ð12Þ

recalling that mðNÞ is defined in the Eq. (8). Equation (12)
demonstrates that relevant parameter of the perturbation
theory in the infrared limit is actually γN ≡ b, and
perturbation of the SYK2 type only modifies the numerical
prefactor in GðτÞ.
Numerical data.—Below, we present numerical results

for the Green function GðϵÞ of the SYK2 þ SYK4 model in
the energy representation. This Green function can be
numerically studied with two complementary approaches:
via exact diagonalization at a finite N and directly in the
limit ofN → ∞ via the solution of the mean-field equations
[Eqs. (3) and (4)]. Within the numerical analysis below, we
put J ¼ 1. For exact diagonalization, we consider the
Hamiltonian of Eq. (1) for N ¼ 32 fermions for the range
of γ and average over hundreds of disorder realizations (we
employ the representation of Majorana algebra, used in
Ref. [34]). This results into red, blue, and brown curves in
Fig. 1. The most interesting regime is realized at small
ϵ ≤ 1=tc [that is, below the maximum of the function
GðϵÞ]. The characteristic timescale tc ≈ 20 for N ¼ 32.
Unfortunately, the region ϵ ≤ 1=tc is limited from below
by the many-body energy scale ϵ ¼ ϵMB (defined as an
energy, counted from the ground state, where the many-
body level spacing δϵðϵÞ becomes comparable to ϵ itself.)
For N ¼ 32 the corresponding cutoff ϵMB ≈ 2 × 10−3

determines the left edge on Fig. 1. The respective energy
interval ϵMB ≪ ϵ ≪ M−1 is not really large enough to
admit the predicted asymptotic behavior GðϵÞ ∝ ϵ1=2:
compare with the dotted line, which is evaluated according
to the theoretical prediction of Eq. (22) of Ref. [10].
However, qualitatively at γ ¼ 0, we find the expected
behavior. At a small γ ≪ N−1 the corresponding part of
GðϵÞ dependence shifts up in the log-log plot (see blue
curve for γ ¼ 0.01 ≪ 1=N) without a change of behavior
as a function of ϵ, in agreement with our analytical result
[Eq. (12)]. However, at slightly larger values of γ ∼ 1=N
(brown curve) the Green function GðϵÞ saturates at low
energies, in agreement with the Fermi-liquid behavior.
At even larger values of γ ≥ 1=

ffiffiffiffi
N

p
, the asymptotic

region with GðϵÞ ∝ ffiffiffi
ϵ

p
disappears completely, and the

Green function can be approximated by the solution of
mean-field Eqs. (3) and (4). Interaction term is then
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important at higher energies ϵ ≥ ϵγ ¼ γ2J > 1=tc only. The
green and cyan curves show the numerical solutions to
these equations. Note that mean-field solutions differ in the
region ϵ ≫ 1=tc from the analytical result given by Eq. (22)
of Ref. [10], evaluated at N ¼ 32 (dotted line in Fig. 1).
These deviations appear since the asymptotic region 1=tc ¼
0.05 ≪ ϵ ≪ 1 is apparently not wide enough. Thus, finite-
size effects are detrimental for all analytically available
asymptotics in this problem even for a relatively large
system ofN ¼ 32 fermions. Although available system size
is on the border line of emergence of respective asymptotic
regions, we believe that the results of ED and mean-field
studies are consistent with our analytical estimates. In
particular, the low-ϵ limits of GðϵÞ demonstrated by cyan
and green lines are in agreement with analytic result for
pure SYK2 theory, Gðϵ → 0Þ ¼ 1=Γ.
Conclusions.—Schematically, our results for the zero-

temperature phase diagram of the combined SYK4-SYK2

model are shown in Fig. 2. We emphasize the somewhat
unusual scaling limit of a large N that is employed here.
Namely, we consider N ≫ 1 as some finite number, but
we neglect exponentially small many-body level spacing
ϵMB ∼ 2−N=2. Then our results demonstrate the presence
of a phase transition between a fully chaotic non-Fermi-
liquid ground state realized at b≡ γN < bc, and a Fermi-
liquid ground state existing at b > bc, with bc ∼ 1.
We emphasize that the corresponding critical value of
the amplitude of the quadratic perturbation Γ equals
Γc ¼ bcJ=N. In other terms, the effect of this perturbation

in the infrared limit is much stronger than one could
naïvely expect considering its effect at short times t ≤ tc
where the relevant Γ scales are 1=

ffiffiffiffi
N

p
.

Note that the 1=t3=2 long-time asymptotics of the Green
function in a pure SYK model can be understood [35] as a
result of the square-root edge singularity of the full many-
body DOS [24,32], together with the chaotic, nonstructured
nature of matrix elements that enter the Lehman expansion
for the Green function. Then, the phase transition we found
upon an increase of quadratic perturbation b can be
understood as a transition to a nonchaotic state, with matrix
elements acquiring a nontrivial structure leading to a Fermi-
liquid type of behavior GðtÞ ∼ 1=t.
Recently, the chaotic-integrable transition for the SYK

model with a quadratic perturbation was studied in
Ref. [36]. The authors have shown (judging it by the
Lyapunov exponent of the 4-point, out-of-time-order cor-
relation function) that for several values of γ ∼OðN0Þ,
there exists a finite positive temperature T ¼ TcðγÞ such
that, at T > TcðγÞ, the system behaves chaotically, while, at
lower temperatures, the Lyapunov exponent drops to zero
as it is expected for the Fermi-liquid state with a quasi-
particle-based classification of eigenstates. We believe that
this transition is of the same kind as we found at zero
temperature for a small γ ∼ b=N. In this respect, see a
recent study of energy-resolved spectral and many-body-
wave-function statistics, reported in Ref. [37]. In particular,
Fig. 13(a) [37] demonstrates a qualitative change in the
distribution function of the structural entropy of exact
eigenstates already between κ ¼ 0 and κ ¼ 1 at a low total
energy, indicating the phase transition happening at κ ≲ 1
in agreement with our results.
It would be very interesting to study a similar Non-

Fermi-Liquid–Fermi-Liquid transition in a chain (or lattice)
of SYK-like “quantum dots.” Note that for such extended

FIG. 2. Sketch of the Green function GðϵÞ in log-log scale, in
the limit of N ≫ 1 for several values of b ¼ γN ordered as
b1 < b2 < bc < b3 < b4, with critical bc of the order unity.
Transition to Fermi liquid occurs between blue (2) and grey
(3) lines. Light-blue line (4) corresponds to large b ≥

ffiffiffiffi
N

p
when

the 4-fermion interaction is relevant at high energies above
ϵγ ≫ 1=tc only.

FIG. 1. Green function of the SYK model (log-log scale):
(i) red, blue, brown: exact diagonalization for N ¼ 32 fermions
and γ ¼ 0, 0.01, 0.03; (ii) green, cyan: solution of mean-field
equations Eqs. (3) and (4) at γ ¼ 0.2 and γ ¼ 0.4; (iii) dotted line:
analytical result of Eq. (22) from Ref. [10], interpolating between
ϵ ≫ M−1 and ϵ ≪ M−1 limits, evaluated at N ¼ 32.
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models there is no issue with finiteness of the nonzero
many-body level spacing ϵMB and the problem of the
NFL-FL phase transition can be formulated in the strict
sense. As was already mentioned in the Introduction, the
transition of that kind was studied in Refs. [17,19] at
nonzero temperatures within a N → ∞ limit. Another
approach was developed in Ref. [38] where an effect of
the SYK-like interaction upon the properties of a random-
hopping chain was investigated via numerical analysis
of the level statistics. The authors of Ref. [38] found the
MBL-type transition between fully localized and ergodic
ground states at a rather low and decreasing with N ratio
J=Γ of the SYK coupling to quadratic coupling; thus it
seems to be qualitatively different from the transition we
found for a single SYK system.
Finally, we would like to mention an interesting physical

problem that may bear some resemblance with the
SYK4-SYK2 model considered here. It is well known that
strong potential disorder suppresses a superconducting
transition with nontrivial (d-wave or p-wave) pairing,
due to the random mixing of electron states between
different sectors of the Fermi surface. However, the
mean-square magnitude of the (random-sign) Cooper
interaction amplitude survives impurity scattering. It means
that electron states with energies exactly at the Fermi
surface constitute a kind of SYK-type model with a random
4-fermion interaction. Potentially, this interaction may
occur to be strong enough to lead to a non-Fermi-liquid
ground state without the formation of any order parameter.
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